Vectorizing Unstructured Mesh Computations for Many-core Architectures

István Z. Reguly, E. László, G. R. Mudalige, M. B. Giles University of Oxford Oxford e-Research Centre

Motivation

- Huge variety of hardware
- Old & New programming languages and abstractions
 - Do traditional methods have what it takes to be efficient on new hardware?
 - Are new ones getting accepted?
- Disparity between the way of programming and what the hardware can do

Bridging the gap

- Plethora of parallel programming languages, abstractions and execution models
 - Confusing boundaries, one language is usually only wellsuited for one target architecture
- Are compilers supposed to bridge the gap?
 - On simple, regular problems they do an adequate job
 - On complex, irregular ones not so much...
- Domain Specific Languages

Unstructured mesh computations

From the viewpoint of a "unit of work" - kernel

Unstructured mesh computations

- Irregular accesses
- Connectivity only known at run-time
- We want to parallelize execution
 - Multi-level parallelism
 - Deep memory hierarchies
- Data dependencies and race conditions

Vertex data

Execution

Take the following (oversimplified) example

for (int i =0; i < set_size; i++) {</pre>

q

r

p

How to map this to ...

- Parallel programming abstractions
 - Distributed memory, coarse-grained shared memory and fine-grained shared memory
- Hardware execution models
 - Cache utilization, coherency, cores, SIMD execution units, communication and synchronization mechanisms

Three levels of parallelism

CPU - coarse grained

- Using either distributed memory (MPI) or coarsegrained shared memory (OpenMP) is fairly easy
 - Have to handle data dependencies or data races at a high level as discussed
 - Each process/thread iterates over an execution set serially, good cache locality
- Can be handled with generic code
- Specialized code can enable more compiler optimisations

GPU - what the hardware will do for you

- Using the SIMT parallel programming model, the previous scheme can be easily expressed
 - Data reuse through cache or scratchpad memory
 - Colored updates using synchronisation
 - CUDA or OpenCL, easy to implement, simple, clean code
- Maps quite well to GPU hardware, hardware does all the gather and scatter for you
 - But hardware changes, new optimisations have to be implemented

Mapping to SIMT

U

CPU and GPU baseline

Non-linear 2D inviscid airfoil code - 720k cells, 1000 iterations

Dual socket Sandy Tesla K40 Bridge Xeon E5-2640 2880 CUDA cores 188 GFLOPS 1420 GFLOPS 65 GB/s 229 GB/s

CPU and **GPU** baseline

Bandwidth in GB/s and Compute in GFLOPS

	Kernel	pure MPI		CUDA			
		Time	BW	Comp	Time	BW	Comp
Direct —	 save_soln	0.99	46.55	2.9	0.20	230	14.4
Gather	 adt_calc	6.3	18.24	14.6	0.71	161.2	129.2
Gather & Scatter	 res_calc	6.58	56.72	31.87	2.8	133.4	74.95
	bres_calc	0.03	27.15	13.62	0.03	26.3	13.2
Direct —	 update	3.23	60.62	7.57	0.85	228	28.52

Dual socket Sandy Bridge Xeon E5-2640 2880 CUDA cores 188 GFLOPS 65 GB/s

Tesla K40 1420 GFLOPS 229 GB/s

Code generation

- This is all very nice, but is it generic?
- OP2 abstraction for unstructured grid computations


```
int nargs = 6;
op_arg args[6] = {arg0,arg1,arg2,arg3,arg4,arg5};
```

```
// initialise timers
double cpu_t1, cpu_t2, wall_t1, wall_t2;
op_timing_realloc(1);
op_timers_core(&cpu_t1, &wall_t1);
```

int exec_size = op_mpi_halo_exchanges(set, nargs, args);

```
for ( int n=0; n<exec_size; n++ ){
    if (n==set->core_size) {
        op_mpi_wait_all(nargs, args);
    }
    int map0idx = arg0.map_data[n * arg0.map->dim + 0];
    int map1idx = arg0.map_data[n * arg0.map->dim + 1];
    int map2idx = arg0.map_data[n * arg0.map->dim + 2];
    int map3idx = arg0.map_data[n * arg0.map->dim + 3];
```

```
adt_calc(
```

```
&((double*)arg0.data)[2 * map0idx],
&((double*)arg0.data)[2 * map1idx],
&((double*)arg0.data)[2 * map2idx],
&((double*)arg0.data)[2 * map3idx],
&((double*)arg4.data)[4 * n],
&((double*)arg5.data)[1 * n]);
```

}

}

```
// update kernel record
op_timers_core(&cpu_t2, &wall_t2);
OP_kernels[1].name = name;
OP_kernels[1].count += 1;
OP_kernels[1].time += wall_t2 - wall_t1;
```

Only depends on #of args

Static code

Setting up indices for indirect accesses (with possibility for reuse)

Indirect arguments, type double, dimensionality of 2

Direct arguments, type double, dimensionality of 4 and 1

Static code

Managing data for vectorization

Vertex data

Enabling vectorization

We have to spoon-feed the compiler

```
for (int i =0; i < set_size; i+=4) {
   double n1[2][4] ={{coords[2*cell2vertex[(i+0)*4+0]+0],
        coords[2*cell2vertex[(i+1)*4+0]+0],
        coords[2*cell2vertex[(i+2)*4+0]+0],
        coords[2*cell2vertex[(i+3)*4+0]+0]},
        {coords[2*cell2vertex[(i+0)*4+0]+1],
        coords[2*cell2vertex[(i+1)*4+0]+1],
        coords[2*cell2vertex[(i+1)*4+0]+1],
        coords[2*cell2vertex[(i+2)*4+0]+1],
        coords[2*cell2vertex[(i+3)*4+0]+1];
    };</pre>
```

```
#pragma simd
for (int j = 0; j < 4; j++){
    //inlined user kernel
    double dx1 = n1[0][j] - n2[0][j];
    double dy1 = n1[1][j] - n2[1][j];
    double dx2 = n3[0][j] - n4[0][j];
    double dy2 = n3[1][j] - n4[1][j];
    edge1[0][j]+=(dx+dy)*ce[0][j];
    edge2[0][j]+=(dx-dy)*ce[1][j];
    edge3[0][j]+=(dx+dy)*ce[2][j];
    edge3[0][j]+=(dx-dy)*ce[3][j];
}
//scatter data
deltas[cell2edge[(i+0)*4+0]]+=edge1[0][0];
```

```
deltas[cell2edge[(i+0)*4+0]]+=edge1[0][0];
deltas[cell2edge[(i+1)*4+0]]+=edge1[0][1];
deltas[cell2edge[(i+2)*4+0]]+=edge1[0][2];
deltas[cell2edge[(i+3)*4+0]]+=edge1[0][3];
```

. . .

Scatter

Gather

And even that doesn't work consistently...

Vector intrinsics

• Clearly, nobody wants to write such code:

```
adt = fabs(u*dy-v*dx) + c*sqrt(dx*dx+dy*dy);
```

adt =

_mm256_add_pd(_mm256_max_pd(_mm256_sub_pd(_mm256_mul_pd(u,dy),_mm256_mul_pd(v,dx)),_mm256_su b_pd(_mm256_mul_pd(v,dx),_mm256_mul_pd(u,dy))), mm256_mul_pd(c_mm256_sart_pd(_mm256_add_pd(_mm256_mul_pd(dx_dx)),_mm256_mul_pd(dv_dv)))));

_mm256_mul_pd(c,_mm256_sqrt_pd(_mm256_add_pd(_mm256_mul_pd(dx,dx),_mm256_mul_pd(dy,dy)))));

 Fortunately we can use C++ classes and operator overloading

Vector intrinsics

Using vector datatypes, the code looks simpler:

```
••••
```

}

```
//inlined user kernel
doublev dx1 = n1[0] - n2[0];
doublev dy1 = n1[1] - n2[1];
doublev dx2 = n3[0] - n4[0];
doublev dy2 = n3[1] - n4[1];
edge1[0]+=(dx+dy)*ce[0];
edge2[0]+=(dx-dy)*ce[1];
edge3[0]+=(dx+dy)*ce[2];
edge4[0]+=(dx-dy)*ce[3];
```

```
//scatter data
scatter(deltas,&cell2edge[i*4], 1, 4);
```

Although all the branching has to be replaced with select() instructions that can be overloaded

CPU vectorized performance

CPU2 DP

0

CPU1 SP CPU2 SP CPU1 DP CPU2 DP CPU2 DP CPU2 DP CPU2 DP CPU2 SP CPU1 DP CPU2 D

Double(Single) precision breakdowns

Kernel	720k c	ells	2.8M cells		
	Time	BW	Time	BW	
save_soln	1.01(0.28)	45(82)	4.1(2.0)	45(45)	
adt_calc	3.3(1.33)	34(44)	12.7(5.2)	37(46)	
res_calc	5.06(3.5)	73(59)	19.5(13.5)	76(62)	
update	3.33(1.5)	59(65)	14.6(7.0)	54(56)	

Comparison: non-vectorized CPU & GPU

Kernel	pure MPI			CUDA		
	Time	BW	Comp	Time	BW	Comp
save_soln	0.99	46.55	2.9	0.20	230	14.4
adt_calc	6.3	18.24	14.6	0.71	161.2	129.2
res_calc	6.58	56.72	31.87	2.8	133.4	74.95
bres_calc	0.03	27.15	13.62	0.03	26.3	13.2
update	3.23	60.62	7.57	0.85	228	28.52

Xeon Phi - MPI+OpenMP

Xeon Phi performance

Non-linear 2D inviscid airfoil code - 2.8M cells, 1000 iterations

Performance summary

Non-linear 2D inviscid airfoil code - 2.8M cells, 1000 iterations

Performance summary

Relative speedup over CPU 1 in double precision

Kernel	CPU 1	CPU 2	Xeon Phi	K40
save_soln	1.0	1.04	1.88	5.11
adt_calc	1.0	1.43	1.87	4.67
res_calc	1.0	1.33	0.81	1.79
update	1.0	1.03	1.67	4.49

Summary

- Based on high-level specifications and domain specific knowledge, it is possible to automate parallel execution
 - Map to different parallel programming languages, abstractions and execution models using code generation
- Vectorization for unstructured mesh computations is thus achievable, although far from ideal
 - OpenCL is "nice" but slow compiler is unable to bridge the gap
 - AVX is "ugly" but fast we do it instead of the compiler
- Constraints of the hardware are still important, especially the penalty due to serialization when incrementing indirect data

Thank you! Questions?