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ABSTRACT
This paper looks at a number of issues regarding the evalu-
ation of XML retrieval. It aims to identify what the require-
ments on a measure of XML retrieval effectiveness are and
how the actual evaluation methodology and aspects such
as the relevance dimensions and the assessment procedure
affect the evaluation. We examine various current and pro-
posed metrics, how they fit the requirements and aim to
give an explanation of what exactly they measure. A ques-
tion we are attempting to address is: “Is there a single good
measure of retrieval effectiveness for XML retrieval?”.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Performance, Measurement

Keywords
XML retrieval, INEX, evaluation metrics

1. INTRODUCTION
Since its launch in 2002, INEX (INitiative for the Evalua-
tion of XML Retrieval) has been challenged by the issue of
how to measure an XML information retrieval (IR) system’s
effectiveness. Due to the fact that most underlying assump-
tions that traditional IR metrics are based upon no longer
hold in an XML IR setting [6], INEX has been investigating
various adaptations of established measures as well as newly
proposed metrics.

Currently there are five metrics under consideration to be
used as the official metric of INEX 2005. One issue with
having a range of available metrics is that unless we are
clear about what exactly they measure, their incorrect use
can lead to confusion regarding the result of the evaluation.
Although pair-wise comparisons of some of the metrics now
exist in the literature [10, 17], we are still largely in the
dark as to how these different measures relate to each other
or how they differ from each other, or, in fact, how well they
suit the evaluation task.
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In this paper, we look at various issues regarding the evalu-
ation: what should we expect from a measure, how do the
relevance dimensions and the assessment procedure affect
the evaluation and what the current metrics measure.

2. WHAT TO MEASURE
The main criterion of any evaluation measure is that it
should be able to rank systems according to how well they
satisfy a user’s information need, given a retrieval task and
a model of user behaviour.

2.1 Retrieval task
In INEX, the retrieval task is given as the ad-hoc retrieval of
XML documents. As in traditional IR, the INEX task of ad-
hoc retrieval is considered as a simulation of how a library
might be used: a static set of documents being searched
using a new set of topics. However, the similarity ends there.

In traditional IR, the library consists of documents, repre-
senting well-defined units of retrieval, where the relevance
of one document to the query is (considered) independent
from the relevance of other documents to the query. The
user’s information need is typically expressed in the form of
a natural language statement or simply as a set of keywords.
Given this, the task of an IR search engine is to return to the
user, in response to his/her query, as many relevant docu-
ments and as few irrelevant documents as possible. The
output is usually presented to the user as a ranked list of
documents, ordered by presumed relevance to the query.

Established measures, such as recall and precision graphs,
provide suitable and intuitive mechanisms for evaluating the
effectiveness of IR systems based on the above retrieval task
and model of user interaction. The atomic retrieval unit
of a document and the binary relevance assumption allows
for the simple counting of the number of relevant and the
number of retrieved documents, which forms the basis of re-
call/precision measures. The ranking is considered by taking
counts at various recall levels.

In an XML IR setting, the library consists of XML doc-
uments composed of different granularity nested XML el-
ements, each of which represents a valid unit of retrieval,
where the relevance of one component may be dependent
on the relevance of other structurally related components.
Furthermore, the user’s query may contain structural con-
straints in addition to the typical content conditions. These
structural constraints may then be interpreted by an XML



IR system as strict conditions that must be met by rele-
vant elements or as vague conditions that can be considered
only as hints or clues as to where relevant information may
be found. The decision really comes down to the question
of how much we trust users’ understanding of the searched
collection’s structure as well as their abilities in expressing
complex queries.

The general task of an XML IR engine has been defined in
INEX as the task of returning, instead of whole documents,
those document components (XML elements) that are most
specific and exhaustive to the user’s information need [15,
14]. This general task definition is then extended for the
various CAS sub-tasks to take into account that user satis-
faction is also dependent on the structural conditions being
met (strictly or vaguely). To simplify our study, for the rest
of the paper we concentrate on the CO tasks.

An issue with the above general task definition is that it
leaves the concept of “most specific and exhaustive” some-
what unspecified (or rather specified only within the quan-
tisation functions, which currently do not form part of the
task description). In addition, a common misinterpretation
of “most specific and exhaustive” is to equate it to “highly
specific and highly exhaustive” (i.e. (e, s) = (3, 3)). How-
ever, the term “most” is understood to refer to the high-
est available combined exhaustivity and specificity score of
nodes in a given XML tree. For example, it may be that
amongst all possible retrievable components in an XML doc-
ument (article), even the most exhaustive node is only mar-
ginally exhaustive (e = 1) if the topic of request is only
mentioned. Similarly, it may well be that even the most spe-
cific node contains some irrelevant information (e.g. s = 2).
When the combination of the two dimensions is considered,
additional criteria is required to decide if the most specific
and exhaustive elements of a tree should be, for example,
two (e, s) = (2, 3) paragraph elements or their container
(e, s) = (3, 2) section element.

The output of XML IR systems, up until the time of writing
this, has been assumed to be a ranked list of XML elements,
ordered by their presumed relevance to the query. Other
forms of non-linear result presentations, e.g. where related
results are clustered based on structural relationships, have
so far been ignored due to the added complexity in their
evaluation. The INEX 2005 task guidelines [14], developed
in the meantime, provide a welcomed step in this direction,
although - in the opinion of the first author - they require
further development (more on this in Section 2.3).

2.2 User behaviour
The definition of the general ad-hoc retrieval task in the
previous section is still rather vague, and one that requires
further clarification. For example, what exactly is meant by
returning XML elements to users? Will users have access to
the full text of a returned element and its sub-nodes? What
about access to the element’s context? Will users need to
browse in order to access related components or will the sys-
tem show result elements, for example, as highlighted text
fragments within their larger context element? What can
be assumed of users’ interaction with the system? All these
factors affect the assumed user model which then impacts
on the evaluation.

A user of a traditional IR system is typically associated with
a simple model for interacting with the system. He/she is
assumed to examine the returned ranked list in a linear fash-
ion, moving from the top of the list down, either until the
end of the list is reached, or until the point where his/her
information need has been satisfied or where the user gives
up. Each examined document is assumed to require approx-
imately the same amount of effort from the user.

The user of an XML IR system is currently assumed to follow
the same routine and work through the returned ranked list
from top to bottom, with similar stopping options. The
required effort to consult a result element, however, can no
longer be assumed to be equal, but should rather be given
as some function of element size or required reading time.

When users of an XML IR system access a result element,
they may then have access, in one form or another (e.g.
browsing or scrolling), to the element’s structurally related
nodes and/or context (where, depending on the user inter-
face, the cost of this access may differ in different situations).
This motivates the need to consider so-called near-misses, el-
ements from where users can access desired relevant content,
within the evaluation. For example, a section containing the
sought-after relevant paragraph, a list item within the para-
graph, or a neighbouring paragraph or section may all be
considered as near-misses. A near-miss may itself be rele-
vant or irrelevant to the user’s query. Assuming that such
near-misses may be useful for a user, as it gives him/her ac-
cess to otherwise lost relevant information, the idea is then
to allow systems to pick up partial scores for finding such
elements.

In addition, due to the possible overlap of result elements
(e.g. returned nested elements), it is argued that a further
assumption is needed in INEX, according to which redun-
dant relevant fragments are to be considered of no further
value to the user. For example, once seen, a relevant para-
graph may be of no interest to the user if it is again returned
as part of its container section. The need for making this
behaviour an explicit assumption has only been highlighted
recently in [3, 10]. In [10], it was shown that unless an evalu-
ation metric that explicitly addresses this issue is employed,
unfair advantage can be gained by systems that exploit this
phenomena of the INEX recall-base over systems that actu-
ally put effort into not to inundate users with such redun-
dancy. This process of deliberately returning overlapping
elements to increase effectiveness results has since been pop-
ularly named as “milking” and has been the centre of some
debate in INEX.

Most of us agree that returning overlapping results contra-
dicts the intuition about the retrieval task, which aims to
decrease the user effort required in finding relevant informa-
tion, and that it can lead to user disorientation when such
related redundant components are dotted around at differ-
ent ranks in the output list. This was also indicated in the
experiments conducted by the INEX 2004 interactive track
[22]. However, we may equally argue that overlap - from a
system evaluation point of view - should not be seen as an
issue since systems can be assumed to be able to deal with it
when presenting their results to users. For example, systems
may remove overlapping nodes via some filtering strategy or



cluster them together, and so on. Therefore, overlap should
be allowed in result lists when a system-oriented evaluation
is applied. This said, a crucial (implicit) assumption of this
argument is that overlap, while allowed, should not repre-
sent a potential gain factor to be exploited. This means that
systems should not be penalised for not retrieving overlap-
ping nodes! For example, a system that retrieves all relevant
nodes on a path (e.g. article[1], bdy[1], sec[6] and p[1]

in Figure 1), ranking the highest scoring first (e.g. sec[6]),
should not be ranked better by the evaluation than another
system that only returns the highest scoring node from the
same path (e.g. sec[6]). In conclusion, given a suitable
metric, systems would be free to follow a retrieval strategy
based on “milking”, but such a strategy would not present
an advantage, but may in fact prove unbeneficial as it may
result in the output list being filled with elements of no
further value while pushing other non-overlapping relevant
nodes down the list.

As a result, if returning overlapping results does not lead to
a sensible retrieval strategy, then systems will be forced to
make decisions as to which element(s) to retrieve from an
arbitrary tree of XML elements, which is arguably the pre-
sumed aim of XML IR. As mentioned before, the retrieval
task implicitly relies on a set of user preferences, modeled
within the quantisation functions. These preferences dictate
which elements systems should return to the user from a
given XML tree. For example, the generalised quantisation
function describes a user who would prefer more exhaustive
components despite the additional effort needed to be spent
on locating the relevant information within. Based on these
set of preferences, a system would need to locate those ele-
ments in an XML tree that are more exhaustive than any of
their structurally related nodes, where from two nodes with
the same exhaustivity the more specific one is preferred.

2.3 Matching user types to tasks
A problem with the current setup of the general INEX re-
trieval task and the various user models represented by the
quantisation functions is that in the first instance the task is
not explicitly motivated by a given user model and secondly
that different systems may have been tuned to different user
models, but were all evaluated under the general CO task
umbrella and using all quantisations. While this may pro-
vide an indication of how well systems do in general (in
trying to satisfy all types of users), an appropriate match-
ing of evaluation criteria and tasks is still needed. To this
end, what is required is to define specific retrieval tasks that
motivate certain user behaviours. For example, the task
of highlighting highly specific relevant text fragments may
reflect a user who prefers more specific elements and who
may have access to the context of the highlighted text frag-
ments. In line with this, during the INEX 2004 workshop
(see http://inex.is.informatik.uni-duisburg.de:2004/presenta-
tions/metrics-wg.ppt), the following system task has been
put forward for INEX 2005:

• Find the most specific elements (in each path), i.e.,
those elements with the highest ratio of relevant to
irrelevant information. These elements are considered
independent (i.e., non-overlapping), of equal quality,
and it does not matter if they are from the same or
different documents.

An argument that supports the selection of this task as “the”
main task in INEX is that it requires search engines to pin-
point the exact location of relevant texts (and hence it is not
enough to just go for a ‘safe’ option and return large con-
tainer units). We see this as one of the main driving forces
for XML IR in the first place: XML IR systems should aim
to present users with more focused material, and thus re-
duce users’ efforts in locating sought-after information. In
other words, systems should return components that con-
tain as much relevant information and as little irrelevant
information as possible.

Given this retrieval task, a suitable evaluation measure should
be able to rank systems according to how well they are able
to locate XML elements that contain as much relevant in-
formation and as little irrelevant information as possible.

In addition to the above system task, a number of user tasks
have been outlined at the workshop:

• Find the most specific elements in a path

• Find as much relevant content as possible

• Find as many relevant elements as possible

Here, the first task may be considered as an extension of
the system task, where additional aspects of the user’s in-
teraction with the retrieval system may be included, e.g.
browsing to structurally related elements. The second and
third tasks are a bit harder to interpret and seem to be more
motivated from a system-oriented point of view, whereby
systems are required to return all reference elements that
form the full recall-base (including all overlapping nodes).

Based (loosely) on the above task proposals, INEX 2005
defined a number of specific retrieval strategies to be in-
vestigated: “focused”, “thorough” and “fetch and browse”
strategies. These strategies build on assumed user behav-
iours that take into account how the results may actually be
presented and provide explicit guidelines for search engines
on how to deal with issues such as overlap. For example,
the focused strategy aims to remove overlap and can be as-
sociated with a user interface where most specific elements
may be highlighted for the user.

Although these sub-tasks go some way to clarify what actual
output is expected of an XML IR system, they still leave a
lot of questions open mainly due to the problem that we
are unsure about what real users of an XML digital library
would want returned to them. As a result, in the opinion of
the first author, the sub-task definitions still remain open to
individual interpretation, which is bound to lead to confu-
sion and later on to questions regarding the appropriateness
of the adopted evaluation metrics.

In an effort to correct this, the following modifications are
suggested with respect to the focused task: “This strategy
should return to the user those largest XML elements that
contain only relevant (or minimal irrelevant1) information.
A reason to specify ‘largest’ in the definition is that in case of

1E.g. if the most specific node on a path is s = 2 or s = 1.



a completely relevant section (e.g. s = 3), the section should
be returned instead of its individual paragraphs (which will
also have s = 3 since no irrelevant information is contained
in the section element and consequently in any of its sub-
nodes). More formally, the task is to return, given an arbi-
trary tree of relevant XML elements, the most specific non-
overlapping relevant elements, where relevant simply means
having any level of exhaustivity (e > 0). From two nodes
with the same specificity the one with higher exhaustivity
should be retrieved. In the case where two nodes on the same
path are equally specific and exhaustive, the ascendant ele-
ment should be returned. The output should be presented
to the user as a ranked list of XML elements, ranked by
specificity first and then by exhaustivity.”

The thorough strategy, which may be motivated by the idea
of using it as a catch-all for possible different retrieval strate-
gies, may be defined as a task to “find all relevant elements,
where a relevant element is one with e > 0. The output is
assumed to be a ranked list of XML elements, ranked by
combined exhaustivity and specificity according to a chosen
quantisation function.”2

The fetch and browse strategy is also felt to be rather vague.
While the basic idea of the fetch phase is clear, the browse
phase will need further clarification. Although the authors
do not actually agree on this point, we would like to suggest
as discussion point the following redefinition of this task
into two separate tasks: a fetch and highlight strategy and
a fetch and browse strategy.

The aim of the former strategy would be to first identify
relevant articles (the fetching phase), and then to identify
the most specific relevant elements within the fetched arti-
cles (the highlighting phase). In the fetching phase, articles
should be ranked according to how exhaustive and specific
they are, where the relative value of the combined exhaus-
tivity and specificity would be given by a chosen quantisa-
tion function. For the highlighting phase, the ranking of
XML elements within an article should be done according
to the focused retrieval strategy. The assumed output is a
ranked list of articles, which are then viewed by the user as
flat text files, where the most specific relevant elements are
highlighted.

Within the fetch and browse strategy, as with the fetch and
highlight strategy, the aim of the fetching phase is to re-
trieve relevant articles, ranked by exhaustivity and speci-
ficity (based on a chosen quantisation function). For the
browsing phase, the ranking of XML elements within an
article should be done according to the thorough retrieval
strategy. The assumed output is again a ranked list of arti-
cles, but on viewing the user is assumed to interact with a
ranked list of XML elements from the article.

Alternative tasks may also consider the retrieval of “best
elements”, which involves finding the preferable units of re-
trieval (given a specific user interface). We, however, believe
that such a task requires, as its precondition, knowledge of
the locations of the most specific elements. Strategies for
deciding which elements would be best to return to the user

2The current definition is already along these lines, but the
phrasing of the task may be slightly misleading.

will then further depend on assumptions about the user’s
preferences and browsing behaviour as well as assumption
about how the results are presented to the user. For exam-
ple, best elements may be best hub nodes for a user of a
hyperlinked environment who is happy to browse in search
for relevant content. However, if the results are presented
to the user as highlighted text fragments within a document
unit (e.g. article), then best elements may well be the same
nodes as the most specific elements.

A further issue with the “finding the best elements” task is
that it may require additional assessments, whereby given
a set of relevant nodes in an XML tree and a specific user
interface, users need to identify which elements they would
want to be returned by a search system [12]. Note that
we would not recommended to try to obtain assessments -
directly within the relevance assessment procedure - with
the “best elements” task in mind as it is ultimately a much
more complex notion than relevance. Different people will
have widely varied ideas as to what should be a best element
to return (even if the user interface is fixed), which is likely
to have an impact on the quality of the assessments.

Nevertheless, the best element task is one that is of par-
ticular interest to us and we would be keen to support its
integration into INEX. We envision the interactive track as
probably the best venue for starting experiments to inves-
tigate this task and how best to derive assessments for it.
Some initial results on a different test data can be found in
[19, 20].

3. RELEVANCE
3.1 Multiple dimensions and degrees
As mentioned before, the ordering of the results in the out-
put list is according to presumed relevance. In traditional
IR experiments, this output is then compared against the
set of relevant documents identified by human assessors (or
its subsets at different recalls). Since relevance assessments
are typically given in the form of binary decisions, e.g. rel-
evant or not, simple counting mechanisms can be employed
by the evaluation measures (i.e. precision and recall).

In INEX, relevance represents a more complex notion with
two separate identified aspects: exhaustivity and specificity.
Both these aspects influence the overall relevance of an XML
element: the more exhaustive and more specific an element,
the more it is desired by the user. Exhaustivity reflects how
exhaustively a document component discusses the topic of
request (and hence relates to the amount of relevant infor-
mation contained within the element), while specificity re-
flects how focused the component is on the topic of request,
i.e. discusses no other, irrelevant topics (and hence relates
to the amount of irrelevant information contained within
the element). These two aspects have been separated into
two relevance dimensions for better control. Although there
have been arguments against this separation, it was decided
that this solution would provide a more stable measure of
relevance than if assessors were asked to rate elements on
a single scale. This is because on a single scale an element
may be judged, for example, marginally relevant if it con-
tained only relevant information, but this information was
not very exhaustive; and also if it was exhaustive, but the el-
ement also contained a lot of irrelevant information. Judges



are also likely to place varying emphasis on these two aspects
when assign a single relevance value.

This argument is supported by our findings from building
a small test collection from Shakespeare plays marked up
in XML. There, we employed binary relevance assessments,
which were derived using a highlighting procedure (asses-
sors marked relevant text fragments with a yellow marker),
where each topic was assessed by multiple assessors. We
found that different people highlighted widely different sized
text fragments as being relevant to the same query. Some
of the assessors highlighted very specific relevant sentences
only, while others highlighted complete sections [12]. This
suggests that, when considering relevance, different judges
placed varying degrees of importance on the exhaustivity or
specificity aspects and highlighted text segments according
to a relative rating that they felt was appropriate in a given
situation and at a given time. In addition, text fragments
that were not strictly relevant, but provided contextual in-
formation may have also been highlighted by some of the
judges.

One advantage of a single scale relevance, however, is that it
implicitly combines exhaustivity and specificity (and prob-
ably other aspects too), which closer reflects the user’s true
preferences, rather than being modeled afterwards using quan-
tisation functions.

In INEX, in addition to the two dimensions, it was felt that
multiple grades were necessary in order to be able to reflect
the relative relevance of a component with respect to its sub-
components. For example, a document component may be
more exhaustive than any of its sub-components alone given
that it covers all (i.e. the union of) the aspects discussed in
each of the sub-components. Similarly, sub-components may
be more specific than their parent components, given that
the parent components may cover multiple topics, including
irrelevant ones.

The relevance degree of an assessed component, given by the
combined values of exhaustivity and specificity, is denoted
as (e, s) ∈ ES, where ES = {(0, 0), (1, 1), (1, 2), (1, 3), (2, 1),
(2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.

A consequence of separating the two dimensions is that eval-
uation measures need to be able to either handle the dimen-
sions separately or be able to combine them in a way that
reflects appropriate user expectations. As mentioned before,
the quantisation functions aim to do just that. They pro-
vide a relative ordering of the various combinations of (e, s)
values and a mapping of these to a single relevance scale:
fquant(e, s) : ES → [0, 1]3.

A number of relevance value functions have been in use
throughout the years reflecting various user preferences. Some
of these functions, e.g. strict quantisations, result in binary
relevance values, while others, e.g. generalised or SOG (see
Equation 2), result in multiple degree relevance scales having
a range of values in [0, 1]. While strict quantisations lend

3Note that the quantisation functions used within the inex-
2003 metric provide a separate mapping for exhaustivity,
f ′quant(e) : E → [0, 1] and specificity, f ′quant(s) : S → [0, 1],
where E = {0, 1, 2, 3} and S = {0, 1, 2, 3}

their results suitable for an evaluation measure based on
counting mechanisms, others that produce non-binary rel-
evance values require alternative measures like generalised
precision and recall or cumulated gain [13, 8, 1].

One question that remains open, even with the defined “most
specific” task, is the question of how to decide about the ex-
act mapping to be employed (within a given quantisation
function). How much would a (2, 3) element be worth to
the user, or how much more could it be worth than a (1, 1)
element?

3.2 Binary relevance
With all the additional effort involved in producing relevance
assessments according to the two dimensions and along the
multiple grades, arguments have been raised time and time
again for the use of a simple binary relevance measure. The
report of the INEX 2003 workshop [9] reports on a similar
discussion, where the benefits of graded relevance assess-
ments have again been pointed out (see [13, 7, 21]). An ad-
ditional problem with binary relevance assessments is that
it becomes no longer possible to reason about relative pref-
erences among related relevant elements (i.e. component vs.
its sub-components).

3.3 Continuous scale
In order to decrease assessment effort, a highlighting proce-
dure is being considered for INEX 2005 (INEX organizers
mailing list), and may even have been put in place by the
time of this workshop. A proposed process for assessment is
as follows:

• In the first pass, assessors highlight text fragments that
contain only relevant information

• In the second pass, assessors judge the exhaustivity
level of any elements that have highlighted parts.

As a result of this process, any elements that have been
fully highlighted will be automatically labeled as fully spe-
cific. For example, if the last paragraph of a section (say
sec1) and the first two paragraphs of the next section (sec2)
have been highlighted, then the three paragraphs and any
of their descendants will be marked as fully specific (e.g.
s = 1 = 100%). The specificity of any other (partially high-
lighted) elements will be calculated automatically as some
function of the contained relevant and irrelevant content
(e.g. in the simplest case as the ratio of relevant content
to all content, measured in number of words or characters).
The two sections in our example may then get a specificity
score of s = 10/100 = 10% and s = 20/100 = 20%, respec-
tively, assuming that each paragraph consists of 10 words
and each section has 10 paragraphs. The same procedures
can be applied when highlighting is done at the sentence or
word level.

The main advantage of this highlighting approach is that
assessors will now only have to judge the exhaustivity level
of the elements that have highlighted parts (in the second
phase). A vital consideration, however, is that the highlight-
ing must be based solely on the specificity dimension (e.g.
ignoring exhaustivity in the first phase). Assessors should



be made aware not to highlight larger contexts because these
are more exhaustive, if at the same time they are less spe-
cific (i.e. contain irrelevant fragments). It is important that
only purely relevant information fragments get highlighted.

Although, with this semi-automated method, specificity will
be measured on a continuous scale, with a simple quantisa-
tion method, it can be mapped onto the already established
4 point specificity scale, if desired. However, the use of a
continuous scale for specificity may also simplify the evalu-
ation as it will no longer require a relative ordering of (e, s)
pairs, but allows for a more natural combination of the two
dimensions.

Although there have been suggestions for also employing a
continuous scale for the exhaustivity dimension, this option
has not yet been explored. It is not yet clear to us what
benefits this may have and if it could lead to a reliable mea-
sure.

4. WHY DO WE NEED AN IDEAL RECALL-
BASE?

In INEX, the recall-base consists of sets of overlapping ele-
ments (which will remain the case even with the proposed
new assessment procedure). For example, from the XML ar-
ticle of co/2001/r7022.xml, all elements shown in Figure 1
form part of the recall-base for INEX 2004. As detailed
in [10], this so-called overpopulated recall-base can lead to
skewed and misleading effectiveness results if it is ignored by
the employed evaluation metric. The root of this problem
lies in the fact that the recall-base contains more reference
elements than an ideal system should in fact retrieve. In
fact, if the problem is ignored by the metric then perfect
recall can only be reached by systems that return all the
relevant reference components of the recall-base, including
all the overlapping elements [16, 10, 3, 17]. Such retrieval
behaviour, however, contradicts the definition of an effective
XML retrieval system.

Following on from the focused task definition in section 2.3,
systems should return only the most specific non-overlapping
elements from an XML tree of relevant nodes. Based on the
thorough task, ideal elements are those that score highest
along a path of the XML tree according to a chosen quan-
tisation function. Elements that correspond to such ideal
nodes must also be selected from the recall-base. Given a
suitable procedure, we can define an ‘ideal recall-base’ as a
collection of ideal nodes, where overlap between reference
elements is completely removed. All remaining components
of the original recall-base may then be considered as near-
misses.

The constructed ideal recall-base could be used (by itself) for
evaluating XML retrieval systems using traditional metrics
(i.e. recall and precision). In such an evaluation setting,
however, systems would be measured against a rather strict
ideal scenario, where only exact matches between retrieved
elements and ideal reference elements are considered a hit.
However, given the possibly fine graded structure of an XML
document, the judgement to only credit systems that are
able to return exactly the ideal components may seem too
harsh, especially since the retrieval of near-misses may still
be considered useful for a user when the ideal component is

Figure 1: Sample assessments showing only relevant
nodes (i.e. e > 0 and s > 0) for topic 163 in the
article file co/2001/r7022.xml. For each node, the
node name, the assessment value pair (e, s), the size
in number of words and the size ratio to its parent
node is shown. Nodes marked as “→ sog” are the
selected ideal nodes based on the SOG quantisation
function.

not found.

A better solution can be reached by the combined usage of
the full recall-base and the derived ideal recall-base: ele-
ments in the ideal recall-base represent the desired target
components that should be retrieved, while all other ele-
ments in the full recall-base (or even in the full collection)
may be rewarded partial score. The main significance of the
definition of an ideal recall-base is that it supports the evalu-
ation viewpoint whereby components in the ideal recall-base
should be retrieved, while the retrieval of near-misses could
be rewarded as partial successes, but other systems need not
be penalised for not retrieving such near-misses.

4.1 How to build an ideal recall-base
An ideal recall-base is a set of ideal result nodes selected
from the full recall-base, where the selection process must
follow assumptions regarding the given retrieval task and
user behaviour. In [10], a proposed selection process was
based on a chosen quantisation function, representing a user
model, and the following methodology. Given any two com-
ponents on a relevant path4, the component with the higher
quantised score is selected. In case two components’ scores
are equal, the one deeper in the tree is chosen. The proce-
dure is applied recursively to all overlapping pairs of com-
ponents along a relevant path until one element remains.

4A relevant path is defined as a path in an article file’s XML
tree, whose root node is the article element and whose leaf
node is a relevant component (i.e. (e>0, s>0)) that has no
or only irrelevant descendants. E.g. in Figure 1 there are 2
relevant paths.



After all relevant paths have been processed, a final filter-
ing is applied to eliminate any possible overlap among ideal
components, keeping from two overlapping ideal paths the
shortest one. The resulting ideal recall-base contains the
best elements to return to a user based on the assumptions
that overlap between result nodes should be avoided and
that the user’s preferences are reflected within the employed
quantisation function.

For example, using the SOG quantisation function (Equa-
tion 2), the ideal nodes selected from the XML tree shown
in Figure 1 are sec[6] and sec[4].

Based on the proposed new highlighting procedure and the
focused task, the ideal elements will be the largest fully spe-
cific (or most specific5) elements that directly contain the
highlighted relevant information.

An alternative method is proposed by Benjamin Piwowarski
(in PRUM’s implementation in EvalJ), where a node x is
selected as ideal if:
1.) fquant(x) > 0 AND
2.) for any descendant z of x fquant(z) < fquant(x) AND
3.) for any ancestor y of x fquant(x) ≥ fquant(y) OR there
exists a descendant z of y for which fquant(z) ≥ fquant(y).

For example, using the SOG quantisation function, the ideal
nodes selected from the XML tree shown in Figure 1 are
sec[6], sec[4]/ip1[2], sec[4]/p[1] and sec[4]/p[2].

The difference between the two methods is that the latter
places additional emphasis on selecting nodes deeper in the
tree and can also cater for some assessment error, while the
former relies only on the assessors’ judgements. This is il-
lustrated in Table 1, which shows the obtained ideal recall-
bases for each of the sample XML trees of Figure 2, using
the SOG quantisation function. For tree a) both methods
select the same ideal node. For tree b) Kazai’s method se-
lects nodes 2 and 3 initially then keeps only node 2, while
Piwowarski’s method selects nodes 3 and 5. For tree c)
Kazai’s method selects node 3, while Piwowarski’s method
selects all relevant leaf nodes: 4,5,6,7,8 and 9.

It could be debated as to which method is better than the
other. For example, in tree b) one might argue that nodes
3 and 5 provide a better representation of our user’s ideal
results based on the SOG user model and if the assessor
had judged node 2 (bdy[1]) as (e, s) = (3, 1) (instead of
(3, 2)) then Kazai’s method would also select these nodes
as ideal. Without looking at element size, we cannot be
sure if the assessor’s decision was a correct one or a possible
mistake6. An advantage of the continuous specificity scale
and the highlighting assessment procedure would be that
such problems would be eliminated.

Tree c) represents an interesting situation, whereby the two

5For example, if only a sentence of a paragraph has been
highlighted then the paragraph is selected as the ideal ele-
ment.
6If bdy[1] consists only of the two sections judged relevant,
then s = 2 is reasonable. However, if it has other irrelevant
sections, then s = 1 would seem more appropriate.

Table 1: Ideal nodes for Kazai’s and Piwowarski’s
methods for the XML trees in Figure 2

Method Tree a) Tree b) Tree c)
Kazai [10] 3. 2. 3.
Piwowarski [17] 3. 3. and 5. 4. - 9.

sets of ideal nodes cover the same content7, but - depend-
ing on how they are presented to the user (e.g. highlighted
text in an XML document or XML elements in a ranked
list) and what measure is employed - could obtain differ-
ent effectiveness results. This motivates the need for more
elaborate methods for constructing ideal recall-bases, taking
into account result presentation.

A metric should then take the chosen ideal recall-base as
its parameter. The total score for retrieving any number
of elements in a given sub-tree, having an ideal node as
its root, should be limited by the quantised score of the
ideal node as its maximum. For example, if in tree c)
node 3 (sec[1]) is the ideal node (score of 1), then a run
consisting of p[4] (0.75), p[5] (1) and p[2] (0.75) would
score min(1 − 0, 0.75) = 0.75, min(1 − 0.75, 1) = 0.25 and
min(1 − (0.75 + 0.25, 0.75) = 0, respectively. The score of
retrieving an ascendant of a set of ideal nodes should, in
our opinion, be based on the result’s quantised score. For
example, if in tree c) the ideal nodes are all the relevant leaf
nodes, then sec[1]’s score is simply 1. It may be argued
that if the assumed result presentation is highlighted text,
then sec[1] should get the same score as the total score
of the ideal nodes as it would highlight the same content.
However, for this to be true we need to assume that the
user has access to the context of a highlighted paragraph,
in which case the ideal node should anyhow be the largest
most specific element (focused task).

4.2 Don’t call me ideal, I am only E3S3
There seems to be a widely popular misunderstanding of
E3S3 (i.e. (e, s) = (3, 3)) elements being referred to as ideal
results, and arguments are being raised as to how it should
not be possible to have multiple nodes on a given path as-
sessed as E3S3.

We would like to reiterate here that (e, s) = (3, 3) or even
s = 3 are NOT sufficient conditions of ideal elements! Speci-
ficity is simply a measure of the amount of relevant content
vs. irrelevant content within a node. An element is highly
specific (s = 3) iif it contains only relevant information (or
only minimal irrelevant information), and so there is ab-
solutely no reason why there could not be more than one
highly specific nodes on a path.

This may be easier to see when considering the new high-
lighting assessment process. Take for example a highlighted
section. The fact that it has been highlighted means that
it must be fully specific, i.e. contains only relevant infor-
mation. Therefore, each of its paragraph child nodes must
also be fully specific (since the section contains no irrele-
vant information). Now, take a highlighted article that is
also highly exhaustive. There is no reason why it could not
have descendant elements that are also highly exhaustive

7Assuming sec[1] does not have a text child node.
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666666

1. /a[1] (3, 1)→0.25
2. /a[1]/bdy[1] (3, 1)→0.25
3. /a[1]/bdy[1]/sec[1] (3, 3)→1

XML tree a)

2
666666666

1. /a[1] (3, 1)→0.25
2. /a[1]/bdy[1] (3, 2)→0.75
3. /a[1]/bdy[1]/sec[1] (2, 3)→0.9
4. /a[1]/bdy[1]/sec[2] (1, 1)→0.1
5. /a[1]/bdy[1]/sec[2]/p[1] (1, 2)→0.25

XML tree b)

2
6666666666666666

1. /a[1] (3, 1)→0.25
2. /a[1]/bdy[1] (3, 1)→0.25
3. /a[1]/bdy[1]/sec[1] (3, 3)→1
4. /a[1]/bdy[1]/sec[1]/p[1] (1, 3)→0.75
5. /a[1]/bdy[1]/sec[1]/p[2] (1, 3)→0.75
6. /a[1]/bdy[1]/sec[1]/p[3] (1, 3)→0.75
7. /a[1]/bdy[1]/sec[1]/p[4] (1, 3)→0.75
8. /a[1]/bdy[1]/sec[1]/p[5] (3, 3)→1
9. /a[1]/bdy[1]/sec[1]/p[6] (1, 3)→0.75

XML tree c)

Figure 2: Relevance assessments for sample XML trees. For each node, its path (with article shortened to
a), exhaustivity and specificity values (e, s), and derived SOG quantised values are shown. Note that only
relevant nodes are included.

(e.g. bdy, app or sec nodes), therefore producing a number
of highly specific and highly exhaustive nodes on a path.

5. REQUIREMENTS FOR METRICS
In the previous sections we have detailed a number of re-
quirements that a suitable measure for XML IR should take
into account. We summarise these factors here.

In section 2 we stated that the main criterion of any eval-
uation measure is that it should be able to rank systems
according to how well they satisfy a user’s information need
given a retrieval task and a model of user behaviour. Then
during our examination of the retrieval task and user model,
we noted that - due to the varying granularity of retrieval
units - element size or required reading time should be taken
into account when measuring users’ effort to view result el-
ements. Because of the structural relationships that exist
among result elements, users’ browsing behaviour should be
considered. An aspect of this is that near-miss components
may be considered as partial successes. Another aspect is
that overlap should also need to be handled by a suitable
metric.

For the focused and thorough tasks, metrics need only to
consider the output as a ranked list of XML elements, with
most relevant elements at the top of the ranking. Users are
assumed to view the ranked list in a linear fashion, moving
from the top of the list down, stopping either when the end
of the list is reached, or at a point where their information
need has been satisfied or where they give up. For the fetch
and browse strategies, the evaluation may need to consider
additional factors due to the clustering of related results.

Given that INEX employs two relevance dimensions, a mea-
sure of effectiveness should be able to either handle these
dimensions separately or be able to combine them in a way
that reflects a set task and user model. The metric must also
be able to handle multiple degree scales of relevance (where
counting mechanisms are no longer suitable). Following the
proposal for a continuous scale for specificity, the ideal met-
ric should be flexible enough to cater for both discrete and
continuous scales.

As a result of the overlap of reference elements within the
INEX recall-base, a suitable metric should also incorporate
appropriate mechanisms to derive ideal recall-bases from the
full set of assessments based on a given user model. The

metric should also employ appropriate score normalisation
mechanisms to ensure that the total achievable score for re-
trieving any combinations of relevant nodes (including the
ideal node) from the sub-tree of an ideal node does not ex-
ceed the score obtainable by retrieving the ideal node itself.

In Section 6.1, we will look at the various current and pro-
posed INEX metrics and attempt to answer whether they
meet these requirements:

• Element size: Consider user effort as a function of
varying granularity result elements

• Near-misses: Consider near-miss components as par-
tial successes

• Overlap: Do not penalise systems that do not return
overlapping nodes

• Output: Take into account ranking and other non-
linear presentation

• Exhaustivity and specificity: Handle dimensions sepa-
rately or able to combine them

• Multiple degrees: Handle multiple degree scales (and
continuous scales)

• Ideal recall-base: Incorporate mechanisms to select
ideal nodes from the full recall-base

• Normalisation: Incorporate mechanisms to normalise
the scoring of elements in the sub-trees of ideal nodes.

6. AN ABUNDANCE OF METRICS
Up to date the following metrics have been used and/or
proposed (a more detailed summary of each can be found in
the Appendix)8:

i2: The inex-2002 (aka. inex eval) metric [5] applies an
intuitive extension of the measure of precall [18] to
document components and computes the probability
P (rel|retr) that a component viewed by the user is
relevant.

8A further metric, Expected Ratio of Relevant (ERR) [16]
is not discussed here.



Table 2: Metrics and requirements matrix (y: yes,
n: no, i: indirectly)

Requirements: i2 i3 XCG PRUM
Element size n y i n
Ideal recall-base n i y y
Near-misses n i y y
Overlap n y y y
Output: linear y y y y
Output: non-linear n n n n
Exh/Spec y y y y
Multiple degrees n n y n
Normalisation n n y n

i3: The inex-2003 (aka. inex eval ng) metric [6, 4] is based
on an interpretation of the relevance dimensions within
an ideal concept space [23]. Instead of measuring re-
call or precision after a certain number of document
components retrieved, the total size of the retrieved
document components is used as the basic parameter.
For our experiments we use the version of inex-2003
detailed in [4].

XCG: The XCG (cumulated gain for XML) metrics [10,
11] are an extension of the set of cumulated gain based
metrics proposed in [8] for measuring effectiveness in a
traditional IR setting but considering multiple degrees
of relevance.

PRUM: The PRUM (Precision Recall with User Modelling)
[17] metric is an extension of the traditional recall pre-
cision metrics that considers users’ browsing behav-
iour.

T2I: The T2I (Tolerance to Irrelevance) metric [3] measures
success or failure based on whether the user finds rel-
evant text starting from a returned entry point before
his/her tolerance to irrelevance is reached.

The inex-2002 metric has been criticised for not considering
overlap and leading to misleading effectiveness scores [10].
The inex-2003 metric’s disadvantage is that it is hard to
interpret and assumes that relevant information is distrib-
uted uniformly throughout a component. A shortcoming
of the XCG metrics is that effectiveness is only measured
at rank positions and not at recall values. PRUM is based
on counting mechanisms, where the interpretation of results
based on non-strict quantisations is not clear. In addition,
its numerous parameters and their exact estimations may
appear more of an obstacle than an advantage. T2I has
so far remained a theoretical model without concrete inte-
gration into a specific measure, and as such is not further
discussed.

6.1 Metrics and requirements
In this section, we take a look at all current and proposed
metrics and how they satisfy the requirements identified in
the previous sections.

Table 2 lists the collected metric requirements and whether
these are catered for by the various metrics.

Element size has only been considered explicitly within the
definitions of recall and precision of the inex-2003 metric.
XCG uses element size indirectly when calculating the rel-
evance score of a partially seen element (see Equation 8).
Element size could, however, be incorporated into PRUM,
inex-2002 and directly into XCG (i.e. to measure cumu-
lated gain against the size of the consulted text instead of
its rank) by adding a quantisation function that uses ele-
ment size. It is arguable, however, whether larger relevant
texts should warrant higher effectiveness scores (as is the
case for inex-2003. It may be more intuitive to consider
element size only for irrelevant information (T2I) or when
irrelevant and relevant information is combined (as in T2I
and XCG) in a component as the amount of irrelevant in-
formation a user needs to wade through directly influences
his/her satisfaction with the system.

Both XCG and PRUM make use of ideal recall-bases. The
mechanisms for deriving an ideal recall-base, based on a
given user model (quantisation function and assumptions
about overlap), are currently implemented as an integral
part of the metrics. However, there are plans to allow for
a more flexible setup, where arbitrary ideal recall-bases can
be applied as a parameter of the metrics. The version of the
inex-2003 metric detailed in [4] defines an entity RelU , which
represents the maximum number of relevant concepts in the
full recall-base (counting a relevant concept only once)9.
This could hence be interpreted as the total relevance score
of an ideal recall-base, whose elements are chosen to max-
imise the total relevance score for the collection’s XML tree.
In general, this leads to the ideal recall-base consisting of
relevant leaf nodes (i.e. the deepest relevant nodes). Since
the definition of RelU is fixed (due to concept space), it can
only be associated with a single given user model and result
presentation (a bit like recall and precision).

Both PRUM and XCG are able to give partial reward for
near-misses (due to the fact that they both make use of an
ideal recall-base). Unlike XCG, however, PRUM is also able
to consider irrelevant sibling nodes as near-misses. PRUM
does this by increasing the score of a result element (even
if irrelevant) if it has structural links to relevant content
(based on assumptions about the user’s browsing behaviour:
no, hierarchical or T2I browsing). XCG relies only on the
ideal and full recall-bases for determining a near-miss. The
latest version of inex-2003 [4] also (indirectly) supports the
evaluation of near-misses due to scoring elements based on
the full recall-base while the collection’s total relevance score
is based on RelU .

Overlap is handled by all metrics except the inex-2002 mea-
sure. In XCG overlap is handled within the relevance value
functions, which return a node’s unmodified quantised value
if it has not yet been seen, and otherwise calculate a mod-
ified relevance score if it has been seen in full or in part.
The relevance value of partially seen elements is derived re-
cursively based on the size and relevance score of the node’s
not-yet-seen descendants. In inex-2003, overlap is handled

9The earlier version of the inex-2003 metric [6] calculated

total relevance as
PN

i=1 qe(e) over all N elements of the full
recall-base, which resulted in the same problems as with the
inex-2002 metric that 100% recall could only be reached by
systems returning the full recall-base.



in a similar way, by only considering the not-yet-seen parts,
but the relevance score is estimated by assuming that rel-
evant information is distributed uniformly within the com-
ponent. This means that a section will still obtain a score
even if its only relevant paragraph has already been seen.
PRUM employs probability estimations for a user’s brows-
ing behaviour, and updates the probability of a node being
seen by the user depending on its structural relationship to
the currently visited node and assumptions about the user’s
interaction (i.e. no, hierarchical or T2I browsing). The more
structurally related elements have been returned to the user
and hence the more chances the user had to access the cur-
rent result element, the more its score is reduced.

There is no difference between the four metrics as far as the
output presentation is concerned: they are all able to eval-
uate linear ranked result lists. Further investigation of how
the metrics can be adapted to deal with clustered represen-
tations is required.

All the metrics are able to cope with the two relevance di-
mensions via the use of quantisation functions.

Since all metrics, except XCG, are extensions of recall and
precision, they are all based on counting mechanisms that
result in non-perfect effectiveness for ideal runs (see Sec-
tion 6.2). For example, although PRUM does work with
multiple degree relevance scales, it only produces perfect
score for an ideal run, if a strict quantisation (or the re-
cently added “binary” option) is applied.

All metrics can adopt a continuous specificity scale via the
definition of a suitable quantisation function. For example,
a simple quantisation function may be given as: fquant =
qe(e) · qs(s), where qe(e) = e/3 and qs(s) = s if s ∈ [0, 1]
(where s = 1 would mean fully specific). The function fquant

would be used by the metrics inex-2002, XCG and PRUM,
while the functions qe(e) and qs(s) could be used directly in
inex-2003.

Normalisation mechanisms to ensure that the total achiev-
able score for retrieving any combinations of relevant nodes
(including the ideal node) from the sub-tree of an ideal node
does not exceed the score obtainable by retrieving the ideal
node itself are implemented in XCG [11].

From the above, it seems that no single metric ticks all the
requirements, although the inex-2002 metric seems to be the
one lagging behind all others. A reason for this is that most
of the problems associated with the evaluation of XML re-
trieval have not actually came to light until after the first
effectiveness results were in. For example, implicit assump-
tions about overlap (i.e. that systems would avoid return-
ing overlapping nodes) meant that overlap was not explicitly
considered by the metric. An obvious question is whether
the inex-2002 metric could be extended upon to cater for
the additional requirements. We will examine this question
in future work.

6.2 What do they measure
In this section we detail the results of some very simple ex-
periments, where we investigated the behaviour of four of
the INEX metrics with the use of a single relevant XML

Table 3: Simulated runs
frb SOG 163 r7022: #All relevant nodes in topic

163’s assessments for co/2001/r7022.xml, sorted

by SOG quantised value (see Figure 1).

1. /article[1]/bdy[1]/sec[6] (3, 3) → 1
2. /article[1]/bdy[1]/sec[4]/ip1[2] (2, 3) → 0.9
3. /article[1]/bdy[1]/sec[4]/p[1] (2, 3) → 0.9
4. /article[1]/bdy[1]/sec[6]/ip1[2] (2, 3) → 0.9
5. /article[1]/bdy[1]/sec[6]/p[1] (2, 3) → 0.9
6. /article[1]/bdy[1]/sec[6]/p[2] (2, 3) → 0.9
7. /article[1]/bdy[1]/sec[4] (2, 2) → 0.5
8. /article[1] (3, 1) → 0.25
9. /article[1]/bdy[1] (3, 1) → 0.25
10. /article[1]/bdy[1]/sec[4]/p[2] (1, 2) → 0.25

irb SOG 163 r7022: #Ideal nodes from the full

recall-base run above, based on Kazai’s method

and sorted by SOG quantised value.

1. /article[1]/bdy[1]/sec[6] (3, 3) → 1
2. /article[1]/bdy[1]/sec[4] (2, 2) → 0.5

reverse irb SOG 163 r7022: #Nodes from the

ideal run above, but in reverse order.

1. /article[1]/bdy[1]/sec[4] (2, 2) → 0.5
2. /article[1]/bdy[1]/sec[6] (3, 3) → 1

lo SOG 163 r7022: #All relevant leaf nodes from

the full recall-base run, sorted by SOG

quantised value.

1. /article[1]/bdy[1]/sec[6]/ip1[2] (2, 3) → 0.9
2. /article[1]/bdy[1]/sec[6]/p[1] (2, 3) → 0.9
3. /article[1]/bdy[1]/sec[6]/p[2] (2, 3) → 0.9
4. /article[1]/bdy[1]/sec[4]/ip1[2] (2, 3) → 0.9
5. /article[1]/bdy[1]/sec[4]/p[1] (2, 3) → 0.9
6. /article[1]/bdy[1]/sec[4]/p[2] (1, 2) → 0.25

tree (taken from the INEX 2004 recall-base for the topic
163). We used four simulated runs for the experiments: see
Table 3. The result elements of all runs have been sorted
according to our chosen quantization function: SOG (Equa-
tion 2).

We used the EvalJ source code for the evaluation10, which
implements all four metrics within a single java project.

The runs were evaluated against a full recall-base consisting
only of the relevant nodes from the article file co/2001/r7022
from the assessments of topic 163 (Figure 1). For PRUM and
XCG, the ideal recall-bases were automatically generated
using the SOG quantisation function during the evaluation
(using Kazai’s algorithm, detailed in section 4.1)11.

As it can be seen in Figure 3, the inex-2002 metric ranks the
reverse ideal run worst followed by the ideal run, which per-
forms slightly better than its reversed version at low recalls.
This is intuitive and reflects that highly relevant elements
are expected to be ranked before less relevant elements. Ta-

10https://sourceforge.net/projects/evalj/
11Note that for this, we modified PRUM’s code in EvalJ
so that the same ideal recall-base is created as with XCG:
evalj.corpus.AssessDoxel.addIdealDoxels method.



a) inex-2002 metric b) inex-2003 metric

c) nXCG metric d) PRUM metric

Figure 3: Effectiveness scores for a single XML tree in the article file co/2001/r7022 in topic 163, using the
SOG quantisation

a) inex-2002 metric b) inex-2003 metric c) nXCG metric d) PRUM metric

Figure 4: Effectiveness scores for all INEX 2004 CO topics, using the SOG quantisation



Table 4: Effectiveness scores for the irb SOG 163 r7022 simulated run (see Appendix for formulas and
Figure 1 for element size information)

run i2 i3 XCG

n = 6.75 RelU = 3.67 maxXCGideal = 1.5

1. x = 1
6.75

= 0.14 r =
1· 360360
3.67

= 0.27 rank = 1
p = 1

1+0+ 1·0
1+1

= 1 p = 1·360
360

= 1 nXCG = 1
1

= 1

2. x = 1+0.5
6.75

= 0.22 r =
1· 360360+0.67· 266266

3.67
= 0.45 rank = 2

p = 1.5

1.5+0+ 0.5·0.5
1+0.5

= 0.9 p = 1·360+0.67·266
360+266

= 0.86 nXCG = 1+0.5
1.5

= 1

Table 5: Effectiveness scores for the reverse irb SOG 163 r7022 simulated run (see Appendix for formulas
and Figure 1 for element size information)

run i2 i3 XCG

n = 6.75 RelU = 3.67 maxXCGideal = 1.5

1. x = 0.5
6.75

= 0.07 r =
0.67· 266266

3.67
= 0.18 rank = 1

p = 0.5

0.5+0+ 0.5·0.5
1+0.5

= 0.75 p = 0.67·266
266

= 0.67 nXCG = 0.5
1

= 0.5

2. x = 1+0.5
6.75

= 0.22 r =
1· 360360+0.67· 266266

3.67
= 0.45 rank = 2

p = 1.5

1.5+0.5+ 1·0
1+1

= 0.75 p = 0.67·266+1·360
360+266

= 0.86 nXCG = 0.5+1
1.5

= 1

Table 6: Effectiveness scores for the frb 163 r7022 sog simulated run (see Appendix for formulas and Figure 1
for element size information)

run i2 i3 XCG

n = 6.75 RelU = 3.67 maxXCGideal = 1.5

1. x = 1
6.75

= 0.14 r =
1· 360360
3.67

= 0.27 rank = 1

p = 1

1+0+ 1·0
1+1

= 1 p = 1·360
360

= 1 nXCG = min(1−0,1)
1

= 1

2. x = 1+0.9
6.75

= 0.28 r =
1· 360360+0.67· 108108

3.67
= 0.45 rank = 2

p = 1.9

1.9+0+ 0.9·0.1
1+0.9

= 0.975 p = 1·360+1·108
360+108

= 1 nXCG = 1+min(0.5−0,0.9)
1.5

= 1

3. x = 1.9+0.9
6.75

= 0.41 r =
(1.67+0.67· 3838

3.67
= 0.637 rank = 3

p = 2.8

2.8+0.1+ 0.9·0.1
1+0.9

= 0.95 p = 468+1·38
468+38

= 1 nXCG = 1.5+min(0.5−0.5,0.9)
1.5

= 1

4. x = 2.8+0.9
6.75

= 0.54 r =
(2.34+0.67· 0

125
3.67

= 0.637 rank = 4
p = 3.7

3.7+0.2+ 0.9·0.1
1+0.9

= 0.937 p = 506+1·0
506+0

= 1 nXCG = 1.5+0
1.5

= 1

5. x = 3.7+0.9
6.75

= 0.68 r =
(2.34+0.67· 0

148
3.67

= 0.637 rank = 5
p = 4.6

4.6+0.3+ 0.9·0.1
1+0.9

= 0.929 p = 506+1·0
506+0

= 1 nXCG = 1.5+0
1.5

= 1

6. x = 4.6+0.9
6.75

= 0.81 r =
(2.34+0.67· 0

65
3.67

= 0.637 rank = 6
p = 5.5

5.5+0.4+ 0.9·0.1
1+0.9

= 0.924 p = 506+1·0
506+0

= 1 nXCG = 1.5+0
1.5

= 1

7. x = 5.5+0.5
6.75

= 0.88 r =
(2.34+0.67· 266−108−38

266
3.67

= 0.72 rank = 7

p = 6

6+0.5+ 0.5·0.5
1+0.5

= 0.90 p = 506+0.67·(266−108−38)
506+120

= 0.936 nXCG = 1.5+min(0.5−0.5,0.5)
1.5

= 1

8. x = 6+0.25
6.75

= 0.925 r =
(2.64+1· 2028−266−360

2028
3.67

= 0.9 rank = 8

p = 6.25

6.25+1+ 0.25·0.75
1+0.25

= 0.84 p = 586.4+0.34·(2028−266−360)
626+1402

= 0.524 nXCG = 1.5+0
1.5

= 1

9. x = 6.25+0.25
6.75

= 0.96 r =
(3.33+1· 0

2011
3.67

= 0.9 rank = 9

p = 6.5

6.5+1.75+ 0.25·0.75
1+0.25

= 0.77 p = 1063.08+0.34·(0)
2028

= 0.524 nXCG = 1.5+0
1.5

= 1

10. x = 6.5+0.25
6.75

= 1 r =
(3.33+0.34· 0

87
3.67

= 0.9 rank = 10

p = 6.75

6.75+2.5+ 0.25·0.75
1+0.25

= 0.71 p = 1063.08+0.67·(0)
2028

= 0.524 nXCG = 1.5+0
1.5

= 1



bles 4 and 5 show that the reduced effectiveness of the re-
versed ideal run is due to the irrelevant score obtained for
sec[4] (1− 0.5) contributing to Cooper’s variable i (irrele-
vant score at current rank) at rank 1 and then to variable j
(irrelevant score up to current rank) at rank 2.

According to the inex-2002 metric, the full recall-base run
performs best, followed by the leaf-only run. This is ex-
pected as inex-2002 calculates the 100% recall value as the
sum of the quantised values of all elements in the full recall-
base. Therefore, 100% recall is only reached by the full
recall-base run. However, even returning the whole recall-
base still does not result in perfect precision. This slope of
the precision curve is due to the use of the non-binary rele-
vance scale. Since the quantised exhaustivity and specificity
values directly influence the effectiveness score, any quan-
tised values < 1 will result in non-perfect precision scores.
For example, at rank 2 of the full recall-base run Cooper’s
r and s is 0.9, which then results in i = 1 − 0.9 = 0.1 and
at rank 3 this 0.1 irrelevant score is addedd to Cooper’s j
variable. While the estimation of these variables in Cooper’s
formula were based on counting mechanisms (i.e. the num-
ber of irrelevant documents), their interpretation in INEX is
that of relevance or irrelevence value, where the underlying
assumption is that r = 1− i. A problem here is that r < 1
does not necessarily mean that a retrieved element contains
1− r irrelevant information, e.g. fSOG(2, 3) = 0.9. Employ-
ing a quantisation function where (e, 3) → 1 provides only a
partial solution, due to possible XML trees where no s = 3
nodes exist, while also resulting in a metric that is insensi-
tive to the level of exhaustivity. One solution to the problem
would be to calculate Copper’s parameters at a given rank
in relation to a maximum ideal relevance score achievable
at that rank (instead of using 1), e.g. hence resulting in
i = 0 in the above example as 0.9 is the highest achievable
relevance score at rank 2.

Similarly to the inex-2002 metric, the inex-2003 metric ranks
the reverse ideal run worst followed by the ideal run, where
the ideal run performs slightly better than its reversed ver-
sion at low recalls. The reason that these runs don’t achieve
perfect recall is because RelU is calculated from the relevant
leaf nodes’ quantised scores: RelU = 0.6̇ · 5 + 0.3̇. I.e. our
ideal test run does not actually match an ideal run for inex-
2003. However, the precision values are not affected by this
problem, but are nevertheless inperfect. This is again due
to the non-binary relevance grades, where normalising the
actual relevance score by a maximum score could provide
a solution. Unlike inex-2002, the inex-2003 metric ranks
the leaf-only run best followed by the full recall-base run.
The reason for this is twofold. On the one hand, the leaf-
only run is actually the ideal run for inex-2003, and so it
achieves 100% recall. On the other hand, the overlap present
in the full-recall-base run leads to reduced performance at
various recall levels, depending on the ordering of the ele-
ments within the run. The reason that even the perfect run
for inex-2003, i.e. the leaf-only run, does not achieve per-
fect precision is simply because sec[4]/p[2] has qs(s) < 1,
which directly reduces precision.

XCG is the only metric that shows the ideal run having a
perfect score of 1. It also shows that in this special case the
run derived from the full recall-base achieves the same result

as the ideal run. This is because the first two nodes in frb’s
ranking match exactly the ideal run (due to results being
sorted by SOG value): sec[6] and sec[4]. Therefore, for
the first two ranks, the full recall-base run matches the ideal
run and hence achieves maximum score. Due to the fact that
all remaining nodes in the full recall-base run overlap with an
already retrieved node, no further scores are accumulated.
The reverse ideal and leaf only runs perform very similar to
the ideal, only dipping slightly at the beginning of the curve.
The reverse ideal run’s non-perfect score is due to the non-
ideal ordering of its elements. The leaf-only run starts off at
0.9 normalised cumulated gain, but then drops due to the
fact that the cumulated relevance score of further elements
in the sub-tree of sec[6] ideal node is not allowed to exceed
the ideal node’s score (i.e. sec[6]/ip1[2] scores 0.9, then
sec[6]/p[1] scores only 0.1, etc.).

PRUM ranks the ideal and full recall-base runs as best (iden-
tical performance). The reverse ideal run comes in at third
place and the leaf-only run scores the worst. For PRUM
there are two possible relevant units (P (TR = 1) = 0.5 and
P (TR = 2) = 0.5 where TR is the total number of relevant
elements). Let’s consider both cases: Case 1) TR = 1 (i.e.
only sec[4] is relevant for the user). Then both the full
recall-base and the ideal runs achieve precision 1 for all re-
call levels. The leaf-only run’s precision is close to 0 due to
the fact that for each result the user will potentially have
to inspect all the elements of the database to find the rele-
vant nodes. The reverse ideal run’s precision is 1/2. Case
2) TR = 2 (i.e. both sec[4] and sec[6] are relevant to the
user). Then for R = 1 (i.e. recall level = 0.5) we can arrive
at the same observations as in Case 1). This is a problem
with the non-binary assessments which is only visible when
the number of relevant elements is low. In this case, a hu-
man should infer that sec[6] is relevant. But for PRUM,
Pr(sec[6]/TR = 2) is still 0.5, which more or less implies
that the second relevant element will have to be searched
again in the whole database → precision is near to 0 for this
case. After that, curves are obtained taking the average of
Case 1) and Case 2).

For reference, we also include the results for a further four
simulated runs, which are based on all INEX 2004 CO topics,
see Figure 4.

7. CONCLUSIONS
In this paper we focused on issues regarding the evalua-
tion of XML retrieval. We identified a number of require-
ments that a suitable measure of XML retrieval effectiveness
should meet. We commented on the current task definitions
and provided suggestions for their future development. We
also expressed support for the proposed continuous speci-
ficity dimension and reported on an assessment framework
to support it. Finally, we examined four of the current and
proposed metrics: how they fit the requirements and how
they behave when only a single XML tree formed the recall-
base.

Our findings showed that although no single metric met all
requirements, the XCG and PRUM metrics showed poten-
tial. In addition, the XCG metric seemed to behave the most
intuitively (best matching expectation), although PRUM
also produced intuitive results when a binary quantisation



function was used (Figure not included).

Our future work concentrates on recall-oriented XCG based
on [13, 8, 1] adopted to XML, and in particular to INEX.
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APPENDIX
A. METRICS
A.1 The inex-2002 metric
The inex-2002 metric [5] applies the measure of precall [18]
to document components and computes the probability P (rel|retr)
that a component viewed by the user is relevant:

P (rel|retr)(x) :
x · n

x · n + eslx·n
=

x · n
x · n + j + s·i

r+1

(1)

where eslx·n denotes the expected search length [2], i.e. the
expected number of non-relevant elements retrieved until an
arbitrary recall point x is reached, and n is the total number
of relevant components with respect to a given topic. In
eslx·n, let l denote the rank from which the x · nth relevant
component is drawn. Then j is the score of non-relevant
information within the ranks before rank l, s is the relevant
score to be taken from rank l, and r and i are the relevant
and non-relevant scores in rank l, respectively.

To apply the above metric, the two relevance dimensions
are first mapped to a single relevance scale by employing
a quantisation function, fquant(e, s) : ES → [0, 1]. There
are a number of quantisation functions currently in use in
INEX, e.g. strict or generalised (see Equations 2 and 3 in
[9]), each representing a different set of user preferences.
The “specificity-oriented generalised” (SOG) quantisation
function proposed in [10] is given as:

fSOG(e, s) :=

8>>>>>>><
>>>>>>>:

1 if (e, s) = (3, 3)
0.9 if (e, s) = (2, 3)
0.75 if (e, s) ∈ {(1, 3), (3, 2)}
0.5 if (e, s) = (2, 2)
0.25 if (e, s) ∈ {(1, 2), (3, 1)}
0.1 if (e, s) ∈ {(2, 1), (1, 1)}
0 if (e, s) = (0, 0)

(2)

A.2 The inex-2003 metric
The inex-2003 metric incorporates component size and over-
lap within the definition of recall and precision (Equations 3
and 4). (For the derivation of the formulae based on an
interpretation of the relevance dimensions within an ideal
concept space [23] refer to [6].) Instead of measuring, e.g.,
precision or recall after a certain number of document com-
ponents retrieved, the total size of the retrieved document
components is used as the basic parameter, while overlap is
accounted by considering only the increment to the parts of
the components already seen. The calculations here assume
that relevant information is distributed uniformly through-
out a component.

recallo

kP
i=1

e (ci) · |
c′i|
|ci|

RelU
(3)

precisiono

kP
i=1

s (ci) · |c′i|

kP
i=1

|c′i|
(4)

Components c1, . . . , ck in Equations 3 and 4 form a ranked
result list, N is the total number of components in the collec-
tion, e(ci) and s(ci) denote the quantised assessment value



of component ci according to the exhaustivity and speci-
ficity dimensions, respectively, |ci| denotes the size of the
component, while |c′i| is the size of the component that has
not been seen by the user previously. Given a component
representation such as a set of (term, position) pairs, |c′i|
can be calculated as:

|c′i| = |ci −
[

c∈C[1,n−1]

(c)| (5)

where n is the rank position of ci in the output list, and
C[1, n − 1] is the set of components retrieved between the
ranks [1, n− 1].

A.3 The XCG metrics
The XCG metrics are extensions of the cumulated gain (CG)
based metrics of [8]. The motivation for the CG metrics was
to develop a measure for multi-grade relevance values, i.e.
to credit IR systems according to the retrieved documents’
degree of relevance. The motivation for XCG was to extend
CG in such a way that the problem of overlapping result and
reference elements can be addressed within the evaluation
framework.

The Cumulated Gain (CG) measure, accumulates the rele-
vance scores of retrieved documents along the ranked list G,
where the document IDs are replaced with their relevance
scores. The cumulated gain at rank i, CG[i], is computed
as the sum of the relevance scores up to that rank:

CG[i] :=

iX
j=1

G[j] (6)

For each query, an ideal gain vector, I, can be derived by
filling the rank positions with the relevance scores of all doc-
uments in the recall-base in decreasing order of their degree
of relevance. A retrieval run’s CG vector can then be com-
pared to this ideal ranking by plotting the gain value of both
the actual and ideal CG functions against the rank position.
We obtain two monotonically increasing curves (levelling af-
ter no more relevant documents can be found).

By dividing the CG vectors of the retrieval runs by their
corresponding ideal CG vectors, we obtain the normalised
CG (nCG) measure. Here, for any rank the normalised value
of 1 represents ideal performance. The area between the
normalised actual and ideal curves represents the quality of
a retrieval approach.

XCG makes use of both the CG and nCG metrics. The
extension of these metrics to XML documents, and in par-
ticular to INEX, lies partly in the way the relevance score
for a given document - or in this case document compo-
nent - is calculated via the definition of so-called relevance
value (RV) functions, and partly in the definition of the ideal
recall-bases.

While I is derived from the ideal recall-base, the gain vec-
tors, G, for the runs under evaluation are based on the full
recall-base in order to enable the scoring of near-miss com-
ponents. All relevant components of the full recall-base that
are not included in the ideal recall-base are considered as
near-misses.

In order to obtain a given component’s relevance score (both
for I or G) at a given rank position, XCG defines the fol-
lowing result-list dependent relevance value (RV) function:

rv(ci) = f(quant(assess(ci))) (7)

where assess(ci) is a function that returns the assessment
value pair for the component ci, if given within the recall-
base and (0, 0) otherwise. The rv(ci) function then re-
turns, for a not-yet-seen component ci, the quantised assess-
ment value pair quant(assess(ci)), where quant is a chosen
quantisation functions, e.g. sog. In this case f(x) = x.
For a component, which has been previously fully seen by
the user, we have rv(ci) = (1 − α) · quant(assess(ci)), i.e.
f(x) = (1−α) · x. With α set to 1, the RV function returns
0 for a fully seen, hence redundant, component, reflecting
that it represents no value to the user any more. Finally, if
ci has been seen only in part before (i.e. some descendant
nodes have already been retrieved earlier in the ranking),
then rv(ci) is calculated as:

rv(ci) = α ·

mP
j=1

(rv(cj) · |cj |)

|ci|
+ (1− α) · quant(assess(ci))

(8)

where m is the number of ci’s relevant child nodes.

In addition to the above, the final RV score is obtained by
applying a normalisation function, which ensures that the
total score for any group of descendant nodes of an ideal re-
sult element cannot exceed the score achievable if retrieving
the ideal node itself. For example, in Figure 1 the two ideal
result nodes for the quantisation function sog are sec[4]

and sec[6]. Since these results represent the best nodes for
the user, a system returning these should be ranked above
others. However, if another system retrieved all the leaf
nodes, it may achieve a better overall score if the total RV
score for these nodes exceeds that of the ideal nodes. The
following normalisation function safeguards against this by
ensuring that for any cj ∈ S:

X
c∈S

rv(c) ≤ rv(cideal) (9)

where S is the set of retrieved descendant nodes of the ideal
node and where cideal is the ideal node that is on the same
relevant path as cj .

A.4 T2I
T2I is based on an alternative definition of correct results.
The main idea is that a user merely needs an entry-point
into the document that is ‘close’ to relevant information.
Taking this view, a retrieval system produces a ranked list
of entry points. The user starts reading the retrieved article
from the suggested entry point, giving up when no relevant
information is found for some number of words or sentences.
So, the user processes the retrieved information until his or
her tolerance to irrelevance (T2I) has been reached, at which
point the user proceeds to the next system result.

This discourages systems from returning fragments that are
too large, since if the entry-point is too far away from the
relevant reference component, the user’s tolerance to irrele-
vance will have been exhausted before the relevant informa-



tion has been reached. The problem with multiple system
results intersecting the same reference component is elimi-
nated by extending the definition of irrelevance, according
to which a previously seen reference fragment is no longer
considered relevant.

T2I variants of three existing evaluation metrics for sys-
tem performance are given in [3]. Their common underlying
principle is that retrieval systems are ranked on their abil-
ity to maximise the number of relevant fragments shown to
the user while minimising the amount of user effort wasted
on irrelevant information. The tolerance to irrelevance is
expressed by a single parameter, τNR, that represents the
maximum amount of non-relevant text the user is expected
to read before giving up. The length of retrieved relevant
components is ignored, assuming that each result has equal
value to the user.

A.5 PRUM
The PRUM (Precision-Recall with User Modelling) metric
[17] is an extension of the probabilistic precision recall pro-
posed by Raghavan. While the latter supposes a simple user
model, where the user consults retrieved elements (elements
returned by the retrieval system) independently, PRUM “al-
low” the user to consult the context of retrieved elements:
For each element in the list returned by the retrieval system,
the user consults the context of the element. In the con-
text of XML Retrieval, this context is possibly made of the
siblings, ancestors and descendants of a retrieved element.
Note that this behaviour is defined stochastically, that is we
only know that the user has seen a context element with a
given probability. For instance, if the user consults a sec-
tion in the retrieved list, we know that the user has seen this
section with a probability 1, and that (s)he has seen also its
first paragraph with a probability .95, etc.

Like some other metrics (e.g. XCG), PRUM supposes a
set of ideal results, which are the most appropriate non-
overlapping elements of the XML database to return to the
user. The PRUM metric is then defined as the probability
that the user sees a newly relevant element when (s)he con-
sults the context of a retrieved element, knowing that the
user wants to see a given amount of relevant units:

PRUM(l) = P (Lur|Retr, L = l, Q = q) (10)

where l is the recall level between 0 and 1, q the topic for
which PRUM is computed; Retr is the event “the element is
in the list consulted by the user” while searching for I% of
the relevant units, and Lur is the event “the element Leads
to an Unseen Relevant unit”.


