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Hardware: Multi-core/Many-core Architectures

Scenario: Multiple parallel programs
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X #2445 Background-parallel programs

Traditional parallel programs
* Hard to adjust the number of threads at runtime

Task-based parallel programs
* Dynamic task scheduling
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Work-sharing
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Work-stealing
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YEXAAYE Work-sharing
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Central task pool
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Lock the central task pool when getting a task




YFELAAE Work-stealing
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YERALE Problem & Motivation
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* On a k-core computer, & threads/workers are launched

Existing solutions
* Time-sharing - ABP yielding mechanism
* Space-sharing - Equal-partitioning

— Time-sharing — — — » Space-sharing 7




X FLARS Time-sharing
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ABP yielding mechanism
* If a thread fails to steal a task, it goes to sleep

Active Sleep
Thread 3

[ Thread 2 | . Unfair resource allocation i

Thread 1
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X FLARS Space-sharing
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Equal-partitioning mechanism

If m programs co-run on a k-core computer,
each program is allocated k/m cores.

II{ Fair but inefficient I
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X #XA&mand-aware Work-Stealing (DWS)
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Start from Equal-partitioning

Dynamically balance cores at runtime

* If p; cannot fully-utilized a core, it release the core
* If p; has too many tasks, it tries to obtain more cores

@ @ @ @ @ - @ o
allocation

< k/m cores ~ <« k/m cores » < k/m cores —» table

Runtime Arch. of DWS 10




X #1447 Stealing algorithm - (Release)
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Algorithm 1: Work-stealing algorithm in DWS
Input: w: current worker

1 int failed steals = O; // num of failed steals
2 while work is not done do
3 if w is free then
4 if its task pool is not empty then
5 w obtains a task ¢ from its own task pool ;
6 failed_steals = 0 ;
7 else
8 w randomly selects v as victim worker ;
9 if v has a non-empty task pool then
10 w steals t from v ;
11 failed_steals = 0 ; : .
12 else_ a worker fails too many times
13 failed_steals ++ ;
14 if failed_steals > T_SLEEP then SLEEP) to Steal a hew task |t
15 w goes to sleep ; —_ 2
16 w waits to be woken up ;
e J goes to sleep
18 end if
19 end if
20 if ¢t then
21 | w executes t ;
22 end if
23 end if

24 end while 11




YEidrs Coordinator - (Obtain)

SHANGHAI JIAO TONG UNIVERSITY

The coordinator decides whether to obtain more cores

« If a program has too many queued tasks, it should try to
get some free cores

C1: The more queued tasks in a program, the more
cores should the program obtain
|C2: A program can take its allocated cores back
|(_33: A program cannot obtain the busy cores
12




SHANGHAI JIAO TONG UNIVERSITY

r#XLLL Coordinator - How Many?

more cores should the program obtain

How many: N, =

No
N,

Num of active workers
Num of queued tasks
Num of free cores
Num of released cores

Num of cores expected

N
Nv
Ns
N
Nw
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YEXALE Coordinator - Which?
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 Randomly select N, free cores

]Vf< Ny <= Nf+Nr (C2)
« Select Nrfree cores + its (N.-Ny) released core

Ny > Nr+N; (C3)
» Nrfree cores+its N, released cores
Num of active workers
Num of queued tasks
Num of free cores
Num of released cores

Num of cores expected

Na
Nb
Ns
N:
Nw
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® A Dual-socket Quad-core computer with Hyper-
Threading Technology

Each socket is a Quad-Core Intel Xeon E5620
Hardware & Configuration

L1/L2 cache size (each core) 256 KB/1MB

L3 cache size (each socket) 12 MB
Main memory size 32 GB

Operation system Linux 2.6.32-38
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1D Name Description

p-1 FFT Fast Fourier Transform

p-2 PNN Polynomial Neural Network

p-3 Cholesky  Cholesky decomposition

p-4 LU LU decomposition

p-5 GE Gaussian Elimination algorithm
p-6 Heat Five-point heat distribution

p-7 SOR 2D Successive Over-Relaxation
p-8 Mergesort Merge sort on 4E6 numbers

Calculate execution time:
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DWS can significantly improve the performance of the
benchmarks
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Without the coordinator, the performance of the benchmarks 1s
degraded
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T SLEEP

We should choose T SLEEP = k or 2k on a k-core computer
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A modified work-stealing algorithm that enables a
program to release the under-utilized cores.

A coordinator to manage the workers. It enables a
program to grab and use the under-utilized cores
released by other programs.

We have implemented DWS, which achieves a
performance gain of up to 32.3% in the best cases
compared to traditional work-stealing schedulers.
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Thanks!

Questions?




