Abduction Explained

Katarina Britz, University of South Africa Johannes Heidema, University of South Africa Willem Labuschagne, University of Otago

Claim: abduction is dual defeasible entailment. Questions:

- What is defeasible entailment?
- What is dual defeasible entailment?
- Why do we think this formalises abduction?

Defeasible entailment $\mid\sim$

Light-Fan System:

- atomic facts: p =the light is on, q = the fan is on
- states = truth assignments: $S = \{11, 10, 01, 00\}$

Example of preference relation:

	11	
10		01
	00	

Default rule: components are normally on.

Now $p \sim q$ since $PMod(p) \subseteq Mod(q)$

where $PMod(p) = \{11\}$ and $Mod(q) = \{11, 01\}$.

Dual defeasible entailment $angle^*$

$$\models$$
 is given by $Mod(\alpha) \subseteq Mod(\beta)$.

 \succ shrinks the lefthand side: $PMod(\alpha) \subseteq Mod(\beta)$

 \sim^* inflates the right side: $Mod(\alpha) \subseteq QMod(\beta)$.

Def: $\alpha \mathrel{\sim}^* \beta$ iff $Mod(\alpha) \subseteq S - PMod(\neg\beta)$.

Inflate $Mod(\beta)$ by adding extraordinary models of $\neg\beta$.

	11	
10		01
	00	

 $\neg(p \leftrightarrow q) \mathrel{\sim}^* \neg q \text{ since } \{10, 01\} \subseteq \{00, 10\} \cup \{01\}$

but it is here not the case that $\neg(p \leftrightarrow q) \mathrel{\sim} \neg q$

since $PMod(\neg(p \leftrightarrow q)) = \{10, 01\} \nsubseteq Mod(\neg q).$

Duality, $\mid \sim$ and $\mid \sim^*$

1. \succ^* is not the converse of \succ since $\neg p \succ q$ but not $q \succ^* \neg p$.

2. \succ^* is the dual of \succ where the operation ()* is defined by $(\neg \beta, \neg \alpha) \in R^*$ iff $(\alpha, \beta) \in R$.

To see this, observe that

•
$$\neg \beta \models^* \neg \alpha \text{ iff } \alpha \models \beta$$

since $PMod(\alpha) \subseteq S - Mod(\neg \beta)$
iff $Mod(\neg \beta) \subseteq S - PMod(\neg \neg \alpha)$

• $\neg \neg \alpha \mathrel{\sim}^{**} \neg \neg \beta \text{ iff } \alpha \mathrel{\sim}^{\beta} \beta$

Unlike defeasible entailment \succ , classical entailment \models is self-dual by contraposition: $\alpha \models \beta$ iff $\neg \beta \models \neg \alpha$.

Properties of \sim and \sim^*

Kraus, Lehmann and Magidor list properties for $\mid\!\!\sim$, e.g.

Right Weakening (RW) $\alpha \sim \beta \qquad \models \beta \rightarrow \gamma$ Cautious Monotonicity $\alpha \sim \beta \qquad \alpha \sim \gamma$ Cut (Cautious LW) $\alpha \wedge \beta \sim \gamma \qquad \alpha \sim \beta$

which all have dual versions that hold for \succ^* :

Monotonicity (LS) $\frac{\beta \triangleright^{*} \gamma \models \alpha \rightarrow \beta}{\alpha \triangleright^{*} \gamma}$ Cautious RW $\frac{\alpha \triangleright^{*} \gamma \quad \beta \triangleright^{*} \gamma}{\alpha \triangleright^{*} \beta \lor \gamma}$ Cautious RS $\frac{\alpha \triangleright^{*} \beta \lor \gamma \quad \gamma \triangleright^{*} \beta}{\alpha \triangleright^{*} \beta}$

Both \sim and \sim^* satisfy Reflexivity, And, Or, Left and Right Logical Equivalence.

Algebraic roles of $\mid \sim$ and $\mid \sim^*$

Consider the Lindenbaum-Tarski algebra of propositions, with order relation \models , \perp given by the equivalence class of contradictions, and \top the class of tautologies.

For a fixed premiss α , the set $\{\beta : \alpha \triangleright \beta\}$ is a *filter*, i.e. closed under \wedge and \models .

But for a fixed consequence β , the set $\{\alpha : \alpha \succ \beta\}$ of premisses merits no acclamation: it is not an *ideal* because \succ is nonmonotonic, so that $\alpha \succ \beta$ does not always ensure that $\alpha \land \gamma \succ \beta$, hence downward closure fails.

However, if we use the dual relation \succ^* , then for a fixed consequence β the set $\{\alpha : \alpha \models^* \beta\}$ of premisses does form an ideal (although the set of consequences for a fixed α does not form a filter).

Abduction

CS Peirce proposed that abduction had the following 'perfectly definite logical form':

Premiss 1: The (possibly surprising) fact β is observed.

Premiss 2: If α were the case, β would follow as a matter of course.

Conclusion: Hence there is reason to suspect that α may be true.

Traditionally, premiss 2 was taken to mean $\alpha \models \beta$.

Some have loosened this to $\alpha \succ \beta$.

We wish to replace premiss 2 by $\alpha \sim^* \beta$.

Why? Because α is supposed to *explain* β .

Explanation

Criterion for " α is a potential partial explanation for β "?

 $\alpha \models \beta$? No: take q = that thing flies, p = that thing is a bird. Then $p \nvDash q$. (But $p \succ q$. Hmmm.)

 $\alpha \succ \beta$? No: it is possible to have $\alpha \succ \beta$ while all but the most preferred models of α are in fact typical (= maximally preferred) models of $\neg \beta$.

Hence let us require that $Mod(\alpha) \cap PMod(\neg\beta) = \emptyset$. Thus $\alpha \sim^* \beta$ is precisely the criterion we seek.

Example: Think of the Light-Fan System as a nuclear powerplant. And suppose that q is observed.

11	$p \sim q?$	Yes, $PMod(p) \subseteq Mod(q)$
01	$\neg p \sim q?$	Yes, $PMod(\neg p) \subseteq Mod(q)$
00	$p \sim q?$	Yes, $Mod(p) \subseteq S - PMod(\neg q)$
10	$\neg p \sim^* q?$	No, $Mod(\neg p) \nsubseteq S - PMod(\neg q)$

Induction

CS Peirce suggested that there are 3 'elementary kinds of reasoning': deduction, abduction, and induction.

Traditionally, induction is for (universal) *rule-formation*:

Premiss: Robins use serotonin as a neurotransmitter. Conclusion: All birds use serotonin as a neurotransmitter.

Or for *prediction*:

Premiss: Robins use serotonin as a neurotransmitter. Conclusion: Doves use serotonin as a neurotransmitter.

Universal sentences represent universal rules. But outside mathematics, default rules are more important, represented by preference relations, not object-language sentences. So the only kind of induction to constrain via a semantic relation on sentences is prediction. Clearly $\mid\sim$ is the right sort of relation.

Category abduction and induction

Categorisation is an important part of thought, especially for coping with novelty and making predictions.

Two psychologically important measures:

- cue validity probability that an object x is in a category C, given that x has features F
- category validity probability that item x has features F, given that x is in category C.

Cue validity is analogous to abduction as constrained by \sim^* , for high cue validity explains features F by category membership, and if x is in category C then x will not be a typical member of a contrast (non-C) category.

Category validity is analogous to induction as constrained by $\mid \sim$, for if x is in category C, then x will typically have features F.

Other approaches to abduction

Aliseda, Gabbay: abstract schema involving a relation R on sentences that may be interpreted variously; schema involves an explanandum E, background knowledge K, explanatory hypothesis H, and conditions such as $(K, E) \notin$ R and $(K * H, E) \in R$.

Compatible. Can accommodate $R = \succ^*$.

Flach: Rationality principles. View of induction close to our $\mid \sim$. View of abduction essentially takes the 'explanatory consequence relation' to be the converse (!) of 'some consequence relation $\mid \sim$ ' although the nature of $\mid \sim$ is here left open (could be \models). In other words, α is supposed to explain β if $\alpha \mid \sim \beta$ or possibly if $\alpha \models \beta$.

Incompatible. We have already shown the flaws in this.