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Background!

!   Hardware: Multi-core/Many-core Architectures 

!   Scenario: Multiple parallel programs!
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Background-parallel programs!

!   Traditional parallel programs 
•  Hard to adjust the number of threads at runtime 

!   Task-based parallel programs 
•  Dynamic task scheduling!
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Work-sharing!
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Work-stealing!
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Problem & Motivation!

!   Aggressive feature of work-stealing 
•  On a k-core computer, k threads/workers are launched 

!   Existing solutions 
•  Time-sharing - ABP yielding mechanism 
•  Space-sharing - Equal-partitioning!
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Time-sharing!

!   ABP yielding mechanism 
•  If a thread fails to steal a task, it goes to sleep!
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Space-sharing!

!   Equal-partitioning mechanism 
!   If m programs co-run on a k-core computer, 

each program is allocated k/m cores.!
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!   Start from Equal-partitioning 
!   Dynamically balance cores at runtime 

•  If pi cannot fully-utilized a core, it release the core 
•  If pi has too many tasks, it tries to obtain more cores!

Demand-aware Work-Stealing (DWS)!
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Stealing algorithm - (Release)!

!   A worker decides whether to release its core by itself!
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If a worker fails too many times 
(T_SLEEP) to steal a new task, it 

goes to sleep 



Coordinator - (Obtain)!

!   The coordinator decides whether to obtain more cores 
•  If a program has too many queued tasks, it should try to 

get some free cores!
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How 
Many? Which? 

C1: The more queued tasks in a program, the more 
cores should the program obtain 

C2: A program can take its allocated cores back 

C3: A program cannot obtain the busy cores 



Coordinator - How Many?!

!   C1: The more queued tasks in a program, the 
more cores should the program obtain!
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Num of active workers! Na!

Num of queued tasks! Nb!

Num of free cores! Nf!

Num of released cores! Nr!

Num of cores expected! Nw!

How many: 



Coordinator - Which?!

!   Nw <= Nf 

!   Nf < Nw <= Nf+Nr                                                  (C2) 

!   Nw > Nf+Nr                                                                (C3)!
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Num of active workers! Na!

Num of queued tasks! Nb!

Num of free cores! Nf!

Num of released cores! Nr!

Num of cores expected! Nw!

•  Randomly select Nw free cores 

•  Select Nf free cores + its (Nw-Nf) released core 

•  Nf free cores+its Nr released cores 



Evaluation platform!

!   A Dual-socket Quad-core computer with Hyper-
Threading Technology 

!   Each socket is a Quad-Core Intel Xeon E5620!
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Hardware & Configuration! Size/Version!

L1/L2 cache size (each core)! 256 KB/1MB!

L3 cache size  (each socket)! 12 MB!

Main memory size! 32 GB!

Operation system!  Linux 2.6.32-38!



Benchmarks!
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Calculate execution time: 



Performance of DWS!
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DWS can significantly improve the performance of the 
benchmarks 



Effectiveness of the coordinator!

18 

Without the coordinator, the performance of the benchmarks is 
degraded 



Impact of T_SLEEP!
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We should choose T_SLEEP = k or 2k on a k-core computer 



Contributions & conclusions!

•  A modified work-stealing algorithm that enables a 
program to release the under-utilized cores. 

•  A coordinator to manage the workers. It enables a 
program to grab and use the under-utilized cores 
released by other programs. 

•  We have implemented DWS, which achieves a 
performance gain of up to 32.3% in the best cases 
compared to traditional work-stealing schedulers.!
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Thanks! 
 

Questions?!


