
P1 − ACM SPPC 1 of 2 Saturday, 20/09/2003

PROBLEM 1 −− WACMIAN NUMBERS

In the supposedly uninhabited Wacmahara Desert, a tribe of unusual people has
been discovered. The Wacmians have only 2 fingers and a thumb on each hand,
and have invented their own numbering system. The digits they use and the
symbols they use for digits are quite unusual, but anthropologists have been able
to represent them as follows:

% represents 0

) represents 1

~ represents 2

@ represents 3

? represents 4

\ represents 5

$ represents -1 (yes, they even have a negative digit)

As you may expect, their system is base 6 where each place value is 6 times the
value to its right, as in the following examples:

)@% is 1*62+3*6+0 = 36+18+0 = 54

?$~~ is 4*63+(–1)*62+2*6+2 = 864–36+12+2 = 842

$~~ is (–1)*62+2*6+2 = –36+12+2 = -22

Your task is to take Wacmian numbers and represent them as standard base 10
numbers.

P1 − ACM SPPC 2 of 2 Saturday, 20/09/2003

INPUT FORMAT

Input consists of Wacmian numbers, one per line. Each number consists of a
sequence of 1 to 10 Wacmian digits. A single ‘#’ on a line by itself indicates the
end of input.

SAMPLE INPUT:
)@%

?$~~

$~~

%

#

OUTPUT FORMAT

Output will be the corresponding decimal numbers, one per line.

SAMPLE OUTPUT:
54

842

-22

0

P2 − ACM SPPC 1 of 2 Saturday, 20/09/2003

PROBLEM 2 −− CD TITLES

A keen photographer, I found my hard disk quickly filling up with snapshots and
videos. I decided to offload a lot of the files to CD. Each CD is in its own plastic
case, and the contents are clearly described on the front of the case. As the
number of CDs increased, I built myself a shelf on which the CDs stand vertically.

I need your help! I have written a title for each CD into a text file, but I need the
titles to appear vertically so that I can put them in the spine of the CD cases and
be able to read them easily from the shelf. I want you to write a program that will
output my titles vertically. I need lines between each title so that, when I print
them, I can easily cut along the lines.

I have worked out that I can fit 36 characters into the available space, so all
output titles must be 36 characters long, padded with spaces at the end where
necessary. If I accidentally make a title too long, only output the first 36
characters.

INPUT FORMAT

Input will be at most 50 titles, one to a line. Each title consists of 1 to 100 arbitrary
characters. A single ‘#’ on a line by itself indicates the end of input.

SAMPLE INPUT:
012345678901234567890123456789012345

David and Jane’s wedding, March 2002, Alexandria

Bahamas Holiday August 2001

#

P2 − ACM SPPC 2 of 2 Saturday, 20/09/2003

OUTPUT FORMAT

Output will be the same titles presented vertically, where the left to right order will
be the same as the order of the input. There will be a column of bar (‘|’)
characters at each end, and separating each title, and a row of minus (‘-’)
characters (1 per column) at the beginning and end.

SAMPLE OUTPUT:

0	D	B
1	a	a
2	v	h
3	i	a
4	d	m
5		a
6	a	s
7	n	
8	d	H
9		o
0	J	l
1	a	i
2	n	d
3	e	a
4	’	y
5	s	
6		A
7	w	u
8	e	g
9	d	u
0	d	s
1	i	t
2	n	
3	g	2
4	,	0
5		0
6	M	1
7	a	
8	r	
9	c	
0	h	
1		
2	2	
3	0	
4	0	
5	2	

P3 − ACM SPPC 1 of 2 Saturday, 20/09/2003

PROBLEM 3 −− CAESAR CIPHER

Julia has decided to encrypt her notes so that nobody else could understand
them. The code is based on the so−called Caesar Cipher where each letter is
shifted a certain number of places left or right through the alphabet. In this
context, the alphabet is treated as being circular so that the first letter follows
after the last letter, and the last letter precedes the first letter.

Julia applies these ideas separately to uppercase letters, lower case letters, and
digits. For example, with a shift of 1, ‘A’ becomes ‘B’, ‘Z’ becomes ‘A’, ‘a’ becomes
‘b’, ‘z’ becomes ‘a’, ‘0’ becomes ‘1’, ‘9’ becomes ‘0’. Spaces, punctuation, and
any other symbols are not affected in this scheme.

Your task is to help Julia encrypt her notes.

INPUT FORMAT

Each line of input begins with a number representing the shift. The number will be
in the range -1,000,000,000 to 1,000,000,000. The number is followed by a colon
(‘:’). The rest of the line consists of a string of 1 to 200 arbitrary characters and
represents a fragment of the text to be encrypted. A single ‘#’ on a line by itself
indicates the end of input.

SAMPLE INPUT:
0:Clear text!

1:David and Jane’s wedding, March 2002, Alexandria

-1:Bahamas Holiday August 2001

53:ACMZ, acmz, 0379!

26000000:ACMZ, acmz, 0379!

26000001:ACMZ, acmz, 0379!

#

P3 − ACM SPPC 2 of 2 Saturday, 20/09/2003

OUTPUT FORMAT

Output will be the corresponding encrypted text fragments, one per line.

SAMPLE OUTPUT:
Clear text!

Ebwje boe Kbof’t xfeejoh, Nbsdi 3113, Bmfyboesjb

Azgzlzr Gnkhczx Ztftrs 1990

BDNA, bdna, 3602!

ACMZ, acmz, 0379!

BDNA, bdna, 1480!

P4 − ACM SPPC 1 of 2 Saturday, 20/09/2003

PPRROOBBLLEEMM 44 −−−− WWAATTEERR TTAANNKKSS

There are n identical large cylindrical tanks for storing water. The tanks are arranged
in a circle on level ground. Each tank is connected with its two neighbours by means
of pipes situated at its base. There is a valve between each adjacent pair of tanks
(tank n is next to tank 1). All valves are initially closed. All the outlets and the pipes
are at the same level and are always full of water, even if all the tanks are deemed to
be “empty”.

The volume in any tank is measured by the height of the surface of the water above
the level of the top of the outlets. If all valves (or all valves but one) are opened so
that water can flow between the tanks, then the levels will eventually equalise.
Conversely, if all tanks are initially at the same level, no valves need be opened to
equalise the levels. Thus it may be necessary to only open some of the valves to
achieve this result.

For example, consider n=4 tanks each 5 metres high. Assume that the water level in
these tanks is at 4, 4, 3, and 3 meters respectively. Their water level will equalise if
we open the valves between tanks #2 and #3 and between #4 and #1, as suggested
by the following diagram. Thus for this set we need to open only two valves:

Given a set of initial heights, determine the minimum number of valves to open so
that the final water levels in all tanks is equal.

openopen closedclosed

to #1to #4

#1 #2 #3 #4

P4 − ACM SPPC 2 of 2 Saturday, 20/09/2003

INPUT FORMAT 1

The input will consist of one or more scenarios, each scenario consisting of two lines.

The first line contains a descriptive title, which is a string of letters or spaces no more
than 200 characters long, containing at least 1 letter.

The second line starts with the number of basins n (3 ≤ n ≤ 200), a space, and then n
integers in the range 0 to 99, separated by single spaces, representing the water
levels in the tanks.

The scenarios sequence is terminated by a single ‘#’ character on a line by itself.

SAMPLE INPUT:
High four dude basins

4 4 4 3 3

The Australasian eight

8 2 1 1 2 2 1 1 6

#

OUTPUT FORMAT

Output one line for each input scenario. The line consists of the first letter of each
word in the descriptive title in upper case, followed by a colon (‘:’), a space, and then
the minimum number of valves that need to be open to achieve equal heights in all
tanks.

SAMPLE OUTPUT:
HFDB: 2

TAE: 5

1 Caveat: The input data for this program may contain lines up to 600 characters long.

P5 − ACM SPPC 1 of 2 Saturday, 20/09/2003

PPRROOBBLLEEMM 55 –– SSPPOOTTSS

Painting tiles is hard work. John has convinced his two sons Raul and George to do a
painting job, by agreeing to pay one dollar per tile painted by each of them. Raul will
paint red tiles and George green tiles at the places indicated by their father.
However, they are still not convinced: How are they going to divide up the area to be
painted, what happens if both want to paint the same tile at the same time, what are
the rules, and, last, but not least, how much will they receive in the end?

To avoid arguments and to have some fun, John would like to show them a
simulation of the problem before the hard work begins. The simulation will start with
each son at opposite ends of a rectangular grid of width N and height M (N,M ≥ 2),
Raul at (0,0) and George at (N-1, M-1). The two sons will begin by painting a spot in
their respective colours on their starting tiles. Next, Raul and George are each given
a series of individual instructions for moving to the next tile to paint. Each move can
be repeated one or more times and is defined by a pair of increments along the
horizontal x−axis and vertical y−axis, in this order; these increments can be positive,
negative, or zero.

For example, assume that Raul is on his initial tile (0,0) on a grid with N=10, M=5,
and receives the instructions to hop 2 times in the direction of (1,0) and then 3 times
in the direction of (2,1). He will begin by painting a red spot on the tile (0,0). Then,
according to these instructions, he will successively land on and paint red spots on
the following tiles: (1,0), (2,0), (4,1), (6,2), (8,3). The following diagram uses the letter
‘R’ to mark the tiles spotted in red by Raul according to his instructions:

0 1 2 3 4 5 6 7 8 9
0 R R R
1 R
2 R
3 R
4

At each simulation step the two sons move in lock-step, each hopping according to
his own instructions. To avoid conflicts, each time Raul and George are about to hop
to the next tile the simulation must check whether they would land on the same tile.
If so, the simulation ends without them moving, and the landing tile remains painted
in its previous colour, if any. Otherwise, the simulation will end as soon as one of the
sons ends his instructions.

Each tile can contain only one colour spot, either red or green. Since it is possible
that Raul and George land on the same tile at different times, the simulation should
only count the tile towards the son landing there last.

To avoid Raul and George falling off the edge of the tile grid, they are allowed to
wrap around, in all directions. For example, for a grid of the same size as above, one
hypothetical move from (8,3) in the direction (2,3) results in the tile (0,1).

y

x

P5 − ACM SPPC 2 of 2 Saturday, 20/09/2003

Your task is to write a program that computes the results of such a simulation given
the grid size and the instructions for each son.

INPUT FORMAT 1

The input consists of one or more scenarios. Each scenario consists of 3 lines. The
first line contains two numbers separated by a space, N and M, 2 ≤ N, M ≤ 1000,
respectively representing the width and the height of the grid. The second line
contains the instructions for Raul and the third line the instructions for George. Each
instruction line starts with a number C, in the range 1 to 100, followed by C groups of
3 numbers. In each group the first number is a repetition count in the range 1 to
1,000,000,000, the second number is an increment along the x−axis, and the third
number an increment along the y−axis − both increments are in the range -1,000 to
1,000. All numbers are separated by single spaces. The end of the input is indicated
by a “grid of size 0”, i.e., a ‘0’ on a line by itself.

SAMPLE INPUT:
10 5

2 2 1 0 3 2 1

3 4 -2 0 1 0 -9 2 1 0

10 10

2 1 15 5 1 0 0

2 1 0 0 2 -4 -4

10 7

2 1000 2 -1 1000 0 -1

2 1000 -1 0 1000 -1 0

10 10

5 1000 2 -1 1000 1 0 2 5 5 3 1 1 10 1 1

5 1000 -1 0 1000 0 1 3 -4 -4 2 -1 -1 10 -1 -1

0

OUTPUT FORMAT

Output one line for each input scenario. Each output line should show two numbers
separated by a single space, representing the earnings of Raul and George, in this
order.

SAMPLE OUTPUT:
5 6

2 1

30 10

18 18

1 Caveat: The input data for this program may contain lines up to 2000 characters long.

P6 − ACM SPPC 1 of 2 Saturday, 20/09/2003

PPRROOBBLLEEMM 66 −−−− MMOOBBIILLEE PPHHOONNEESS

ACMIA mobile phones have a shortcut mode for typing text messages using the
numerical phone keypad. In this mode, the system uses a dictionary of known words.
After a sequence of digits is entered the system checks for and displays all possible
matches in the dictionary. The ACMIA phone keypad for the English alphabet is as
follows:

1 2 abc 3 def

4 ghi 5 jkl 6 mno

7 pqrs 8 tuv 9 wxyz

0 (space)

Your task is to write a program that displays all possible matches for given digit
sequences, using a given dictionary.

A digit sequence corresponds to a sequence of words, with zero digits (‘0’) indicating
spaces. Leading and trailing zeros are ignored, and multiple consecutive embedded
zeros are treated as a single zero. For each sequence of non−zero digits, display the
matching word from the dictionary. When more than one match is available, display
all matches in dictionary order between round parentheses and separated by bars
(‘|’). If there is no matching word, display a sequence of asterisks (‘*’) of the same
length. For example, with a dictionary consisting solely of the words ‘i’, ‘loud’,
‘love’, ‘programming’, the digit sequence

‘0040568300077647266464077770’
will be displayed as the text

‘i (loud|love) programming ****’

INPUT FORMAT

The input will consist of one or more scenarios, each scenario consisting of a
dictionary of permitted words and a series of digit sequences to be interpreted as text
messages.

The dictionary consists of 1 to 1,000 words, one word per line, in increasing
dictionary order, with no duplicates. Each word consists of 1 to 30 lowercase letters.
For any given non−zero digit sequence there will be no more than 10 matching words
in the dictionary. The end of the dictionary is indicated by a line consisting of a single
‘#’.

The digit sequences to interpret as text messages follow the dictionary, one per line.
Each message line consists of 1 to 100 digits, with at least 1 non−zero digit. The end
of messages is indicated by a line consisting of a single ‘#’.

The end of input is indicated by an empty dictionary (a dictionary with zero words).

P6 − ACM SPPC 2 of 2 Saturday, 20/09/2003

SAMPLE INPUT:
i

loud

love

programming

#

0040568300077647266464077770

#

a

game

go

golf

good

hand

hold

hole

home

in

me

of

to

#

2046630426306304653

46086020466304663

#

#

OUTPUT FORMAT

For each scenario output a line consisting of the word ‘SET’ (all uppercase) followed
by a space and then the scenario number, starting with 1. Following this output the
list of interpreted text messages, one message per line.

SAMPLE OUTPUT:
SET 1

i (loud|love) programming ****

SET 2

a (good|home) (game|hand) (me|of) (golf|hold|hole)

(go|in) to a (good|home) (good|home)

P7 − ACM SPPC 1 of 2 Saturday, 20/09/2003

PROBLEM 7 −− COLOUR GRIDS

You are given a number of plastic tiles, all of the same size, and a target pattern.
Your task is to assemble the tiles into a pile so that, looking from the top, it matches
the target pattern. Each tile is composed of 16 squares of transparent or coloured
plastic (opaque and identically coloured on both faces), arranged in a 4x4 grid. The
target pattern is also a grid of colours, similar to a tile, but without transparencies.
The tiles can be rotated clockwise through multiples of 90° and/or flipped about a
horizontal axis. This leads to 8 possible transformations − rotated 0, 1, 2 or 3 times,
or a flip followed by the same sequence of rotations. These transformations, in the
above order, are numbered 0 to 7. The following diagrams provide an example, with
colours denoted by upper case letters, and dots (‘.’) representing transparency:

Transform #0
(original)

Transform #1 Transform #2 Transform #3

R R G G

R R . G

Y Y B B

Y Y B B

Y Y R R

Y Y R R

B B . G

B B G G

B B Y Y

B B Y Y

G . R R

G G R R

G G B B

G . B B

R R Y Y

R R Y Y

Transform #4 Transform #5 Transform #6 Transform #7

Y Y B B

Y Y B B

R R . G

R R G G

R R Y Y

R R Y Y

G . B B

G G B B

G G R R

G . R R

B B Y Y

B B Y Y

B B G G

B B . G

Y Y R R

Y Y R R

Write a program that will read in a sequence of tiles and a target pattern and
determine whether the target pattern can be made by some arrangement of all or
some of the input tiles.

o If there are several ways of achieving the target, then choose the pile with
fewest tiles.

o If there are still several ways of achieving the target, then at every point in the
pile, in a top–down order, choose first the lowest numbered appropriate tile
and, if still needed, the lowest numbered appropriate transformation.

P7 − ACM SPPC 2 of 2 Saturday, 20/09/2003

INPUT FORMAT

The input will consist of one or more of problems. The first line of each problem
contains the title of the problem as a string of 1 to 30 characters other than space,
followed by a space, and the number of tiles n (1 ≤ n ≤ 10). This is followed in turn by
n+1 lines, the first n lines specifying the tiles (implicitly numbered 0 to n-1); and the
last line specifying the target pattern. Each of these n+1 lines contains 4 blocks of 4
characters, either an upper case letter representing a colour, or a full stop (‘.’)
representing transparency. Blocks are separated by single spaces and represent grid
rows, in successive row order. Characters composing blocks represent grid cells, in
successive column order. The end of input is signified by a line consisting of a single
‘#’.

SAMPLE INPUT:
OBVIOUS 1

RRGG RRGG YYBB YYBB

BBGG BBGG YYRR YYRR

EASY 2

BBBB BBBB ..BB ..BB

RRRR RRRR

RRRR RRRR BBBB BBBB

Is-this-possible? 2

BBBB BBBB ..BB ..BB

RRRR RRRR

RRBB RRBB BBRR BBRR

#

OUTPUT FORMAT

Output consists of one line for each problem, consisting of the title of the problem,
followed by a space, and either the word ‘noway’ (all lowercase) if the target cannot
be achieved, or a description of the pile if the target can be achieved. The tiles in the
pile should be listed in order from the top of the pile downwards, in the form: tile
number (0 through n-1), slash (‘/’), transformation number (0 through 7). Separate
descriptions of successive tiles by single spaces.

SAMPLE OUTPUT:
OBVIOUS 0/7

EASY 1/0 0/1

Is-this-possible? noway

P8 − ACM SPPC 1 of 2 Saturday, 20/09/2003

PPRROOBBLLEEMM 88 −−−− PPOOSSTTAALL VVAANNSS

A new suburb has been established with 4 avenues running West–East and N streets
running North–South, where 1 ≤ N ≤ 1000. On the map, the suburb is a rectangular
grid and the post office is at its North−West corner.

For example, the following diagram shows such a suburb with N=5 streets, with the
avenues depicted as horizontal lines, and the post office as a dark blob at the top–left
corner:

Each day the postal van leaves the post office, drives around the suburb and returns
to the post office, passing exactly once through every intersection (including those on
borders or corners). The executives from the post company want to know how many
distinct routes can be established for the postal van (of course, the route direction is
significant in this count).

For example, the following diagrams show 2 such routes for the above suburb:

As another example, the following diagrams show all the 4 possible routes for a
suburb with N=3 streets.

P8 − ACM SPPC 2 of 2 Saturday, 20/09/2003

Write a program that will determine the number of such distinct routes given the
number of streets.

INPUT FORMAT

The input text consists of one or more lines, each containing a single number from 1
to 1000 inclusive – the number of parallel streets. A single ‘#’ on a line by itself
indicates the end of input.

SAMPLE INPUT:
1

2

3

4

10

30

#

OUTPUT FORMAT

There is a single line of output for each input value. Each output line consists of the
number of streets followed by a colon (‘:’) and a space, followed by the number of
possible distinct routes corresponding to that many streets. Each number is
displayed as a decimal number, with commas (‘,’) used as separators between
groups of 3 digits, counting from the right.

SAMPLE OUTPUT:
1: 0

2: 2

3: 4

4: 12

10: 3,034

30: 374,605,036,706

P9 − ACM SPPC 1 of 2 Saturday, 20/09/2003

PPRROOBBLLEEMM 99 −−−− TTRRIICCKKYY TTRREEEESS

The stream of tourists passing through the enchanted forest of Acmagorn is drying
up because most people have seen it already and don’t see the point of seeing it
again. This is worrying the custodians of the forest because they rely on the money
that tourists spend to manage the forest (and to pay their salaries). In an attempt to
bring the tourists back again, they have devised a plan to make the forest look a bit
different every day someone sees it. According to this plan, every night the trees
randomly rearrange the order of their branches. Although the rearrangement doesn’t
change the structure of the trees, it can make their appearance quite different.

For example, images (a) and (b) below could show two possible rearrangements of
the same tree. Of course, trees that are structurally different trees will always look
different, no matter what rearrangement occurs. The trees in images (c) and (d) will
never look the same as each other, because they are structurally different − nor will
either (c) or (d) look the same as either (a) or (b).

As another example, the images (e) and (f) below could also show two possible
rearrangements of the same tree.

This plan is a great success and the tourists are flocking back to see the constantly
changing forest. Our friends Mary and Paul have been there several times and each
time they’ve brought home many good pictures. They have now decided to put a bit
of order in their collection of pictures, by identifying all matching tree images, i.e., all
images that could represent the same tree. To achieve this result, they intend to
associate a tag number with each image, such that images of trees are given the
same tag if, and only if, they match. For examples, the images (a), (b), (c), (d) above
could receive the tags 0, 0, 1, 2, in this order.

They have started by coding their collection of tree images. For each tree they
labelled each node, in no particular order, with a distinct number in the range 0 to k-
1, where k is the number of the nodes in that tree.

(e) (f)

(a) (b) (c) (d)

P9 − ACM SPPC 2 of 2 Saturday, 20/09/2003

Your task is to write a program that will allow them to identify matching tree images.

INPUT FORMAT 1

Input consists of one or more scenarios, with each scenario consisting of a number of
tree images. Each scenario starts with a line containing a single number, n (1 ≤ n ≤
100) specifying the number of images in the scenario, followed by n lines containing
image descriptions. Each image description line has at most 5,000 characters and
consists of a number k (1 ≤ k ≤ 1000) specifying the number of nodes in the tree,
followed by k numbers in the range -1 to k-1, specifying the parent of each node in
turn, using -1 for the root node (which has no parent). The sequence of scenarios is
terminated by an “empty scenario”, i.e., a line consisting of single zero (‘0’).

SAMPLE INPUT:
4

7 -1 0 0 6 6 6 0

7 -1 3 3 0 3 0 0

7 -1 0 1 1 6 6 1

7 -1 3 3 0 5 0 0

2

13 -1 0 0 0 1 1 2 2 3 4 4 5 6

13 -1 0 0 0 1 1 2 3 3 5 7 8 8

5

2 -1 0

3 -1 0 0

2 1 -1

3 -1 0 1

3 2 2 -1

0

OUTPUT FORMAT

Output consists of one line for each scenario, beginning with a scenario sequence
number (starting with 1), a colon (‘:’), a space, and followed by a succession of tag
numbers, one for each image, in input order, and separated by single spaces. Tag
numbers are allocated successively in input image order, starting with 0, and
increased by 1 at the first occurrence of an image not matching any of the previous
images.

SAMPLE OUTPUT:
1: 0 0 1 2

2: 0 0

3: 0 1 0 2 1

1 Caveat: The input data for this program may contain lines up to 5000 characters long.

