

PROBLEM 8 � CLOCK SYNCHRONISATION

Consider a set of C clocks. Each clock has a single hour hand that can only point to
one of the following hours: 3, 6, 9, or 12. These clocks can be moved in B different
ways called block moves. Each block move applies to a specified subset of clocks,
and consists of moving the hand of each clock in the subset clockwise by 3 hours.
Your task is to find a minimal sequence of block moves that sets all clocks to 12
hours. Multiple repetitions of a single block move are allowed. If two solutions of the
same length exist, then give the lesser one in dictionary order. If there is no solution

then write �No solution.� If no move is required then write �No moves

required.�

For example, consider a set of 9 clocks (C = 9) with initial positions as shown in the
following table, and 9 available block moves (B = 9), where ticks indicate the clocks
affected by each block move:

Clock numbers 0 1 2 3 4 5 6 7 8

Clock positions 9 9 12 6 6 6 6 3 6

Block move 0

Block move 1

Block move 2

Block move 3

Block move 4

Block move 5

Block move 6

Block move 7
Block move 8

With clocks in the initial positions shown in the above table, applying block move 3
would result in the following updated clock positions (clocks 0, 3, and 6 have been
moved clockwise by 3 hours):

Clock numbers 0 1 2 3 4 5 6 7 8

Clock positions 12 9 12 9 6 6 9 3 6

Further applying block moves 4, 7, and 8 would result in all clocks being set to 12
hours. The move sequence 3, 4, 7, 8 is actually the required solution in this case.

ACM South Pacific Regional Contest P8 Saturday September 21st 2002

INPUT FORMAT

Input consists of a number of scenarios. Each scenario starts with a line containing a
scenario title, which is a string of 1 to 20 letters, digits, and underscores (with no

intervening spaces). A single # on a line indicates the end of input.

The �title� line is followed by one line consisting of two integers C and B, separated
by a single space:

 C is the number of clocks, 1 C 11, where the clocks are numbered
sequentially starting with 0 (i.e., 0, 1, 2, 3, � C-1),

 B is the number of blocks, 0 B 11, where the blocks are numbered
sequentially starting with 0 (i.e., 0, 1, 2, 3, � B-1).

This line is followed by one line representing the starting positions of our clocks. This
line consists of C clock positions separated by single spaces, each position being an
integer number in the set {3, 9, 6, 12}.

This �clocks� line is followed by B other lines, one line for each block move operation.
Each �block� line consists of 1 or more clock numbers (in no particular order),
separated by single spaces, representing the clocks that will advance together by 3
hours in this block.

SAMPLE INPUT:
Test_1_0
1 0
12
Test_1_1
1 1
12
0
Test_3_3
3 3
9 9 9
0 1
1 2
0 2
Test_9_9
9 9
9 9 12 6 6 6 6 3 6
1 3 4 0
0 1 2
2 4 5 1
0 3 6
4 5 7 1 3
2 5 8
3 4 6 7
8 7 6
8 7 4 5

ACM South Pacific Regional Contest P8 Saturday September 21st 2002

ACM South Pacific Regional Contest P8 Saturday September 21st 2002

OUTPUT FORMAT

Each set of output data consists of a single output line showing in order: the problem

title, a colon (�:�), a space (� �), and one of the following answers:

 the text �No moves required.�, if no moves are required to solve the

problem,

 the text �No solution.�, if the problem doesn�t have any solution,

 the block numbers making up the minimal solution (in the required
length/dictionary order), separated by single spaces.

SAMPLE OUTPUT:
Test_1_0: No moves required.
Test_1_1: No moves required.
Test_3_3: No solution.
Test_9_9: 3 4 7 8

ACM South Pacific Regional Contest P7 Saturday September 21st 2002

PROBLEM 7 – SPREADING GOSSIP

We have a remote village with n ≤ 20 houses (h0, h1, h2, … hn-1) and several secure
telephone lines linking neighbouring houses (there is exactly one line between each
pair of neighbouring houses). For any pair of houses hi and hj there is at least one
path of telephone lines connecting them (this can be viewed as an undirected
connected graph with houses as vertices and lines as edges).

Gossip can travel over telephone lines. Each house can call at most one neighbour
house at a time. Calls may begin at the beginning of each hour (e.g., 9 am, 1 pm, 6
pm, etc), and last for exactly one hour. The local telephone company charges a
fortune for each call, but has a quirk that any number of calls can be made in parallel
at the same price as any single call.

Given this scenario, we want to find the minimum total price (minimum number of
used hours) to disseminate some gossip from house h0 to all other houses.

INPUT FORMAT

The input involves a series of scenarios. Within each scenario the first line has an
integer number n, the number of houses. This first line is followed by n other lines,
one for each house, in the order h0, h1, h2, … hn-1. Each “house” line contains a list of
indices of its neighbouring houses (in no particular order), separated by single
spaces.

The series is terminated by a scenario with n=0, which isn't processed.

SAMPLE INPUT:
4
1 2
0 3
3 0
1 2
7
1 2 3
0 2
0 1 3 4
0 2
6 2 5
4 6
4 5
0

ACM South Pacific Regional Contest P7 Saturday September 21st 2002

OUTPUT FORMAT

The output must be “Village s: p”, where s is the scenario sequence number
starting at 1 and p is the answer for each input village.

SAMPLE OUTPUT:
Village 1: 2
Village 2: 4

PROBLEM 1 � HOUSE NUMBERING

The government of Acmonia has decided that henceforth all house numbers should
be given in binary instead of decimal notation. Householders will now have to
purchase 0 and 1 binary digits to display on their houses. For reasons much too
complicated to discuss here it seems that the cost to a householder of a 0 binary digit
and of a 1 binary digit may well differ. Your task is to write a program which will
report to householders the cost of their new numbers.

INPUT FORMAT

The input text consists of a number of sets of problems. The first line of a set is of

the form �COST a b�. For that set:

 a and b are both integers, 0 a, b 1000,

 a 0 binary digit costs a dollars,

 a 1 binary digit costs b dollars.

The first line is followed by one or more lines each consisting of a single integer n.

 0 n 2,000,000,

 n indicates a house number, expressed as a standard decimal number.

A single # on a line indicates the end of input.

SAMPLE INPUT:
COST 1 1

1

34

15

COST 1 10

1

34

15

COST 10 1

1

34

15

COST 0 5

1

16

ACM South Pacific Regional Contest P1 Saturday September 21st 2002

ACM South Pacific Regional Contest P1 Saturday September 21st 2002

OUTPUT FORMAT

Each set of output data must begin with a single output line showing consisting of the

word �Set�, followed by a space (� �), and the current set number (counted from 1).

This is followed by the cost of the binary digits for each house number, each cost
being displayed as a decimal number on a separate line.

SAMPLE OUTPUT:
Set 1

1

6

4

Set 2

10

24

40

Set 3

1

42

4

Set 4

5

5

ACM South Pacific Regional Contest P5 Saturday September 21st 2002

PROBLEM 5 – LOLLIES

Every day on his way home, little Billy passes by his great aunt Clara Mitchum’s
house. Generally he stops in for a chat with the great ACM (as he lovingly refers to
her) and sometimes he asks for some lollies. When he does, she generally gives
him some, but then adds “now don’t be asking for any more for another N days”
where N is some positive integer. If N = 1 that means he can ask for some on the
next day, but fo r example if it is April 6 and N = 4 then he must wait until April 10 or
later before asking for more lollies.

One day Billy happened to catch sight of the great ACM’s calendar, and noted that
each day was marked with two integers. He also noted that the first of these referred
to the number of lollies the great ACM would give him on a particular day, and the
second to the delay that would then be required before making another request. He
copied down as much of the information as he could, and has passed it to you to
analyse. His objective, of course, is to get as many lollies as he can.

Your task is to write a program which will report the total number of lollies that can be
obtained by Billy, and provide a schedule for obtaining that amount. In the event that
there are two or more ways to obtain the maximum number of lollies, Billy will choose
the one where his first collection is as late as possible, and among all collections with
that first date, his second collection is as late as possible, and so on.

INPUT FORMAT

The input text consists of a number of sets of unrelated problems. The first line of a
set is a problem title consisting of a string of 1 to 20 letters. A single # on a line
indicates the end of input.

The “title” line is followed by a sequence of “day” lines. Each problem set contains
between 1 and 100 days, including the limits. In the given order, the first “day” line
corresponds to day number 1, the second line to day number 2, the n-th line to day
number n. Each “day” line consists of two integers separated by a single space:

• an integer L, which is the number of lollies available on that day (1 ≤ L ≤ 100),

• an integer N, which is the associated delay (1 ≤ N ≤ 100).

Conventionally, a delay N pointing to a day beyond the end of the current problem
refers to a day with zero lollies and zero further delays (L = 0, N = 0).

ACM South Pacific Regional Contest P5 Saturday September 21st 2002

SAMPLE INPUT:
January
1 1
2 2
3 3
February
10 3
7 1
5 2
1 1
March
2 3
1 1
3 7
2 7

OUTPUT FORMAT

Each report must follow the following format (use single spaces for spacing):

In <problem_title> <total_amount> <lollies> can be obtained:
On day <day_number> collect <day_amount> <lollies>.
On day <day_number> collect <day_amount> <lollies>.
…

In this notation, <problem_title> represents the actual problem title, <total_amount>,
<day_amount>, and <day_number> are numbers with self-described meaning, and
<lollies> stands for either “lolly” or “lollies”, as required by the context (the singular
and plural forms must be used appropriately). Days must be given in increasing
sequence numbers. Each group report should be separated from the next by a blank
line.

SAMPLE OUTPUT:
In January 4 lollies can be obtained:
On day 1 collect 1 lolly.
On day 3 collect 3 lollies.

In February 12 lollies can be obtained:
On day 2 collect 7 lollies.
On day 3 collect 5 lollies.

In March 4 lollies can be obtained:
On day 2 collect 1 lolly.
On day 3 collect 3 lollies.

ACM South Pacific Regional Contest P6 Saturday September 21st 2002

PROBLEM 6 – MAZE MADNESS

You have been placed somewhere in a maze and you wish to escape by the shortest
possible route . Fortunately you have been given a map of the maze. Before setting
off, you wish to calculate the distance you need to travel. Your task is to write a
program that will calculate the shortest distance to leave the maze. Note that there
may be more than one exit and the specified start position could be at any location
within the maze.

The maze is set on a grid that has M columns and N rows, with 1 ≤ M, N ≤ 100.
Some squares of this grid have impenetrable walls of negligible thickness between
them (or on their outside border). You may move from any square to a horizontally
or vertically adjacent square (possibly outside the maze, thus escaping) provided that
there is no wall between them. Each single move between squares adds 1 meter to
the distance travelled.

INPUT FORMAT

The input involves a series of scenarios. Within each of the scenarios the first line
has the size of the maze. This is given as two numbers M and N. Then the maze is
drawn on 2*N+1 lines and 2*M+1 columns using the printable characters “-”, “|”, “+”,
“.”, “ ” (space), and “s”:

• “|” is used for “vertical” walls,

• “-” is used for “horizontal” walls,

• “+” is used to indicate boundaries between rows and columns (there are
always (N+1)*(M+1) of these),

• “.” is used for wall openings,

• “ ” (space) is used for empty squares,

• “s” is used to show your start location (there is exactly one “s”).

A line with "0 0" indicates the end of the scenarios.

ACM South Pacific Regional Contest P6 Saturday September 21st 2002

SAMPLE INPUT:
1 1
+-+
|s.
+-+
3 2
+-+-+.+
| .s| |
+-+.+-+
| . . .
+-+-+-+
5 6
+-+-+-+-+-+
| |
+-+-+.+-+-+
| |s. . . |
+.+-+-+-+.+
| | . . . |
+.+-+-+-+.+
| | . . . |
+.+-+.+-+.+
| . . | | |
+-+-+.+.+.+
. . . | . |
+-+-+-+-+-+
3 2
+-+-+.+
| .s| |
+-+-+-+
| . . .
+-+-+-+
0 0

OUTPUT FORMAT

Output a single line for each of the scenarios. This line should contain either "Maze
i: d" or "Maze i: No escape!", where i is the scenario number (counting from
1) and d is the minimum distance (in meters) needed to escape (use single spaces
for spacing).

SAMPLE OUTPUT:
Maze 1: 1
Maze 2: 3
Maze 3: 12
Maze 4: No escape!

PROBLEM 2 � BOOK PAGES

For the purposes of this problem, we will assume that every page in an Acmonian
book is numbered sequentially, and that the first page is numbered 1.

How many digits would you need to use to number the pages of a 10 page book?
Pages 1 to 9 would require 1 digit each (total 9), and page 10 would require 2 digits.
This makes 11 digits. Similarly, a book of 34 pages would require 59 digits.

Can we work backwards? If you are told that a book requires 13 digits to number its
pages, can you work out how many pages the book has? I hope so, because that is
all you have to do for this problem. Each line in the input file represents the number
of digits used in numbering a book. Your answer will be the number of pages the
book has. If the number supplied cannot possibly be valid, your answer should be
�Impossible!� Beware that Acmonian books can be quite large, and the number of
digits required for a given Acmonian book can reach 2,000,000,000.

INPUT FORMAT

Each line in the input file contains a single integer, between 1 and 2,000,000,000,

representing a number of digits used in numbering the pages of a book. A single #

on a line indicates the end of input.

SAMPLE INPUT:
11
13

59

60

1999999998

OUTPUT FORMAT

Output for each input number must be on a single line. If the input value is valid,

output the number of pages in the book. Otherwise, output �Impossible!�

SAMPLE OUTPUT:
10

11

34

Impossible!

234567900

ACM South Pacific Regional Contest P2 Saturday September 21st 2002

PROBLEM 4 � COMPANY PARTIES

The Acme company has an hierarchical organization, i.e., a tree-like structure with
the CEO at the root and each other employee a child node of his/her manager. In
addition to his/her position in the organization, each employee has a unique
employee id (a string with no particular meaning) and a sociability measure (an
integer number).

The CEO of the Acme company wants to organize a party for their employees. To
make the party agreeable the CEO wants to make invitations such that:

 the CEO attends the party,

 an employee can be invited only if his/her direct manager is absent,

 the sum of the sociability measures of all who attend is a maximum.

Write a program that will determine the maximum sociability sum under these
conditions for a given company structure.

INPUT FORMAT

The input text consists of a number of company structures. The first line of a set is a
title giving the company name. The company name may contain any printable non-

space characters; and embedded spaces are also permitted. A single # on a line

indicates the end of input.

The �name� line is followed by one line consisting of a single integer n, 1 n
100,000, that indicates the number of employees in this company. This line is
followed by n further lines, one line for each employee.

Each �employee� line consists of three items separated by single spaces:

 an employee id, which is a sequence of 1 to 10 letters and/or digits,

 a sociability measure, which is an integer number between 0 and 100,

 a manager id, which is the employee id of the current employee�s direct

manager, or the character �-� for the CEO.

The employee id is a unique identifier within the company. The order in which the
employees appear is arbitrary, i.e., not related to their employee or manager ids.

ACM South Pacific Regional Contest P4 Saturday September 21st 2002

ACM South Pacific Regional Contest P4 Saturday September 21st 2002

SAMPLE INPUT:
ACME 1

1

ID0 10 -

ACME II

2

ID0 10 -

ID1 21 ID0

ACME, INC.

8

ID4 20 ID3

ID5 1 ID4

ID6 1 ID3

ID7 10 ID6

ID0 10 -

ID1 21 ID0

ID2 10 ID1

ID3 11 ID0

OUTPUT FORMAT

There is a single output line for each company. Each output line consists of the
company title, followed by a colon and a space, and finally the maximum attainable
sociability measure under the above conditions.

SAMPLE OUTPUT:
ACME 1: 10

ACME II: 10

ACME, INC.: 50

PROBLEM 9 � POLYGONAL LINES

A rectangle is to be cut by a sequence of one or more straight line segments joining a
start node to an end node, both on the rectangle border.

Write a program that will read in details of the rectangle and the dividing line and
determine whether the cut produces exactly two parts that could slide apart while
remaining in the same plane.

The following sample diagrams contain:

1. several cases where the answer is �Yes�, i.e., the cutting line produces exactly

two parts that can slide away as required (1 - 5), and

2. several cases where the answer is �No�, i.e., the cutting line doesn�t produce

exactly two parts as required (6 - 10).

(2) (1) (3) (4) (5)

(6) (8) (9) (10) (7)

Diagram (6) shows two interlocked parts that cannot slide apart. Diagrams (7 � 10)
show cuttings that produce three parts instead of the required two. Diagram (7)
shows two intersecting segments. Diagram (8) shows a node that touches another
segment. Diagram (9) shows two duplicate nodes that overlap (on the thicker spot).
Diagram (10) shows two segments that overlap (along the thicker line). This
overlapping will be more obvious in the sample input section below (where the grid
size is assumed to be 10).

The programmer that initially received this task noticed that if the two parts can slide
apart then they can always slide apart along the slope of at least one of the given line
segments. However, he was unable to put this idea to work. Your task is to help him
and write the required program.

ACM South Pacific Regional Contest P9 Saturday September 21st 2002

INPUT FORMAT

Input consists of a number of scenarios. Each scenario starts with a �title� line
containing a scenario title followed by three integers XMAX, YMAX, and N, separated by
single spaces. The scenario title is a string of 1 to 20 letters, digits, and underscores
(with no intervening spaces). It is assumed that our rectangle is aligned with the
axes with the origin at the bottom-left corner, and that XMAX and YMAX specify the top-

right corner, where 10 XMAX, YMAX 1,000,000. N represents the number of nodes

of the cutting line, 2 N 200,000. A single # on a line indicates the end of input.

This �title� line is followed by one or more lines, as needed to describe all nodes of
the cutting line, in succession, 0, 1, 2, �, N-1. Each �nodes� line contains one or
more pairs of non-negative integers, each giving the x and y coordinates of the
corresponding node.

You can assume that:

 the start and the end nodes are distinct and lie on the rectangle borders,

 all other nodes lie within the interior area of the rectangle,

 there are no successive duplicate nodes (i.e., no 0 length segments),

 there are no successive overlapping segments (such as �0 0 4 4 2 2�).

SAMPLE INPUT:
Case_1 30 40 2
0 20 30 20
Case_2 30 40 3
30 20 20 20 0 20
Case_3 30 40 4
0 10 20 20 10 30 10 40
Case_4 30 40 6
20 40 10 20 10 10
20 20 20 10 10 0
Case_5 30 40 4
20 40 20 20 10 20 10 40
Case_6 30 40 6
10 0 10 10 20 10 20 30 10 20 10 40
Case_7 30 40 6
10 0 10 10 20 20 20 10 10 20 10 40
Case_8 30 40 5
10 0 10 25 20 10 20 20 0 30
Case_9 30 40 6
10 0 10 20 20 10 20 20 10 20 10 40
Case_10 30 40 7
10 40 10 20 20 20 20 10 10 10 10 30 0 30

ACM South Pacific Regional Contest P9 Saturday September 21st 2002

ACM South Pacific Regional Contest P9 Saturday September 21st 2002

OUTPUT FORMAT

Output consists of one line for each scenario. There are two cases:

1. The cutting line meets all our requirements and produces exactly two parts
that can slide apart. In this case assume that ((x1, y1), (x2, y2)) is the first of
the line segments whose slope can be used for sliding apart the two parts.

Output the scenario title, followed by a colon (�:�), a space (� �), the word

�Yes�, another space (� �), and then the four integers x1, y1, x2, y2, separated

by single spaces (these coordinates must appear in their input sequence).

2. Otherwise output the scenario title, followed by a colon (�:�), a space (� �),

and the word �No�.

SAMPLE OUTPUT:
Case_1: Yes 0 20 30 20
Case_2: Yes 30 20 20 20
Case_3: Yes 0 10 20 20
Case_4: Yes 10 10 20 20
Case_5: Yes 20 40 20 20
Case_6: No
Case_7: No
Case_8: No
Case_9: No
Case_10: No

PROBLEM 3 � VOWELS FREQUENCIES

The English alphabet consists of 26 letters. Five of these (a, e, i, o and u) are

classified as vowels, the remaining 21 as consonants. Almost every English word
contains at least one vowel (�rhythm� is one of the few exceptions).

In this problem you will be given a number of pieces of English text. Your task is to
determine the frequency of each vowel that is found in the piece, and to display the
answers sorted by frequency, highest frequency first. Where two vowels are equally
frequent, they are to be displayed in alphabetical order.

As you can see from the examples below, upper case and lower case letters are
considered to be the same letter in this problem. Use lower case in your output. As
you can see from the second example, a frequency of zero must still be displayed.

INPUT FORMAT

Each piece of text to be analysed is on a separate line of the input file. Each line has

at most 200 characters. A single # on a line indicates the end of input.

SAMPLE INPUT:
This piece of text was written in the city of Auckland.

ACM Programming Contest.

OUTPUT FORMAT

Output for a problem must be on a single line. Each vowel must be output in lower
case, followed by a colon, followed by the frequency of that vowel. There must be
one space before the next letter, and a dot at the end.

SAMPLE OUTPUT:
e:5 i:5 a:3 o:2 u:1.

a:2 o:2 e:1 i:1 u:0.

ACM South Pacific Regional Contest P3 Saturday September 21st 2002

