
DWS: Demand-aware Work-Stealing in
Multi-programmed Multi-core Architectures!

Quan Chen, Long Zheng, Minyi Guo

 Shanghai Jiao Tong University, China!

PMAM 2014
1

Outline!

•  Background
•  Problem & Motivation
•  Demand-aware Work-Stealing (DWS)
•  Evaluation
•  Conclusions!

2

Background!

!   Hardware: Multi-core/Many-core Architectures

!   Scenario: Multiple parallel programs!

3

P1 …

Pn …

Pi …

Background-parallel programs!

!   Traditional parallel programs
•  Hard to adjust the number of threads at runtime

!   Task-based parallel programs
•  Dynamic task scheduling!

4

Work-sharing!

5

Worker 1 Worker 2 Worker 3 Worker 4

Task
Task
Task
Task

Lock the central task pool when getting a task

Task

Lock Unlock

Central task pool

Lock Unlock

Work-stealing!

6

Thread 1 Thread 2 Thread 3 Thread 4

Task
Task

Task
Task
Task

Task
Task

Lock Unlock

Task

Task

Task

Task

Problem & Motivation!

!   Aggressive feature of work-stealing
•  On a k-core computer, k threads/workers are launched

!   Existing solutions
•  Time-sharing - ABP yielding mechanism
•  Space-sharing - Equal-partitioning!

7

Time-sharing!

!   ABP yielding mechanism
•  If a thread fails to steal a task, it goes to sleep!

8

C

Thread 1

Thread 2

Thread 3
Active Sleep

Cache

Space-sharing!

!   Equal-partitioning mechanism
!   If m programs co-run on a k-core computer,

each program is allocated k/m cores.!

9

P1 … Pm … Pi …

!   Start from Equal-partitioning
!   Dynamically balance cores at runtime

•  If pi cannot fully-utilized a core, it release the core
•  If pi has too many tasks, it tries to obtain more cores!

Demand-aware Work-Stealing (DWS)!

10 Runtime Arch. of DWS

Release Obtain

Stealing algorithm - (Release)!

!   A worker decides whether to release its core by itself!

11

If a worker fails too many times
(T_SLEEP) to steal a new task, it

goes to sleep

Coordinator - (Obtain)!

!   The coordinator decides whether to obtain more cores
•  If a program has too many queued tasks, it should try to

get some free cores!

12

How
Many? Which?

C1: The more queued tasks in a program, the more
cores should the program obtain

C2: A program can take its allocated cores back

C3: A program cannot obtain the busy cores

Coordinator - How Many?!

!   C1: The more queued tasks in a program, the
more cores should the program obtain!

13

Num of active workers! Na!

Num of queued tasks! Nb!

Num of free cores! Nf!

Num of released cores! Nr!

Num of cores expected! Nw!

How many:

Coordinator - Which?!

!   Nw <= Nf

!   Nf < Nw <= Nf+Nr (C2)

!   Nw > Nf+Nr (C3)!

14

Num of active workers! Na!

Num of queued tasks! Nb!

Num of free cores! Nf!

Num of released cores! Nr!

Num of cores expected! Nw!

•  Randomly select Nw free cores

•  Select Nf free cores + its (Nw-Nf) released core

•  Nf free cores+its Nr released cores

Evaluation platform!

!   A Dual-socket Quad-core computer with Hyper-
Threading Technology

!   Each socket is a Quad-Core Intel Xeon E5620!

15

Hardware & Configuration! Size/Version!

L1/L2 cache size (each core)! 256 KB/1MB!

L3 cache size (each socket)! 12 MB!

Main memory size! 32 GB!

Operation system! Linux 2.6.32-38!

Benchmarks!

16

Calculate execution time:

Performance of DWS!

17

DWS can significantly improve the performance of the
benchmarks

Effectiveness of the coordinator!

18

Without the coordinator, the performance of the benchmarks is
degraded

Impact of T_SLEEP!

19
We should choose T_SLEEP = k or 2k on a k-core computer

Contributions & conclusions!

•  A modified work-stealing algorithm that enables a
program to release the under-utilized cores.

•  A coordinator to manage the workers. It enables a
program to grab and use the under-utilized cores
released by other programs.

•  We have implemented DWS, which achieves a
performance gain of up to 32.3% in the best cases
compared to traditional work-stealing schedulers.!

20

Thanks!

Questions?!

