DWS: Demand-aware Work-Stealing in
Multi-programmed Multi-core Architectures

Quan Chen, Long Zheng, Minyi' Guo

Shanghai Jiao Tong University, €hina

PMAM 2014

X FEXArE Outline

= SHANGHAI JIAO TONG UNIVERSITY

* Background

* Problem & Motivation

* Demand-aware Work-Stealing (DWS)
 Evaluation

* Conclusions

3 €N Background

SHANGHAI JIAO TONG UNIVERSITY

Hardware: Multi-core/Many-core Architectures

Scenario: Multiple parallel programs

P SSS
P GG S
P58

SHANGHAI JIAO TONG UNIVERSITY

X #2445 Background-parallel programs

Traditional parallel programs
* Hard to adjust the number of threads at runtime

Task-based parallel programs
* Dynamic task scheduling

SEZSST

Work-sharing

OO OO

Work-stealing

' Eas to adjust the numbef of orkers

YEXAAYE Work-sharing

SHANGHAI JIAO TONG UNIVERSITY

Central task pool

00723 \athck

Lock the central task pool when getting a task

YFELAAE Work-stealing

SHANGHAI JIAO TONG UNIVERSITY

Task Task Task Task
Task Task Task
Task Task

Task
Task

@ Thread 2 Thread 3 Thread 4

YERALE Problem & Motivation

SHANGHAI JIAO TONG UNIVERSITY

* On a k-core computer, & threads/workers are launched

Existing solutions
* Time-sharing - ABP yielding mechanism
* Space-sharing - Equal-partitioning

— Time-sharing — — — » Space-sharing 7

X FLARS Time-sharing

SHANGHAI JIAO TONG UNIVERSITY

ABP yielding mechanism
* If a thread fails to steal a task, it goes to sleep

Active Sleep
Thread 3

[Thread 2 | . Unfair resource allocation i

Thread 1

@ Ii;‘ Poor data locality |

(Cache)

X FLARS Space-sharing

SHANGHAI JIAO TONG UNIVERSITY

Equal-partitioning mechanism

If m programs co-run on a k-core computer,
each program is allocated k/m cores.

II{ Fair but inefficient I
PSS S (RISESS) ERSESID
©-0-0 © ©® @

< k/mcores » <« kimcores » <« kimcores—»

X #XA&mand-aware Work-Stealing (DWS)

SHANGHAI JIAO TONG

Start from Equal-partitioning

Dynamically balance cores at runtime

* If p; cannot fully-utilized a core, it release the core
* If p; has too many tasks, it tries to obtain more cores

@ @ @ @ @ - @ o
allocation

< k/m cores ~ <« k/m cores » < k/m cores —» table

Runtime Arch. of DWS 10

X #1447 Stealing algorithm - (Release)

SHANGHAI JIAO TONG UNIVERSITY

Algorithm 1: Work-stealing algorithm in DWS
Input: w: current worker

1 int failed steals = O; // num of failed steals
2 while work is not done do
3 if w is free then
4 if its task pool is not empty then
5 w obtains a task ¢ from its own task pool ;
6 failed_steals = 0 ;
7 else
8 w randomly selects v as victim worker ;
9 if v has a non-empty task pool then
10 w steals t from v ;
11 failed_steals = 0 ; : .
12 else_ a worker fails too many times
13 failed_steals ++ ;
14 if failed_steals > T_SLEEP then SLEEP) to Steal a hew task |t
15 w goes to sleep ; —_ 2
16 w waits to be woken up ;
e J goes to sleep
18 end if
19 end if
20 if ¢t then
21 | w executes t ;
22 end if
23 end if

24 end while 11

YEidrs Coordinator - (Obtain)

SHANGHAI JIAO TONG UNIVERSITY

The coordinator decides whether to obtain more cores

« If a program has too many queued tasks, it should try to
get some free cores

C1: The more queued tasks in a program, the more
cores should the program obtain
|C2: A program can take its allocated cores back
|(_33: A program cannot obtain the busy cores
12

SHANGHAI JIAO TONG UNIVERSITY

r#XLLL Coordinator - How Many?

more cores should the program obtain

How many: N, =

No
N,

Num of active workers
Num of queued tasks
Num of free cores
Num of released cores

Num of cores expected

N
Nv
Ns
N
Nw

13

YEXALE Coordinator - Which?

SHANGHAI JIAO TONG UNIVERSITY

 Randomly select N, free cores

]Vf< Ny <= Nf+Nr (C2)
« Select Nrfree cores + its (N.-Ny) released core

Ny > Nr+N; (C3)
» Nrfree cores+its N, released cores
Num of active workers
Num of queued tasks
Num of free cores
Num of released cores

Num of cores expected

Na
Nb
Ns
N:
Nw

14

3 SENS: Evaluation platform

SHANGHAI JIAO TONG UNIVERSITY

® A Dual-socket Quad-core computer with Hyper-
Threading Technology

Each socket is a Quad-Core Intel Xeon E5620
Hardware & Configuration

L1/L2 cache size (each core) 256 KB/1MB

L3 cache size (each socket) 12 MB
Main memory size 32 GB

Operation system Linux 2.6.32-38

15

X FEXArE Benchmarks

SHANGHAI JIAO TONG UNIVERSITY

1D Name Description

p-1 FFT Fast Fourier Transform

p-2 PNN Polynomial Neural Network

p-3 Cholesky Cholesky decomposition

p-4 LU LU decomposition

p-5 GE Gaussian Elimination algorithm
p-6 Heat Five-point heat distribution

p-7 SOR 2D Successive Over-Relaxation
p-8 Mergesort Merge sort on 4E6 numbers

Calculate execution time:

- T - I e,

t t;
. i T, = &=L 2 T; = &=r=L 0
P7| G | G2 | G3 b i a 7 b

16

=i

YFEAALE Performance of DWS

SHANGHAI JIAO TONG UNIVERSITY

SN
o

-ABP1 ABP2 -EP1
E=—] DWS-1 - DWS-2 [Baseline-1 - Baseline-2

W
o
|

N
o
|

N
o

Execution time (s)

KRR AXHRRAXHRRRARIRHRARAKHRRARAKRARARXN]

N INNRRNNNNENNNNNRNNRRENNERENEEE

KX I I XXX XXNA]

m INNNNNNNNNNNNNNNNNNNNNNERENNNNN

INNNNNNNNENNNNRRRRNRRENN
POXCXXXXXIIHIHXHXXXNA]
LRI IIIIIIXXN]

(15 (16) @7) @8 (35) (36 47) @8

DWS can significantly improve the performance of the
benchmarks

17

X #X4£¥Effectiveness of the coordinator

SHANGHAI JIAO TONG UNIVERSITY

N
&)

DWS-NC-1) DWS-NC-2
I DWS-1 DWS-2

)
S

Execution time (s

o O

(15) (16) (17) (18) (25) (26) (27) (28)

Without the coordinator, the performance of the benchmarks 1s
degraded

18

YEXARY

SHANGHAI JIAO TONG UNIVERSITY

- RN N
o ()] o

Execution time (s)

0

Impact of T_SLEEP

—O— p-8 (Mergesort)| _
—m—p-1 (FFT)

0

16

32

48 64 80 96

| 1%2 | 1é8
T SLEEP

We should choose T SLEEP = k or 2k on a k-core computer

19

x#id2% Contributions & conclusions

SHANGHAI JIAO TONG UNIVERSITY

A modified work-stealing algorithm that enables a
program to release the under-utilized cores.

A coordinator to manage the workers. It enables a
program to grab and use the under-utilized cores
released by other programs.

We have implemented DWS, which achieves a
performance gain of up to 32.3% in the best cases
compared to traditional work-stealing schedulers.

20

Thanks!

Questions?

