
 ACM SP 2001

P1 - 1/2

P1 - Prime Digital Roots

The digital root of a number is found by adding together the digits that make up the
number. If the resulting number has more than one digit, the process is repeated until
a single digit remains.

Your task in this problem is to calculate a variation on the digital root - a prime digital
root. The addition process described above stops when there is only one digit left, but
will also stop if the original number, or any of the intermediate numbers (formed by
addition) are prime numbers. If the process continues and results in a single digit that
is not a prime number, then the original number has no prime digital root.

EXAMPLES OF PRIME DIGITAL ROOTS

1 This is not a prime number, so 1 has no prime digital root.

3 This is a prime number, so the prime digital root of 3 is 3.

4 This not a prime number, so 4 has no prime digital root.

11 This is a prime number, so the prime digital root of 11 is 11.

642 This is not a prime number, so adding its digits gives 6 + 4 + 2 = 12. This is
not a prime number, so adding again gives 1 + 2 = 3. This is a prime number,
so the prime digital root of 642 is 3.

128 This is not a prime number, so adding its digits gives 1 + 2 + 8 = 11. This is a
prime number, so the prime digital root of 128 is 11.

886 This is not a prime number, so adding its digits gives 8 + 8 + 6 = 22. This is
not a prime number, so adding again gives 2 + 2 = 4. This is not a prime
number, so 886 has no prime digital root.

An integer greater than one is called a prime number if its only positive
divisors (factors) are one and itself.

• For example, the first six primes are 2, 3, 5, 7, 11, and 13.

• Number 6 has four positive divisors: 6, 3, 2, and 1. Thus number 6 is
not a prime.

• Caveat: number 1 is not a prime.

 ACM SP 2001

P1 - 2/2

INPUT FORMAT

The input will contain a single integer on each line in the range 0 to 999999 inclusive.
The end of the input will be indicated by the value 0.

SAMPLE INPUT

OUTPUT FORMAT

If the input number has a prime digital root, then the input number must be output
right aligned with a field width of 7. It must be followed by a single space, and then
by the calculated prime digital root also right aligned with a field width of 7.

If the input number has no prime digital root, then the input number should be output
as defined above followed by 4 spaces followed by the word none (in lowercase).
The terminating zero should not be output.

SAMPLE OUTPUT

1
3
4
11
642
128
886
0

1 none
3 3
4 none
11 11

642 3
128 11
886 none

ACM SP 2001

P2 - 1/2

P2 - Desert Bitmap

This problem requires you to search a black and white satellite image of a desert for a secret
building complex with a given shape. A complex of this given shape may host an installation
for producing the strategic xeenium macgillicudamate ingredient, and must keep its
orientation with regard to cardinal axes (North-East-South-West). Rotations and mirror
images are not allowed because they would interfere with the delicate alchemy required for
the production process. You must determine how many times the given complex may
possibly occur in the image.

Consider the following images, both on the same scale, where a # (sharp) is a “black” pixel
representing a part of a building, and a . (dot) is a “white” pixel, representing sand. On the
left is an image of the complex you are trying to locate, on the right is an image of the desert
with some buildings on it.

o How many possible locations for the given secret buildings do we count?
o The answer is four: one at the top-left corner, two overlapped possibilities to its right,

and one in the bottom right. The shapes near the top-right corner, and in the centre
bottom don’t count because they are rotated (remember that rotated and/or mirrored
images do not count).

o Note that, as this answer implies, the sand pixels in the image of the building complex
simply establish the necessary relationships between the building parts. In the actual
image they may contain either sand or other building parts (possibly for disguising the
true nature of the complex).

o Assume that images representing strategic complexes are already trimmed of any
unneeded dot “white” pixels on the edges, ie, these images will always contain at least
one # character on each edge (as our example shows). An edge here is the first or last
row or column.

INPUT FORMAT
Each problem will give you the specification for the building complex image followed by the
specification for the desert image. There may be several problems in the input data, which
will be terminated by a line containing just 0 0.

In each problem the input is:
o Line 1: 2 positive integers, B1, B2, respectively representing the number of lines and the

numbers of columns in the following Buildings image. Both numbers will be in the range
1 to16 inclusive.

o Next B1 lines: B2 characters (# or .) on each line to represent part of the image of the
building complex.

o Next Line: 2 positive integers, D1, D2, respectively representing the number of lines and
the numbers of columns in the following Desert image. Both numbers will be in the range
1 to 64 inclusive.

o Next D1 lines: D2 characters (# or .) on each line to represent the desert image.

#..
#.#
#..

#..... #........................#...
#.#....#.#.. #........ #............
#......#.#...##....#...##......###..
.......#.....#...#.#...##........#.#
...................#.....#.......#..

ACM SP 2001

P2 - 2/2

SAMPLE INPUT

OUTPUT FORMAT
The output will consist of one integer for each problem given, on a line by itself, with no
spaces, giving the number of possible occurrences of the given building complex.

SAMPLE OUTPUT

2 2
#.
##
3 5
#.#.#
#####
.###.
1 3
#.#
3 6
##..##
.#.#.#
#.#...
3 3
#..
#.#
#..
5 36
#......#........................#...
#.#....#.#...#.........#............
#......#.#...##....#...##......###..
.......#.....#...#.#...##........#.#
...................#.....#.......#..
0 0

4
3
4

 ACM SP 2001

P3 - 1/2

P3 - Normalized Histogram

A histogram is a bar graph, and a convenient way to view a distribution of values. Each bar of
the graph represents a range of values, and the length of a bar represents the number of input
values in that range. Your program must read a collection of non-negative integer input values,
and display it as a histogram. The bars of the histogram are represented as horizontal rows of "#"
characters. The parameters of the histogram are:

o the lo bound (the lowest value that the histogram can represent)
o the step size (the range of values represented by a single bar)

The bars of the histogram are numbered from 0 up to some maximum number. The number of
"#" characters in histogram bar number n is the number of input values which lie between
lo+n*step and lo+(n+1)*step-1. So bar 0 of a histogram where lo is 30 and step is 10 will
represent values between 30 and 39, bar 1 of the same histogram will represent values from 40 to
49.

For this problem, all input values, and the histogram parameters, are non-negative integers.
Histogram parameters must be chosen to be “nice” round numbers that will allow the histogram
to have no more than 20 bars. The constraints are as follows:

o The step size must be 1 or 2 or 5, possibly multiplied by some positive integer power of
10. For example: 2, 100, 5000. The step size is thus an integer.

o The lo bound must be some multiple of the step size.
o The lo bound and the step size must be chosen so that the minimum input value counts

towards the first histogram bar, and the maximum input value counts towards a histogram
bar number which is less than 20, but otherwise is as large as possible. That is, the
histogram has as many bars as possible, up to a maximum of 20.

The input to your program consists of a series of data sets. Each data set begins with a single
integer in the range 2 to 500 inclusive, on a line by itself. This is the number of input values. It
is followed by the non-negative integer data values, which may be split across lines arbitrarily.
The input values may or may not be sorted. The entire input is terminated by an empty data set
(where the initial count is zero).

For each data set, the program must print out the corresponding histogram. The histogram is a
series of histogram bars, one to a line. Each bar is preceded by the bottom of the range of values
for that bar, displayed right justified in a field eight characters wide. This bound is followed by
one space, and then a row of “#” characters, corresponding to the number of input values for this
histogram bar. The input data is such that no bar will have more than 70 “#”’s. The histogram
should be printed from the first non-empty bar to the last non-empty bar, inclusive, and should be
followed by one blank line.

As a special case, if all input values in a given set are equal, then no histogram is displayed, and
the program must give a line exactly in the following form:

All inputs equal 15.

There must be exactly three spaces at the positions indicated, and a full stop at the end of the line.
As with a valid histogram, this message must be followed by a blank line.

 ACM SP 2001

P3 - 2/2

SAMPLE INPUT

SAMPLE OUPUT

55
0 10 20 30 40 50 60 70 80 90
0 10 20 30 40 50 60 70 80 90

81 82 83 84 85 86 87 88 89 81
81 82 83 84 85 86 87 88 89 81
150 200 250 300 350 400 450 500 550 600
700 750 800 850 900
12
11 11 11 11 11 11 11 11 11 11 11 11
2
5001 3099
0

0 ##########
50 ##############################

100
150 #
200 #
250 #
300 #
350 #
400 #
450 #
500 #
550 #
600 #
650
700 #
750 #
800 #
850 #
900 #

All inputs equal 11.

3000 #
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000 #

 ACM SP 2001

P4 - 1/2

P4 - Encryption Scheme

Most text encryption schemes use a secret key string to convert the plain text to the
enciphered text in some way. A novel method being tested by the Australian Security
Service consists of a transformation of a key string K into a target string P using block
moves. Each block move is of the form copy(start, length), where start indicates a
position in K and length is the number of characters to be copied from K to P. Since
the idea is to eventually transmit only the block moves, the principle is to use as few
block moves as possible. For example if:

Assuming that here string positions start with 1, two shortest block move sequences
would be:

or

The actual shortest block move sequences are not unique but the minimum number is,
6 in this case. If the moves are now transmitted, then it is possible to construct the
plaintext message P from the key string K.

The Australian Security Service is now automating this procedure, so given K and P
they need to count the minimum number of block moves from K to P. To make
things simple at the beginning, they are considering strings comprised of lowercase
letters and digits. The set of characters within string P is a subset of the set of
characters of the key string K.

You are to help the Australian Security Service by writing a program to get two
strings K and P as above, and print the minimum number of block moves from K to P.
Your code will be tested with a sequence of lines. Odd lines are to be used as the key
strings K, and even lines to be used as target strings P. The output will consist solely
of the minimum number of block moves for each pair. The input will be terminated
by a ‘#’ by itself in the place of a K string.

Assume that each of K and P is made up of 1 to 120 characters (K is allowed to be
longer than P).

K: abaabba
P: aaabbbabbbaaa

copy(3,2);copy(4,3);copy(2,2);copy(5,2);copy(2,3);copy(1,1)

copy(7,1);copy(3,3);copy(5,2);copy(4,2);copy(5,3);copy(3,2)

 ACM SP 2001

P4 - 2/2

SAMPLE INPUT

SAMPLE OUTPUT

COMMENTS

The first sample is discussed on the first page. Here follows a minimal sequence of
block moves for the second sample:

abaabba
aaabbbabbbaaa
xy0z
zzz0yyy0xxx
#

6
10

copy(4,1);copy(4,1);copy(4,1);copy(3,1);
copy(2,1);copy(2,1);copy(2,2);
copy(1,1);copy(1,1);copy(1,1)

 ACM SP 2001

P5 - 1/2

P5 - James Bond

A terrorist hides in an underground sewage system. Any two pipes have at most one
common node that is also an endpoint for both of them. The terrorist hides in one
such node and has placed clock-activated bombs at several other nodes. The passage
into and through a node becomes impossible after the explosion.

James Bond wants to capture this terrorist and has at his disposal a complete map of
the sewage system that also highlights the position of the terrorist, the placement of
the bombs, and their timings. At time 0 Bond starts from one of the nodes and must
reach the terrorist in the shortest possible time. All pipes are bi-directional, at least
for Bond. He can travel both ways with the same speed.

Bond dies if an explosion catches him in one of the trapped node, but otherwise he is
unscathed and can pursue his search (even if he is just one second away from the
blast).

Determine the minimum time that Bonds needs to capture the terrorist, if this is
possible.

INPUT FORMAT

• Line 1: Four positive integers N, M, S, T. N is the number of nodes and nodes are
numbered 1, 2, … N. M is the number of pipes. There is at most one pipe
between each pair of nodes. S is Bond’s starting node, and T is the node where
the terrorist hides (1 ≤ S, T ≤ N ≤ 100, 1 ≤ M ≤ N2).

• Next N Lines: Each line contains 0 if the corresponding node is not trapped.
Otherwise it contains a positive integer X giving the time when the bomb will
detonate (1 ≤ X ≤ 1000).

• Next M Lines: Each line contains two node numbers representing the pipe’s end
nodes, and a positive integer giving the travel time Y between its end nodes (1 ≤ Y
≤ 1000).

The above set can be repeated several times. The end is signaled by a line with N = M
= S = T = 0.

OUTPUT FORMAT

Print one line for each input set, giving the minimum time that Bonds needs to capture
the terrorist, if this is possible (thus print 0 if Bond starts at the terrorist node).
Otherwise print 0.

 ACM SP 2001

P5 - 2/2

SAMPLE INPUT

SAMPLE OUTPUT

4 4 1 4
0
0
5
0
2 1 3
3 4 4
3 2 2
1 3 4
3 2 1 3
0
1
0
1 2 3
2 3 1
0 0 0 0

8
0

 ACM SP 2001

P6 - 1/2

P6 - Basalt Buckets

Under certain conditions volcanic basalt forms large crystals, like hexagonal pillars.
At Fingal Head, at the border of New South Wales and Queensland, there is a
dramatic example, called Giant’s Causeway, where a peninsula formed of such
columns juts into the Pacific. It is particularly dramatic when the big Pacific rollers
break on the causeway, leaving streams of water cascading over the basalt pillars.

Your task is to find out how much water could collect in hexagonal hollows, formed
when some pillars are shorter than others, and can act as wells.

Here is a diagram of a set of hexagons. Each hexagon has an integer height. Water
can always cascade off the edge of the set of hexagons, but it will collect in the five
shaded hexagons, since they form wells completely surrounded by higher hexagons.
Water drains from the left hand pair over two pillars of height six, and from the three
on the right water drains over a pillar of height seven. Assuming each hexagon has
unit area, the volume of water that can collect is 17 units.

Y axis
X axis

3

12

6

12

6

4

139

5

7 2

4

9 8

9

12

15

1

8

0

5

7

8

12

0

0

12

7

13

8

 ACM SP 2001

P6 - 2/2

Your program must handle input as a series of problem descriptions.

Each problem begins with two integers X and Y, on a line by themselves, in the range
1 to 200 inclusive, giving the number of hexagons along an X-axis, and along a Y-axis,
as shown in the diagram. Then there are given a further X*Y integers, in the range 0
to 5000 inclusive, which are the heights of the hexagons. The order of input heights is
given as Y rows of X integers, but they may be split across lines arbitrarily. There
may be several problems in the input data, which will be terminated by a line
containing just 0 0.

The given diagram is described by input as follows.

SAMPLE INPUT

The output must consist only of one integer for each problem given, on a line by itself
with no spaces, giving the volume of water that could collect for that set of columns.
The output for the given problem description would thus be:

SAMPLE OUTPUT

5 6
8 12 7 13 0 3 6 5 9 0 12
4 7 8 8 6 9 1 2 12 12 15 13 4 9 0 7 8 12 5
0 0

17

If in the given diagram the shades are not clearly
visible, here follow the X and Y coordinates of the
shaded hexagons, with their respective heights:

X Y Height
3 2 5
2 3 4
3 4 1
4 4 2
4 5 4

 ACM SP 2001

P7 - 1/2

P7 - Take 5

In certain entertainment magazines there is a type of crossword puzzle where, instead
of clues for words, the cells contain positive integers. There is a hidden one-to-one
correspondence with numbers and letters, and the goal of the puzzle is to assign
alphabet letters to these positive numbers so that sequences of two or more letters
(across the rows and down the columns) form valid words.

Your task is to write a program to help solve this type of puzzles.

The input will consist of a series of games. Each game will have a valid dictionary of
words (preceded by a size) that can be used, followed by a puzzle grid (preceded by r
and c, the number of rows and columns). Each word will be at least 2 and at most 10
characters in length from the set ‘a’ – ‘z’. The dictionary size will be at most 1000
words; the dictionary entries are unique but not necessarily sorted. Each puzzle grid
consists of c columns, 1 <= c <= 10, and r rows, 1 <= r <= 10, of cell numbers in the
range 0-26. A positive cell number denotes a letter and a cell number of 0 denotes a
‘ ’ (blank character). The numbers form a continuous range, thus one can expect
numbers such as 0, 1, 2, 3, 4, 5 but not 0, 1, 12, 13, 24, 25.

The series of games is terminated by a “game” with dictionary size 0 and should not
be processed.

The output should consist of the guaranteed uniquely solved puzzle for each game,
where the cell numbers are replaced with characters ‘a’ – ‘z’, ‘ ’. A blank line
should separate output solutions.

 ACM SP 2001

P7 - 2/2

SAMPLE INPUT

SAMPLE OUTPUT

3
max
min
nix
3 4
1 2 3 0
4 0 0 0
5 4 3 0
12
boon
boonbar
boony
foobar
foorag
goon
goony
rannoo
ranoon
toon
toonbar
toony
6 6
1 2 2 3 4 5
2 0 0 2 0 0
2 0 0 2 0 6
5 4 7 7 2 2
4 0 0 8 0 2
9 0 0 0 0 7
0

max
i
nix

foobar
o o
o o t
rannoo
a y o
g n

 ACM SP 2001

P8 - 1/2

P8 - Maximum Subsequence

Determine the maximum length of the common subsequences of a given set of N non-
empty words.

Consider a set of N words (strings), where each word is a non-empty sequence of
lowercase English letters and digits. Assume that 2 ≤ N ≤ 100, that each word
contains maximum 100 characters, and that in each set the product of all its word
lengths is maximum 2,097,152.

INPUT FORMAT:
The input may consist of several sets, and each set consists of several lines.

• Line 1: A positive integer N giving the number of words in the current set. The
value N = 0 signals the end.

• Next N Lines: Each line consists of a non-empty word, ie, a non-empty sequence
of lowercase English letters and digits.

OUTPUT FORMAT:
The output consists of one line for each input set.

• Each line contains an integer giving the maximum length of all common
subsequences of the corresponding set (in input order).

Background definitions

Subsequence of a given string: Any string that can be obtained by deleting zero
or more symbols from the given string (the remaining symbols occur in the
same order, but aren’t necessarily consecutive).

Examples: “”, “a”, “xb”, “aaa”, “bbb”, “xabb”, “xaaabbb” are
subsequences of “xaaabbb”.

Common subsequence of a given set of strings: Any string that is a subsequence
of each of the given strings.

Examples: “xa”, “aaa”, “bbb” are common subsequences of the strings in
{“xaaabbb”, “a7axb8bab”, “bbabartxta”}.

Longest common subsequence of a given set of strings: Any maximum length
common subsequence of the given set of strings.

Example: “aaa”, “bbb” are the two longest common subsequences of the
above set of strings. Their length is 3, which is greater than the length of any
other common subsequence.

 ACM SP 2001

P8 - 2/2

SAMPLE INPUT:

SAMPLE OUTPUT and COMMENTS

2
ab
bc
3
xaaabbb
a7axb8bab
bbabartxta
3
ab
bc
cd
2
1abc2def3ghi4jkl5mno6pqr7stu8vwx9yz0
abc8def7ghi6jkl0mno4pqr3stu2vwx1yz
0

1
3
0
26

1 = the length of “b”
3 = the length of either “aaa” or “bbb”
0 = the length of the empty word
26 = the length of “abcdefghijklmnopqrstuvwxyz”

 ACM SP 2001

P9 - 1/2

P9 - Kth Smallest

Consider arithmetic-type formulas consisting of the following symbols:

o uppercase letters in the ‘A’-‘L’ range;
o two operators ‘+’, ‘-’; and
o round parentheses ‘(’, ‘)’.

The letters represent variables with integer values. Our two operators are a bit non-
standard here: the ‘+’ operator denotes the maximum, and the ‘-’ operator denotes the
minimum of the two operands. Both operators are left-associative, and the minimum
operator has a higher priority than the maximum operator. Parentheses are optional
and are used for grouping in the usual way. Formula representations may also contain
white spaces, which are ignored.

For example, the following two formulas are equivalent in our interpretation:

and

According to our rules, both these formulas denote the same expression:

The above expression will always return the 2nd smallest value in the multiset {A, B,
C}, regardless of the numerical values assigned to its variables. For example,
consider A = 50, B = 70, C = 30. The value returned by the above expression is 50,
which is the 2nd smallest value in {50, 70, 30}. Consider A = 50, B = 30, C = 30. The
value returned by this expression is 30, which is the 2nd smallest value in the multiset
{50, 30, 30}.

Determine if a given formula always returns the Kth smallest value regardless of the
values assigned to its variables, for a given K. Our formulas are guaranteed valid.
The formulas contain between 1 and 12 different variables (but not necessarily
consecutive), and at most 20,000 total symbol occurrences. K will be in the range 1 to
the number of different variables actually used.

A-B + A-C + B–C

A-B + (A-C) + ((C - ((B))))

max(max(min(A,B), min(A,C)), min(C, B))

A multiset is like a set except that it can have
repetitions of identical elements.

 ACM SP 2001

P9 - 2/2

INPUT FORMAT

The input contains a sequence of formulas. Each formula starts with a positive
integer K at the beginning of a line, followed by a space, and then a valid formula
containing the following characters: ‘A’-‘L’, ‘+’, ‘-’, ‘(’, ‘)’, and ‘ ’ (space). Each
line contains a maximum of 120 characters. Long formulas are broken over several
lines, and the continuation is signaled by an ‘_’ (underscore) at the end of every line
except the last. The value K = 0 signals the end of the input.

OUTPUT FORMAT:

The output contains one line for each input formula. Each line consists of either the
word YES if the formula satisfies our request, or NO otherwise (both in uppercase).

SAMPLE INPUT

SAMPLE OUTPUT

1 A
1 (A)
1 ((A))
1 A+B
1 A-B
2 A+B+C
2 A-B-C
2 A-B + A-C + B-C
2 A-B + (A-C) +_

((C - ((B))))
2 (A+B) - (A+C) - (B+C)
2 (A+I) - (A+L) - (I+L)
0

YES
YES
YES
NO
YES
NO
NO
YES
YES
YES
YES

