South Pacific Regional Programming Contest 2000 1

Problem SP2000-A M ost wanted word

Write a program to find the most frequent word in afile of text. A word is any non-empty continuous
sequence of alphabetic characters. Case is not regarded as significant, so the words "bother" and
"BOTHeR" should be considered the same word.

Any non-alphabetic characters (including control characters such as newlines) can be used to separate
words. Thus "isn't" is counted as two words, the second of which is a one letter word consisting only of
the letter "t".

If more than one word appears with the maximum frequency, then the first word to reach the maximum
frequency is required.

Input will consist of a set of paragraphs each terminated by a single line containing only the character '#
which will not otherwise occur anywhere in the text. No paragraph will contain more than 2000 different
words, and no word will be more than 20 letters long. The input is terminated by atest case with no words
at al. This case should produce no output.

For each paragraph, your program should print one line containing the frequency of the most frequent
word, right justified in afield of width 4, followed by a space and the most frequently occurring word
itself, entirely in lower case.

Sample Input

This is a sinple file of test data, which should

not cause your program any trouble. Do note that

It contains several punctuation characters. O course,
this is not really a problem because such characters
are treated in the sane way as spaces.

#

Don't use contractions; it isn't nice.

#

aBc def AbC def dfe ABC

#

123

#

Sample Output
2 of
2t
3 abc

South Pacific Regional Programming Contest 2000 2

Problem SP2000-B Tag Checker

Markup languages such as HTML use tags to highlight sections with special significance. Inthisway, a
sentence in boldface can be indicated thus:
Thisis asentence in bol dface

Typicaly every tag has an opening tag of the form <TAG> and a closing tag of the form </TAG>, so that
portions of text can be bracketed as above. Tags can then be combined to achieve more than one effect on a
particular piece of text ssimply by nesting them properly, for instance:

<CENTER>Thistext is centred and in boldface</CENTER>

Two of the most common mistakes when tagging text are:
* Qetting the nesting wrong:
<CENTER>This should be centred boldface, but the tags are wrongly nested</CENTER>

» forgetting atag:
<CENTER>This should be centred boldface, but there is a missing tag</CENTER>

Write a program to check that all the tagsin agiven piece of text (a paragraph) are correctly nested,and that
there are no missing or extratags. An opening tag for this problem is enclosed by angle brackets, and
contains exactly one upper case letter, for example <T>, <X>, <S>. The corresponding closing tag will be
the same letter preceded by the symbol /; for the examples above these would be </T>, </X>, </S>.

Theinput will consist of any number of paragraphs. Each paragraph will consist of a sequence of tagged
sentences, over as many lines as necessary, and terminating with a# which will not occur elsewhere in the
text. The input will never break atag between two lines and no line will be longer than 80 characters. The
input will be terminated by an empty paragraph, i.e. aline containing only asingle #.

If the paragraph is correctly tagged then output the line * Correctly tagged paragraph”, otherwise output a
line of the form * Expected <expected> found <unexpected>" where <expected> isthe closing tag matching
the most recent unmatched tag and <unexpected> is the closing tag encountered. If either of theseisthe end
of paragraph, i.e. thereis either an unmatched opening tag or no matching closing tag at the end of the
paragraph, then replace the tag or closing tag with #. These points are illustrated in the examples below
which should be followed exactly as far as spacing is concerned.

Sample Input

The followi ng text<Ci s centred and in bol df ace</ B></ C#
This <\g>i s bol df ace</ B> i n <<*> a <\ 6> <<d>sent ence#
<C> Thi s should be centred and in bol df ace, but the

tags are wongly nested </ B></ C#

Thi s should be in boldface, but there is an extra cl osing

t ag</ B></ C#

<C>Thi s should be centred and in bol dface, but there is

a mssing closing tag</ C#

#

Sample Output

Correctly tagged paragraph
Correctly tagged paragraph
Expected </ C found </ B>
Expected # found </ C
Expected </ B> found #

South Pacific Regional Programming Contest 2000 3

Problem SP2000-C Bouncy Balls

The Department of Defence of a certain country (No, not Australiaor New Zealand), in conjunction with
the Department of Police, have devised a brilliant method of saving money on crowd control — really
bouncy rubber bullets. They had noticed that the rubber bullets they had been using were largely being
wasted — those that hit anyone or anything usually just fell to the ground, whereas if they were really,
really bouncy, they would bounce off and possibly hit several more people before their energy was spent.

They decided to test thisidea by building a specia circular test rig. The bullet would be fired into therig
horizontally and at some predetermined angle to the tangent to the rig at that point. It would have sufficient
energy to travel some considerable distance before stopping. (Y ou may assume cartoon physics, i.e. that it
travels horizontally until it reaches the end of itstravel, at which timeit drops to the floor.) However, as so
often happens with lucrative defence contracts, the contractor made off with the money, so they decided to
simulate the whole process on a computer. Thisiswhere you comein.

Write a program that will read in details of atest rig and a series of test firings and determine how many
times the rubber bullet would bounce before it stops. Y ou may assume that the bullet is a point and that,
because of problems in determining the exact sequence of events, any test firing where the bullet stops
within 1 mm of therig is deleted from consideration.

Input will be a series of tests, each test consisting of a series of test firings. Each test starts with an integer
specifying the radius of the test rig in millimetres and a value of O for the radius terminates the input. Each
test firing occurs on aline by itself and consists of a distance in millimetres (between 100 and 10000
inclusive) that the bullet will travel, and an angle, in degrees, (between 10 and 170 inclusive, where 90
means directly towards the centre of therig). The series of test firings will be terminated by aline
containing two zeroes (0 0).

For each test rig, output aline with the words “ Test Rig” followed by a space and then the number of the
test rig (arunning number starting at 1) followed by a series of lines, one for each test firing for that rig
with each line giving the number of times abullet bounces off awall before it stops. This number isto be
written without any leading or trailing spaces. A blank line should appear between test rigs. Follow the
example given below.

Sample Input
100

1000 23

1200 47

00

0

Sample Output
Test Rig 1l

12

8

South Pacific Regional Programming Contest 2000 4

Problem SP2000-D Best Image Layout

Lazy Larry’s Leisure Photo Shop speciaisesin taking shots of peoplein leisure situations — at the beach,
skiing, in cable cars and so on. When the photographer returns to the office at the end of a shoot, she has
anything up to 50 images which she wishes to display. She has found that the most practical solution isto
lay them out in asingle row in a strip across the top of the screen with the first image hard up against the
left of the strip, the rest of the imagesin order from left to right, and the last image as far right as necessary
or possible.

Theimages are al of the same height, which comfortably fitsinto the strip of screen space, but have
varying widths. The photographer can vary the width of the strip within limits, largely dictated by the size
of the screen sheisworking on and other applications that may be running. When there is enough room,
the images should be packed from left to right with a fixed spacing. When there is not enough room the
spacing has to be reduced until it reaches zero. Thereafter the images must be allowed to overlap.

Write a program that will read in details of the size of the strip and a series of images and that will
determine the best layout according to the following rules:

1. Pack the images starting at the left margin as shown in the diagram above with SPACING pixels
between images. Thisistheideal case.

2. Place the first image hard up against the |eft edge of the strip, the last image hard up against the right
edge of the strip and then place the left edges of the other images on the pixel boundaries closest to
the positions that they would occupy were it possible to contract the spacing in a smooth continuous
manner. Round 0.5 up to the next integer.

3. Placethe last image hard up against the right edge of the strip and overlap the remaining images so
that their left boundaries remain in order from left to right. Allocate each image as many pixels as
possible so that al images have the same proportion (truncated to one pixel) of their width visible. If
there are ill pixelsleft to be alocated, allocate them to images in descending order of the fractional
portions of their desired display width. In case of atie, allocate the ‘extra’ pixel to the leftmost image.

4. Placement isimpossible if one or more images are not displayable, i.e. do not have at least one pixel
alocated to them.

Input will be a sequence of problems, terminated by aline of three (3) zeroes (0 0 0). Thefirst line of each
problem has three positive integers specifying WIDTH, SPACING, and NIMAGES. WIDTH is the width of
the available screen areain pixels, SPACING is the maximum spacing to be used between images and
NIMAGES s the number of imagesto be placed. Thisisfollowed by NIMAGES integers specifying, in
order, the widths of the images, on one or more lines. Y ou may assume that SPACING < 10, that 0 <
NIMAGES < 50 and that the image widths range from 10 pixels to no more than WIDTH/2.

Output for each problem isaline with the words ‘* Problem number’ followed by a space and the problem
number followed by aline containing either the word ‘ IMPOSSIBLE’ if placement isimpossible, or
NIMAGES integers, separated by single spaces, specifying the position at which the leftmost pixel of each
image (in the order given in the input) should be placed. Pixels are numbered from O to WMIDTH-1.

Sample Input
380 8 5

35 28 43 35 5
000

Sample Output
Problem number 1
04379130173

South Pacific Regional Programming Contest 2000 5

Problem SP2000-E Swiss Draw

Many sports and games hold tournaments to determine at least awinner and, very often, aranking or
ordering aswell. In two player games (such as Tennis, Chess and Scrabble), the two most common forms
of tournament are' knockout’ (usually based on an initia ranking or ‘seeding’) and ‘round robin’ (where
everybody plays everybody else). The disadvantage in knockout is that a promising newcomer could meet
avery much stronger player early in the tournament and not reach their true position. Round Robin
eliminates this but at a huge cost in time — a Round Robin involving 128 players needs 127 rounds
whereas it would take only 7 rounds in a knockout competition.

An aternative known as Swiss Draw is very popular in games such as Scrabble. To maximize competition,
any one player will play any other player no more than once. After each round, players are ranked on the
number of games they have won, where adraw is equal to haf awin (moreis better) and, within that, by
‘spread’ — the cumulative difference between their scores and their opponents’ scores (again bigger is
better). If by chance two or more playerstie in this ranking then they appear in inverse order of their
previous ranking, i.e. theinitially lower-ranked players move ahead. In each round each player either plays
someone above them or the highest ranked player below them that allows everyone to play someone they
have not played before. The input will specify the (usually random) ordering before the first game.

Write a program to determine the final ranking of a group of Scrabble players, given the initial draw and
the scores for each individual for each round.

Input will consist of one or more scenarios. Thefirst line of each scenario will consist of two integers, P
and R, (16 < P< 64, 4 < R < P/4) denoting the number of players (a multiple of two) and the number of
rounds respectively. Thiswill be followed by P lines, each line consisting of a name (a string of 1 through
20 aphabetic characters without any spaces) followed by R integers (separated from each other and the
name by at least one space) representing the R scores for that individual. Thelist will be in theinitia order
of play, thusin thefirst round player 2n+1 played player 2n+2 (0 < n < P/ 2). Input will be terminated by
aline containing two zeroes (i.e. P and R both zero).

Output will consist of alist of al the players ranked according to the above criteria, together with the
number of wins and the spread. Note that a draw is counted as half awin, so indicate an odd number of
draws by aplus sign (+) after the number of wins. The name isleft justified in afield of width 20, the
number of winsisright justified in afield of width 3, specification of draws occupies 1 character position
and the spread isright justified in afield of width 6. Leave one blank line between scenarios.

Sample Input

16 4

Absal om 280 334 319 426
Bet sheba 374 514 459 417
Carol yne 318 415 445 481
Davi di an 402 361 375 278
El eanor 425 302 447 522
Frances 425 513 306 327
Gabriel 330 337 365 398
Her m one 539 254 442 450
| shmael 485 305 540 522
Jerem ah 288 295 367 476
Kenneth 532 304 452 445
Laurence 426 437 260 474
Meredith 438 489 274 475
Ni chol as 307 357 380 482
Cctavia 426 498 305 497
Patricia 333 253 370 412
00

South Pacific Regional Programming Contest 2000

Sample Output

| shnael 4 619
Meredith 3 247
Carol yne 3 186
Bet sheba 3 158
Kennet h 3 126
El eanor 2+ -11
Her m one 2 264
Laur ence 2 -93
Ni chol as 2 -114
Davi di an 2 -150
Frances 1+ -119
Cct avi a 1 -85
Absal om 1 - 187
Jerem ah 1 -188
Gabri el 1 - 338
Patricia 0 - 315

South Pacific Regional Programming Contest 2000 7

Problem SP2000-F Calypso

Calypso isafun-filled family card game that has been propagated at the training camps for the Australian
Maths Olympiad teams. The game is designed for four players and will be described in that way, athough
| am sure you can adapt it to adifferent number. | will start with a complete description, since | suspect
most of you will never have heard of it and you may want to play it some time (possibly with your coach
as afourth on the way to Vancouver next year).

The game is played with a standard deck of 52 cards where each card has a suit:— Spades (S), Hearts (H),
Diamonds (D) or Clubs (C)— and a value:— 2-9, Jack (J), Queen (Q), King (K) and Ace (A).The cards
are ranked (from lowest to highest) in the order given. One person is designated as the dealer, after each
deal this role moves clockwise. To make the following description easier, assume that the four players are
Amy, Bob, Carol and Dave and that they are sitting in that order clockwise around atable. Dave isthe first
dealer, Amy will deal next and so on.

Dave dedls one card to each player face down, starting with Amy, and continues until all cards have been
dealt (each player now has 13 cards). Amy now designates how many tricks she expects to take, a number
between 0 and 13, (tricks will be explained later) and her personal trump suit, then Bob does likewise and
so on. Dave as the last bidder must bid for a number of tricks such that the total number of tricks bid (by all
four players) does not equal 13. After this has been done and recorded the play begins.

Amy then leadsto thefirst trick, i.e. she lays a card face up on the table. Each player in clockwise then
plays a card and the four cards constitute atrick. Each player must follow suit if possible, i.e. play acard
of the same suit asthat led. Players who cannot follow suit may play one of their personal trumps or just
discard one of their other cards. The winner of thetrick collectsit and leads to the next trick. The winner is
determined asfollows. If atrick has not been trumped (the leader did not lead anyone' s personal trump suit
and everyone either followed suit or discarded) then the highest card in the led suit wins. If the trick has
been trumped, then the highest trump wins. If there are two or more trumps of equal value (remember that
everyone has their own trump suit) then the first highest wins. For example, assume that at some stage
Dave led alow diamond, that neither Amy or Bob have any diamonds |eft, and that Amy’ strump suit is
Hearts and Bob'sis Spades. If Amy plays HK and Dave plays SA, he would win. If Amy had played HA,
she would have won, even if Dave had till played SA. When all 13 tricks have been played, players score
the number of tricks they won. In addition, players who achieved their target (won the number of tricks
they bid for) score an extra 10 points.

In order to simulate this game, we will make the following modifications. Bids will consist of only the
desired trump suit, based on length. If two or more suits are equally long, value the suits by allocating 5
pointsto an Ace, 4 pointsto aKing, 3 points to a queen, two points to a Jack and 1 point to anything else
and bid the highest valued suit. If thereis ill atie, bid the highest ranked suit in the order (from highest to
lowest) S, H, D, C. At the end of a deal each player will merely score the number of tricks they won, with-
out any bonuses.

When leading, lead the highest card in your trump suit if possible, otherwise lead the highest card in the
highest ranking suit that is not someone else’s trump suit. If thisis not possible, lead the lowest ranked
card in your hand (choosing the lowest ranked suit in case of atie). When playing, aways attempt to win
the trick if you can, otherwise play as cheaply as possible. Thus you will play the highest card in the suit
led, unless a higher card has aready been played, in which case play your lowest card in that suit. If you
cannot follow suit, play your highest trump if you can and if it could win. If you have no trumps, or your
highest trump could not win the trick, then discard the lowest card in your hand. If you have two lowest
cards, play the one from the lowest ranking suit (using the ranking given above).

Consider that the deck is (in order from the top of the deck to the bottom):
C8 HK D6 ST DT H5 S7 C9 DQ DK SA HA D2 S8 CT H8 SJ SQ $4 D8 D7 C3 SK
H6 HT H4 HQ S2 6 C2 HO DI C7 CK CQ H2 CA DA CJ D5 S3 D3 S6 D9 H3 D4
S5 A H G H S9

South Pacific Regional Programming Contest 2000

Thus Dave will deal the C8 to Amy, HK to Bob, D6 to Carol and ST to himself and then continue. The
resulting hands and bids are as follows:

Aty : C6 C7 C8 CAD2 D7 DT DQ H3 H7 HT S3 SJ bids
Bob : Q2 C3 C CKD3 D4 DK DA H4 H5 HK S8 SQ bids
Carol: CT CJ CQ D6 HO HI HQ S4 S5 S6 S7 SK SA bids
Dave : C4 C9 D5 D8 D9 DJ H2 H6 HB HA S2 S9 ST bids

Amy will lead to the first trick. In what follows, the leftmost card is the card led by the winner of the
previous trick (indicated on the right of the previous line). The next three cards are the next three cards
played. Note that the leftmost card isthe card that was led, not necessarily the card played by Amy.

TnWOoOO

Trick 1. CAC CI &4 Ay
Trick 2: C8 C3 C O Any
Trick 3. C7 G5 CQ HA Dave
Trick 4. H3 H3 H4 HO Dave
Trick 5: H6 H7 H5 HI Dave
Trick 6: H2 HT HK HQ Dave
Trick 7: S2 SJ SQ SA Carol
Trick 8: SK S9 S3 S8 Carol
Trick 9: S7 ST D2 DA Bob
Trick 10: DK D6 D5 D7 Bob
Trick 11: D4 S6 D8 DI Carol
Trick 12: S5 D9 C6 CK Any
Trick 13: DQ D3 $S4 DJ Carol

Thus at the end of the deal Amy has won 3 tricks, Bob 2 and Carol and Dave 4 each.

Write a program to simulate playing this game. Input will consist of a series of decks (between 1 and 99,
both numbersinclusive), each consisting of 4 lines of 13 cards without spaces as shown below and
terminated by aline containing only ‘## . For each deck in the input, output aline as shown below. After
all decks have been processed output a summary line as shown.

Follow the spacing of the example exactly. The number of the deal isright justified in afield of width 3,
the other numbers are right justified in fields of width 4.

I nput

C8HKD6 STDTH5S7 C9DQDKSAHAD?
S8CTH8SJ SQ54D8D7 C3SKHEHTHA
HQS2C6C2HIDJ C7 CKOQH2 CADAC)
D5S3D3S6DOH3D4S5CAH7 C5HI S9
SAD3DTS4CODAHI H6 SBHACTD8HO
HT OQC5 STHKHQS5 D6 C6 D5 HE H2 H7
CKD7D4SJD2DQC3C8CAC2 SQBKH3
DKDOHACAHBS7CIS2S6C7DIS9S3
#it

Output
Round 1: 3
Round 2: 4

g w N
~Nw bh
~N w b

South Pacific Regional Programming Contest 2000 9

Problem SP2000-G Four in a Line

Four inaLineisagame similar to 3-dimensiona noughts and crosses. It consists of a horizontal table on
which 16 pegs, each of which can hold 4 beads, are arranged in a4 x 4 grid. Each player has a supply of
either green or red beads which are placed on the pegsin turn, starting with red. Obviously, as each bead is
placed on apeg, it dides down asfar asit can — until it either hits another bead or the supporting table.
Thewinner isthefirst to get 4 beads of their colour in aline (hence the name). The line can be in any plane
and in any orientation, as long as the four beads are all of the same colour and form a straight line.

Aswith most games, the interesting part comes towards the end, when each player (colour) is attempting to
build aline and block the opponent’ sincipient lines. Write a program that will read in details of agame
position and determine whether green (the next player) can be guaranteed to win the game within 5 plies.

A plyishaf aturn, in this situation placing one bead, thus 5 plies implies three moves by green and two
by red.

Input consists of a number of games. Each game consists of 4 lines of characters, each line consisting of 4
blocks of 4 characters— ‘R’ for red, ‘G’ for green or ‘# for empty — where each block represents the
contents of a single peg with the left end representing the bottom. Thus the block ‘ GRR# represents a peg
with a green bead on the bottom with two red beads above it. Note that the entire state of the game is
always given, thus the starting state would consist of 64 ‘# characters arranged in 16 blocks of 4. Y ou can
assume that the position isvalid, i.e. that there will be exactly one more red bead than green beads, and that
there will not be any ‘holes’ in the description (the ‘block” GR#G, for instance). There will be one blank
line after each game and input will be terminated by aline containing only asingle ‘# .

For each game description in the input, output a single line of the form “Green can win in N move(s)”,
where 1 < N < 3, and where N is the smallest such number, or “Green cannot win in 3 moves’. Use the
singular form when N = 1 and the plural form otherwise.

Sample Input

GEG# RR## Ru## Ri#H#
HHH B B B
B B B B
B B B B

RRR# RGH RGGH ####
HUHHE HHEH HEHE HHAH
WA B R
HEHE HARH HHHE AR

#
Sample Output

Geen can wWin in 1 nove
G een cannot win in 3 noves

South Pacific Regiona Programming Contest 2000 10

Problem SP2000-H Discrete Digital Tomography

Y ou are given a collection of sealed pizza boxes. The tops and bottoms of the boxes are covered internally
with metal foil, but the edges are not. Inside, each box has been divided into r rows and ¢ columns (both
inthe range 2 to 8 inclusive), after the manner of a chess board. Each of the thus-formed internal squaresis
either empty or contains a single widget. Widgets absorb beta radiation dightly, so by placing a beta emit-
ter on one side of abox and areceiver on the other side you can tell how many widgetsthere arein the line
of sight between emitter and receiver, but not where they are. By appropriate placement of the emitters and
receivers we can determine the occupancies along various lines, i.e. how many widgets there are in each
row (r numbers), column (c numbers), down diagonal (r+c-1 numbers), and up diagona (r+c-1

numbers)

For example, the following 8 by 8 configuration will produce the numbers shown.
d8 d7 d6 d5 d4 d3 d2 di

@ rl

ul '. r2

u2 o [] 3 02223230 (1, .1y)
s | @ @ |: 02223230 (c,.<,)
| @ @® @ | ©00032040230000 (dy.dy)
u5 ® ® ' 000032021230100 (u;.Uy)
ué ‘i ‘ r7

u’ r8

ug” ¢l c2 €3 c4 ¢c5 c6 c7 c8

Write aprogram that will determine the arrangement of widgets in a pizza box, given a set of numbers such
asthose above. To make life abit easier for you, the test data for this program will always have a unique
solution. Also, the arrangement of widgets will be such that if any proper subset of the squaresisreveaed,
there will always be at |east one line with hidden squares such that either al the hidden squaresin that line
are empty or al the hidden squaresin that line are occupied.

The input to the program is a sequence of problems, each consisting of five lines of integers. The first line
of each problem containsr and ¢ (2<r <10, 2 < ¢ < 10), line 2 contains r numbers giving the row
occupancies, line 3 contains ¢ numbers giving the column occupancies, line 4 contains r+c—1 numbers
giving the down diagonal occupancies and line 5 contains r+c—1 numbers giving the up diagonal
occupancies. A line of two zeroes (0 0) for r and ¢ terminates the input.

The output of the program is a sequence of pictures, one per input problem except for the terminal one. The
first line of the output contains the words “Pizza box” followed by a single space and the number of the
problem (arunning number starting at 1). The next r lines each contain ¢ characters— either a*#' for afull
square or ‘— for an empty square. Leave a blank line between problems.

11

South Pacific Regiona Programming Contest 2000

t
3 —
< o
Q (qV] —
O AN

02223230

o o
o o
o -
o o
MM
NN
o -
< N
o o
AN N
o om
o o
o o
(ol eNe)
o oo

Sample Output
Pizza box 1

HH
- #
- #

H-#

Pi zza box 2

cHe oo H-
- - - H- H-
- He - -
- - - H-

