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Motivation
• Huge variety of hardware 

• Old & New programming 
languages and abstractions 

• Do traditional methods have 
what it takes to be efficient 
on new hardware? 

• Are new ones getting 
accepted? 

• Disparity between the way of 
programming and what the 
hardware can do

MPI, PGAS

OpenMP, 
pthreads,…

OpenCL, CUDA, Cilk, AVX, 
SSE, TBB, OpenACC, etc.

Blue Gene

CPU clusters Xeon Phi

GPU

CSP

SMT

SIMD



Bridging the gap
• Plethora of parallel programming languages, abstractions 

and execution models 

• Confusing boundaries, one language is usually only well-
suited for one target architecture 

• Are compilers supposed to bridge the gap? 

• On simple, regular problems they do an adequate job 

• On complex, irregular ones not so much… 

• Domain Specific Languages



Unstructured mesh 
computations

From the viewpoint of a “unit of work” - kernel 

• Direct & Indirect 

• Gather & Scatter

Compute
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• Irregular accesses 

• Connectivity only known at run-time 

• We want to parallelize execution 

• Multi-level parallelism 

• Deep memory hierarchies 

• Data dependencies and race conditions

Unstructured mesh 
computations



cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 cell 8

xy xy xy xy xy xy xy xy xy xy xy xy xy xy xy xy xy xy xy

Vertex data

u u u u u u u u u u u u u u u u u u u

Cell data
pqrs pqrs pqrs pqrs pqrs pqrs pqrs pqrs

Edge data



Execution
Take the following (oversimplified) example !!!!
for (int i =0; i < set_size; i++) { 
  double *n1 = &coords[2*cell2vertex[i*4+0]]; 
  double *n2 = &coords[2*cell2vertex[i*4+1]]; 
  double *n3 = &coords[2*cell2vertex[i*4+2]]; 
  double *n4 = &coords[2*cell2vertex[i*4+3]]; 
  double *ce = &celldata[4*i]; 
  double edge1[1],edge2[1],edge3[1],edge4[1]; 
  //inlined user kernel 
  double dx1 = n1[0] - n2[0]; 
  double dy1 = n1[1] - n2[1]; 
  double dx2 = n3[0] - n4[0]; 
  double dy2 = n3[1] - n4[1]; 
  edge1[0]+=(dx+dy)*ce[0]; 
  edge2[0]+=(dx-dy)*ce[1]; 
  edge3[0]+=(dx+dy)*ce[2]; 
  edge4[0]+=(dx-dy)*ce[3]; 
  //apply increments 
  deltas[cell2edge[i*4+0]]+=edge1[0]; 
  deltas[cell2edge[i*4+1]]+=edge2[0]; 
  deltas[cell2edge[i*4+2]]+=edge3[0]; 
  deltas[cell2edge[i*4+3]]+=edge4[0]; 
} 

} Indirect reads
Direct read

} Indirect increments
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How to map this to …
• Parallel programming abstractions 

• Distributed memory, coarse-grained shared 
memory and fine-grained shared memory 

• Hardware execution models 

• Cache utilization, coherency, cores, SIMD 
execution units, communication and 
synchronization mechanisms



Three levels of parallelism



CPU - coarse grained
• Using either distributed memory (MPI) or coarse-

grained shared memory (OpenMP) is fairly easy 

• Have to handle data dependencies or data races at 
a high level as discussed 

• Each process/thread iterates over an execution set 
serially, good cache locality 

• Can be handled with generic code 

• Specialized code can enable more compiler 
optimisations



GPU - what the hardware 
will do for you

• Using the SIMT parallel programming model, the previous 
scheme can be easily expressed 

• Data reuse through cache or scratchpad memory 

• Colored updates using synchronisation 

• CUDA or OpenCL, easy to implement, simple, clean 
code 

• Maps quite well to GPU hardware, hardware does all the 
gather and scatter for you 

• But hardware changes, new optimisations have to be 
implemented



Mapping to SIMT
__global__ void kernel_wrap(…) 
{ 
  int i = threadIdx.x + blockIdx.x*blockDim.x 
  double *n1 = &coords[2*cell2vertex[i*4+0]]; 
  double *n2 = &coords[2*cell2vertex[i*4+1]]; 
  double *n3 = &coords[2*cell2vertex[i*4+2]]; 
  double *n4 = &coords[2*cell2vertex[i*4+3]]; 
  double *ce = &celldata[4*i]; 
  double edge1[1],edge2[1],edge3[1],edge4[1]; 
  //inlined user kernel 
  double dx1 = n1[0] - n2[0]; 
  double dy1 = n1[1] - n2[1]; 
  double dx2 = n3[0] - n4[0]; 
  double dy2 = n3[1] - n4[1]; 
  edge1[0]+=(dx+dy)*ce[0]; 
  edge2[0]+=(dx-dy)*ce[1]; 
  edge3[0]+=(dx+dy)*ce[2]; 
  edge4[0]+=(dx-dy)*ce[3]; 
  //apply increments 
  for (int c = 0; ic < ncolors; c++) { 
    __syncthreads(); 
    if (c == mycolor) { 
      deltas[cell2edge[i*4+0]]+=edge1[0]; 
      deltas[cell2edge[i*4+1]]+=edge2[0]; 
      deltas[cell2edge[i*4+2]]+=edge3[0]; 
      deltas[cell2edge[i*4+3]]+=edge4[0]; 
    } 
  } 
}

} Indirect reads
Direct read

} Indirect increments
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CPU and GPU baseline
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Figure 3: Performance of old and updated backends

in double precision on the 720k cell mesh, including

execution of Fermi-optimized code on Fermi hardware

(C2070), Kepler hardware (K40), and Kepler-optimized

code on Kepler hardware (K40)

Table 4: Bandwidth (BW - GB/s) and computa-
tional (Comp - GFLOP/s) throughput of updated
but not vectorized backends on the Airfoil bench-
mark in double precision on the 720k cell mesh on
CPU 1 and the K40 GPU

Kernel pure MPI CUDA
Time BW Comp Time BW Comp

save soln 0.99 46.55 2.9 0.20 230 14.4
adt calc 6.3 18.24 14.6 0.71 161.2 129.2
res calc 6.58 56.72 31.87 2.8 133.4 74.95
bres calc 0.03 27.15 13.62 0.03 26.3 13.2
update 3.23 60.62 7.57 0.85 228 28.52

tions on the K40 card. Observe that the pure MPI backend
gained a significant speedup due to the enabling of com-
piler optimizations, while the OpenMP backend was sped
up only slightly as the code generated was simplified. The
most profound di↵erence however, can be observed when up-
dating the GPU backend; simply compiling and running the
Fermi optimized code on a Kepler-generation GPU hardly
increases performance despite the much higher theoretical
throughput of the hardware; this is due to di↵erent archi-
tectural changes from one generation to the next. Apply-
ing a new set of optimizations dramatically increases per-
formance, giving an almost 3⇥ speedup over the previous
generation GPU. Estimated bandwidth and FLOP values
are displayed for each kernel in Table 4 for the updated
backends when running the double precision version of Air-
foil on CPU 1. While the GPU achieves a high percentage
of streaming bandwidth, showing a good balance in perfor-
mance between the kernels, the CPU versions clearly show
a very low throughput for adt_calc.

6.3 OpenCL performance on CPUs
Due to a limitation on the tested Intel CPUs, neither

AMD’s nor Intel’s OpenCL 1.2 driver is currently able to
select - using the device fission feature - a subset of pro-
cessor cores to execute on a single NUMA socket. Since a
fully operational MPI+OpenCL backend is not yet available,
the presented benchmark is limited to single socket perfor-
mance comparisons. Scheduling threads to a single socket
is enforced by the numactl utility. Based on the first touch

Table 5: Implicit vectorization of user kernels by
Intel OpenCL.
User Kernel save soln adt calc res calc bres calc update

AVX – 4 – 4 –
IMCI 4 4 4 4 4

memory allocation policy in the Linux kernel, it is certain
that the master thread and the child threads - placed on
the same socket - get memory allocated to the same NUMA
memory region.
In the presented performance measurements the one-time

cost of run-time compilation is not counted. Only the time
spent on e↵ective computation and synchronisation is shown.
Figures 4 and 5 show that OpenCL execution time is close to
the plain OpenMP time, and somewhat better for the larger
problem size. As opposed to conventional auto-vectorization,
where segments of a code can be vectorized, OpenCL ei-
ther vectorizes a whole kernel or none of it. Even though
adt_calc and bres_calc kernels are vectorized, the overall
performance of the OpenCL implementation is not signifi-
cantly better.
The Intel O✏ine Compiler [2] has been used to test

whether kernels with AVX or IMCI instruction set have been
vectorized or not. Results are shown in Table 5. The ex-
tended capabilities of the IMCI ISA, including the gather
and scatter instructions, allow the compiler to vectorize more
complex code. The AVX instruction set is more restrictive
and although the compiler could produce vector code, it re-
fuses to do so if the heuristics predict worse performance.
Even though the Intel OpenCL compiler can handle some
branching in the control flow, optimization decisions may
override these.
The kernel level breakdown of OpenCL in Table 6 shows

that the largest di↵erence between the explicitly vectorized
OpenMP and implicitly vectorized OpenCL comes from the
adt_calc and res_calc kernels. Even though adt_calc is
vectorized by OpenCL, and is indeed faster than the non-
vectorized version shown in Table 4, the performance benefit
is much smaller compared to the explicitly vectorized ver-
sion.
Although OpenCL performance on the Xeon processors

is satisfying, compared to the non-vectorized OpenMP per-
formance, the Xeon Phi has major performance issues. It
is important to notice that the Phi gains more performance
as the problem size increases; for the 720k cell mesh the
speed di↵erence compared to the explicitly vectorized code
is significant. For the 2.8M problem the di↵erence is not as
significant and it is even better then the non-vectorized code.
Even though all the kernels are vectorized, the overall per-
formance is far from the expected. The assembly code pro-
duced by the OpenCL compiler didn’t have prefetch instruc-
tions inserted automatically. Although manual prefetching
was forced, it didn’t improve the performance. Moreover,
the Intel VTune profiler shows significant time spent in the
TBB Scheduler. These observations suggest that the over-
head of initializing and executing a kernel with the task level
parallelism available in TBB is very costly at the time of
writing.

6.4 Vector Intrinsics on CPUs
With the parallel programming abstractions and meth-

ods described above (MPI, OpenMP and OpenCL), the pro-
grammer does not have direct control over what gets vector-

Bandwidth in GB/s and Compute in GFLOPS

Dual socket Sandy 
Bridge Xeon E5-2640 

188 GFLOPS 
65 GB/s

Tesla K40 
2880 CUDA cores 

1420 GFLOPS 
229 GB/s

Direct

Direct

Gather
Gather & Scatter



Code generation
• This is all very nice, but is it generic? 

• OP2 abstraction for unstructured grid computations
Function name

Number of 
arguments

      op_par_loop(adt_calc,"adt_calc",cells, 
          op_arg_dat(p_x,   0,pcell, 2,"double",OP_READ ), 
          op_arg_dat(p_x,   1,pcell, 2,"double",OP_READ ), 
          op_arg_dat(p_x,   2,pcell, 2,"double",OP_READ ), 
          op_arg_dat(p_x,   3,pcell, 2,"double",OP_READ ), 
          op_arg_dat(p_q,  -1,OP_ID, 4,"double",OP_READ ), 
          op_arg_dat(p_res, 0,ecell, 1,”double”,OP_INC), 
          op_arg_dat(p_res, 1,ecell, 1,”double”,OP_INC), 
          op_arg_dat(p_res, 2,ecell, 1,”double”,OP_INC), 
          op_arg_dat(p_res, 3,ecell, 1,”double",OP_INC));

Argument 
type

Direct/indirect 
argument

Dataset 
dimensionality

Indirection 
property

Access 
type

{



void op_par_loop_adt_calc(char const *name, op_set set, 
                          op_arg arg0,op_arg arg1,op_arg arg2, 
                          op_arg arg3,op_arg arg4,op_arg arg5){ 
   
  int nargs = 6; 
  op_arg args[6] = {arg0,arg1,arg2,arg3,arg4,arg5}; 
   
  // initialise timers 
  double cpu_t1, cpu_t2, wall_t1, wall_t2; 
  op_timing_realloc(1); 
  op_timers_core(&cpu_t1, &wall_t1); 
!
  int exec_size = op_mpi_halo_exchanges(set, nargs, args); 
!
  for ( int n=0; n<exec_size; n++ ){ 
    if (n==set->core_size) { 
      op_mpi_wait_all(nargs, args); 
    } 
    int map0idx = arg0.map_data[n * arg0.map->dim + 0]; 
    int map1idx = arg0.map_data[n * arg0.map->dim + 1]; 
    int map2idx = arg0.map_data[n * arg0.map->dim + 2]; 
    int map3idx = arg0.map_data[n * arg0.map->dim + 3]; 
     
    adt_calc( 
             &((double*)arg0.data)[2 * map0idx], 
             &((double*)arg0.data)[2 * map1idx], 
             &((double*)arg0.data)[2 * map2idx], 
             &((double*)arg0.data)[2 * map3idx], 
             &((double*)arg4.data)[4 * n], 
             &((double*)arg5.data)[1 * n]); 
  } 
   
     // update kernel record 
    op_timers_core(&cpu_t2, &wall_t2); 
    OP_kernels[1].name      = name; 
    OP_kernels[1].count    += 1; 
    OP_kernels[1].time     += wall_t2 - wall_t1; 
  }

Only depends on #of args

Static code

Static code

Setting up indices for indirect 
accesses (with possibility for reuse)

Indirect arguments, type 
double, dimensionality of 2

Direct arguments, type double, 
dimensionality of 4 and 1



Managing data for 
vectorization

vectorized cell 1-4

xy xy xy xy xy xy xy xy xy xy xy xy xy xy xy xy xy xy xy

Vertex data

Cell data
p p p p

q q q q

r r r r

s s s s

x x x x y y y yx x x x y y y yx x x x y y y yx x x x y y y y

u u u u u u u u u u u u u u u u u u u

cell1 cell2 cell3 cell4
x x x xx x x xx x x xu u u u

[0]
[1]
[2]
[3]

Edge data



Enabling vectorization
We have to spoon-feed the compiler !
for (int i =0; i < set_size; i+=4) { 
  double n1[2][4] ={{coords[2*cell2vertex[(i+0)*4+0]+0], 
                     coords[2*cell2vertex[(i+1)*4+0]+0], 
                     coords[2*cell2vertex[(i+2)*4+0]+0], 
                     coords[2*cell2vertex[(i+3)*4+0]+0]}, 
                    {coords[2*cell2vertex[(i+0)*4+0]+1], 
                     coords[2*cell2vertex[(i+1)*4+0]+1], 
                     coords[2*cell2vertex[(i+2)*4+0]+1], 
                     coords[2*cell2vertex[(i+3)*4+0]+1]}}; 
  ... 
  #pragma simd 
  for (int j = 0; j < 4; j++){ 
    //inlined user kernel 
    double dx1 = n1[0][j] - n2[0][j]; 
    double dy1 = n1[1][j] - n2[1][j]; 
    double dx2 = n3[0][j] - n4[0][j]; 
    double dy2 = n3[1][j] - n4[1][j]; 
    edge1[0][j]+=(dx+dy)*ce[0][j]; 
    edge2[0][j]+=(dx-dy)*ce[1][j]; 
    edge3[0][j]+=(dx+dy)*ce[2][j]; 
    edge4[0][j]+=(dx-dy)*ce[3][j]; 
  } 
  //scatter data 
  deltas[cell2edge[(i+0)*4+0]]+=edge1[0][0]; 
  deltas[cell2edge[(i+1)*4+0]]+=edge1[0][1]; 
  deltas[cell2edge[(i+2)*4+0]]+=edge1[0][2]; 
  deltas[cell2edge[(i+3)*4+0]]+=edge1[0][3]; 
  ... 
} 

And even that doesn’t work consistently…

} Gather

} Scatter



Vector intrinsics
  adt  = fabs(u*dy-v*dx) + c*sqrt(dx*dx+dy*dy); 
  adt  = 
_mm256_add_pd(_mm256_max_pd(_mm256_sub_pd(_mm256_mul_pd(u,dy),_mm256_mul_pd(v,dx)),_mm256_su
b_pd(_mm256_mul_pd(v,dx),_mm256_mul_pd(u,dy))), 
_mm256_mul_pd(c,_mm256_sqrt_pd(_mm256_add_pd(_mm256_mul_pd(dx,dx),_mm256_mul_pd(dy,dy)))));

• Clearly, nobody wants to write such code:

• Fortunately we can use C++ classes and operator 
overloading

class F64vec4 
{ 
protected: 
    __m256d vec; 
public: 
    F64vec4() {} 
    friend F64vec4 operator *(const F64vec4 &a, const F64vec4 &b) { return _mm256_mul_pd(a,b); } 
    friend F64vec4 sqrt(const F64vec4 &a) { return _mm256_sqrt_pd(a); } 
    friend F64vec4 min(const F64vec4 &a, const F64vec4 &b) 
                { return _mm256_min_pd(a,b); } 
} 
static inline float min_horizontal(const F32vec8 &a) 
{ 
    F32vec8 temp = _mm256_min_ps(a, _mm256_permute_ps(a, 0xee)); 
    temp = _mm256_min_ps(temp, _mm256_movehdup_ps(temp)); 
    return _mm_cvtss_f32(_mm_min_ss(_mm256_castps256_ps128(temp), _mm256_extractf128_ps(temp,1))); 
}



Vector intrinsics
Using vector datatypes, the code looks simpler: !
for (int i =0; i < set_size; i+=4) { 
  doublev n1[2] ={doublev(coords+0, &cell2vertex[i*4], 2, 4), 
                  doublev(coords+1, &cell2vertex[i*4], 2, 4)}; 
  ... 
!
  //inlined user kernel 
  doublev dx1 = n1[0] - n2[0]; 
  doublev dy1 = n1[1] - n2[1]; 
  doublev dx2 = n3[0] - n4[0]; 
  doublev dy2 = n3[1] - n4[1]; 
  edge1[0]+=(dx+dy)*ce[0]; 
  edge2[0]+=(dx-dy)*ce[1]; 
  edge3[0]+=(dx+dy)*ce[2]; 
  edge4[0]+=(dx-dy)*ce[3]; 
!
  //scatter data 
  scatter(deltas,&cell2edge[i*4], 1, 4); 
  ... 
} 

Although all the branching has to be replaced with  
select() instructions that can be overloaded



CPU vectorized 
performance

Dual socket Sandy Bridge Xeon 
E5-2640 188 GFLOPS 65 GB/s
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CPU vectorized 
performance

Table 6: Timing and bandwidth breakdowns for the
Airfoil benchmarks in double(single) precision using
the OpenCL backend on a single socket of CPU 1,
with problem sizes halved

Kernel 720k/2 cells 2.8M/2 cells
Time BW Time BW

save soln 1.13(0.43) 41(53) 4.15(2.18) 44(41)
adt calc 5.00(3.61) 23(16) 18.27(13.23) 26(18)
res calc 8.74(7.92) 42(26) 31.43(29.91) 47(28)
update 3.76(1.68) 52(58) 14.65(7.34) 53(53)
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Figure 4: Vectorization with explicit vector intrinsics

and OpenCL, performance results of the Airfoil bench-

mark in single (SP) and double (DP) precision on CPU

1 and 2 using the 720k cell mesh

ized, when using vector intrinsics, vectorization is explicit.
Figures 4 and 5 show performance results comparing the
vectorized and the non-vectorized code on CPU 1 and CPU
2 in both single and double precision on a mesh with either
720k or 2.8M cells. The pure MPI versions are consistently
faster than the MPI+OpenMP versions, because at this scale
the overhead of MPI communications is almost completely
hidden, while OpenMP has some overhead due to threading
[10] and the colored execution.

Observe that the improvement in single precision is 67-
97%, but in double precision it is only 15-37%; this is due
to the fact that twice as much data has to be transferred
in double precision, but the length of the vector registers is
the same, therefore only half the number of floating point
operations can be carried out at the same time. Another
important observation is that comparing the runtimes in
single and double precision, we only see a 30-40% di↵er-
ence in the baseline (recall that without vectorization the
computational throughput is the same in single and dou-
ble precision), while the vectorized version shows an almost
perfect 80-110% speedup when going from double to single
precision.

Table 7 shows per-loop breakdowns of the vectorized Air-
foil benchmark on CPU 1, both single and double preci-
sion, and both problem sizes. Comparing double precision
bandwidth values with that of Table 4, it is clear that the
two direct kernels (save_soln and update) were already
bandwidth-limited, therefore their performance remains the
same, however, adt_calc almost doubled in performance,
and res_calc also sped up by 30%, providing further ev-
idence that these kernels were, to some extent, bound by
compute throughput. Switching to single precision should
e↵ectively half the runtime of di↵erent loops, because half
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Figure 5: Vectorization with explicit vector intrinsics

and OpenCL, performance results of the Airfoil bench-

mark in single (SP) and double (DP) precision on CPU

1 and 2 using the 2.8M cell mesh

Table 7: Timing and bandwidth breakdowns for the
Airfoil benchmarks in double(single) precision using
the vectorized pure MPI backend on CPU 1

Kernel 720k cells 2.8M cells
Time BW Time BW

save soln 1.01(0.28) 45(82) 4.1(2.0) 45(45)
adt calc 3.3(1.33) 34(44) 12.7(5.2) 37(46)
res calc 5.06(3.5) 73(59) 19.5(13.5) 76(62)
update 3.33(1.5) 59(65) 14.6(7.0) 54(56)

the amount of data is moved, which matches the timings of
direct loops on the large mesh, however, superlinear scaling
can be observed on the small mesh on save_soln; this is
due to the fact that this kernel follows update, and modifies
a subset of the same data, some of which remains in the
cache. On the large mesh this artefact disappears. The ker-
nel adt_calc gains further speedups (2.4 times) by moving
to single precision, due to the higher computational through-
put, which hints at this kernel still being compute-limited
in double precision on CPU 1 - on CPU 2, where theoret-
ical computational throughput is 40% higher, the speedup
is near the expected, 1.9 times. The kernel res_calc is af-
fected by a high number of gather and serialized scatter op-
erations, moving to single precision only improves runtime
by 30%, which hints at this kernel being limited by control
and caching behavior.

6.5 Vector Intrinsics on the Xeon Phi
One of the main arguments in favor of the Xeon Phi is that

applications running on the CPU are trivially ported to the
Phi. While this is true to some extent as far as compilation
and execution goes, performance portability is a much more
important issue. On the higher level, the balance of MPI
and/or OpenMP is usually slightly di↵erent, and on a lower
level vectorization is needed more than ever to achieve high
performance. As long as one depends on compiler auto-
vectorization this is automatic to some extent, but as we
have discussed, unstructured gird algorithms do not auto-
vectorize well. Therefore, the use of intrinsics is necessary,
and since the instruction set is not backwards-compatible,
they have to be changed. Our approach of wrapping vectors
in C++ classes, using constructors and operator overloading
to hide vector intrinsic instructions permits us to generate
the same code for both CPU and Phi vectorization, and then
through compiler preprocessor macros select classes that are

Double(Single) precision breakdowns
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Figure 3: Performance of old and updated backends

in double precision on the 720k cell mesh, including

execution of Fermi-optimized code on Fermi hardware

(C2070), Kepler hardware (K40), and Kepler-optimized

code on Kepler hardware (K40)

Table 4: Bandwidth (BW - GB/s) and computa-
tional (Comp - GFLOP/s) throughput of updated
but not vectorized backends on the Airfoil bench-
mark in double precision on the 720k cell mesh on
CPU 1 and the K40 GPU

Kernel pure MPI CUDA
Time BW Comp Time BW Comp

save soln 0.99 46.55 2.9 0.20 230 14.4
adt calc 6.3 18.24 14.6 0.71 161.2 129.2
res calc 6.58 56.72 31.87 2.8 133.4 74.95
bres calc 0.03 27.15 13.62 0.03 26.3 13.2
update 3.23 60.62 7.57 0.85 228 28.52

tions on the K40 card. Observe that the pure MPI backend
gained a significant speedup due to the enabling of com-
piler optimizations, while the OpenMP backend was sped
up only slightly as the code generated was simplified. The
most profound di↵erence however, can be observed when up-
dating the GPU backend; simply compiling and running the
Fermi optimized code on a Kepler-generation GPU hardly
increases performance despite the much higher theoretical
throughput of the hardware; this is due to di↵erent archi-
tectural changes from one generation to the next. Apply-
ing a new set of optimizations dramatically increases per-
formance, giving an almost 3⇥ speedup over the previous
generation GPU. Estimated bandwidth and FLOP values
are displayed for each kernel in Table 4 for the updated
backends when running the double precision version of Air-
foil on CPU 1. While the GPU achieves a high percentage
of streaming bandwidth, showing a good balance in perfor-
mance between the kernels, the CPU versions clearly show
a very low throughput for adt_calc.

6.3 OpenCL performance on CPUs
Due to a limitation on the tested Intel CPUs, neither

AMD’s nor Intel’s OpenCL 1.2 driver is currently able to
select - using the device fission feature - a subset of pro-
cessor cores to execute on a single NUMA socket. Since a
fully operational MPI+OpenCL backend is not yet available,
the presented benchmark is limited to single socket perfor-
mance comparisons. Scheduling threads to a single socket
is enforced by the numactl utility. Based on the first touch

Table 5: Implicit vectorization of user kernels by
Intel OpenCL.
User Kernel save soln adt calc res calc bres calc update

AVX – 4 – 4 –
IMCI 4 4 4 4 4

memory allocation policy in the Linux kernel, it is certain
that the master thread and the child threads - placed on
the same socket - get memory allocated to the same NUMA
memory region.
In the presented performance measurements the one-time

cost of run-time compilation is not counted. Only the time
spent on e↵ective computation and synchronisation is shown.
Figures 4 and 5 show that OpenCL execution time is close to
the plain OpenMP time, and somewhat better for the larger
problem size. As opposed to conventional auto-vectorization,
where segments of a code can be vectorized, OpenCL ei-
ther vectorizes a whole kernel or none of it. Even though
adt_calc and bres_calc kernels are vectorized, the overall
performance of the OpenCL implementation is not signifi-
cantly better.
The Intel O✏ine Compiler [2] has been used to test

whether kernels with AVX or IMCI instruction set have been
vectorized or not. Results are shown in Table 5. The ex-
tended capabilities of the IMCI ISA, including the gather
and scatter instructions, allow the compiler to vectorize more
complex code. The AVX instruction set is more restrictive
and although the compiler could produce vector code, it re-
fuses to do so if the heuristics predict worse performance.
Even though the Intel OpenCL compiler can handle some
branching in the control flow, optimization decisions may
override these.
The kernel level breakdown of OpenCL in Table 6 shows

that the largest di↵erence between the explicitly vectorized
OpenMP and implicitly vectorized OpenCL comes from the
adt_calc and res_calc kernels. Even though adt_calc is
vectorized by OpenCL, and is indeed faster than the non-
vectorized version shown in Table 4, the performance benefit
is much smaller compared to the explicitly vectorized ver-
sion.
Although OpenCL performance on the Xeon processors

is satisfying, compared to the non-vectorized OpenMP per-
formance, the Xeon Phi has major performance issues. It
is important to notice that the Phi gains more performance
as the problem size increases; for the 720k cell mesh the
speed di↵erence compared to the explicitly vectorized code
is significant. For the 2.8M problem the di↵erence is not as
significant and it is even better then the non-vectorized code.
Even though all the kernels are vectorized, the overall per-
formance is far from the expected. The assembly code pro-
duced by the OpenCL compiler didn’t have prefetch instruc-
tions inserted automatically. Although manual prefetching
was forced, it didn’t improve the performance. Moreover,
the Intel VTune profiler shows significant time spent in the
TBB Scheduler. These observations suggest that the over-
head of initializing and executing a kernel with the task level
parallelism available in TBB is very costly at the time of
writing.

6.4 Vector Intrinsics on CPUs
With the parallel programming abstractions and meth-

ods described above (MPI, OpenMP and OpenCL), the pro-
grammer does not have direct control over what gets vector-

Comparison: non-vectorized CPU & GPU
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Figure 7: Performance of the Xeon Phi on the 2.8M cell

mesh

appropriate for the hardware being used. Through this, we
can exploit new features in the Phi, such as gather instruc-
tions, vector reduction, etc., and integrate it seamlessly into
the OP2 toolchain. We had to override the malloc, free

and realloc functions to ensure allocations are aligned to
a 512 bit boundary (which does not happen automatically),
so the aligned load instructions could be used when appro-
priate.

To compile for the Phi, we used the -O3 -mmic -fno-

alias -mcmodel=medium -inline-forceinline flags, and ex-
ecuted all applications natively on the device, o✏oad mode
is currently not supported, because it requires extensive
changes to the backend in order to manage halo exchanges.
Tests included pure MPI execution and di↵erent combina-
tions of MPI processes and OpenMP threads, setting
I MPI PIN DOMAIN = auto. Due to the nature of
the OP2 OpenMP parallelization approach, there is no data
reuse between threads, which is likely why we observed very
little (<3%) performance di↵erences between the settings of
KMP AFFINITY , therefore we only report results with
the compact setting. In all MPI+OpenMP hybrid tests, the
total number of OpenMP threads is 240 (60 cores, 4 threads
each), as the number of MPI processes vary, so does the
number of OpenMP threads per process to give a total of
240.

Figure 6 shows performance figures on the Xeon Phi, solv-
ing the 720k cell mesh. Similar to the CPU, vectorization
gives a significant performance boost, but the di↵erence is
even higher, 2-2.2 times in single and 1.7-1.82 times in dou-
ble precision. Unlike in the case of the CPU, the hybrid
MPI+OpenMP gives better performance than the pure MPI
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Figure 8: Performance on the Xeon Phi when varying

OpenMP block size and the MPI+OpenMP combination

on the 2.8M cell mesh in double precision

Table 8: Timing and bandwidth breakdowns for the
Airfoil benchmarks in double(single) precision using
the vectorized MPI+OpenMP backend on the Xeon
Phi

Kernel 720k cells 2.8M cells
Time BW Time BW

save soln 0.58(0.25) 80(90) 2.18(1.18) 84(76)
adt calc 2.0(1.16) 57(50) 6.83(3.33) 68(72)
res calc 7.52(5.47) 45(38) 24.1(17.4) 61(48)
update 2.55(1.93) 77(50) 8.77(4.69) 89(83)

version - which is due to the MPI messaging overhead be-
coming significant when the number of processes goes be-
yond 120. Quadrupling the problem size to 2.8M cells shown
an even bigger gap between the non-vectorized and the vec-
torized version, as shown in Figure 7, while the pure MPI
version speeds up by 2.5 in single and 1.95 in double preci-
sion, for MPI+OpenMP the di↵erence is 4.8 and 3.9 times,
with the non-vectorized version performing unreasonably
slow, the reasons for which are currently not well under-
stood. Comparing the runtimes of the small and the large
mesh however reveals that the Xeon Phi is actually quite
sensitive to being fully utilized; while the problem size is
four times bigger, it only takes 2.97 times more time in sin-
gle and 3.25 times more time in double precision to finish
the execution for the vectorized MPI+OpenMP version. As
a comparison, these figures are almost exactly 4 times (or
slightly higher due to caching e↵ects) on the CPU, and 3.85
times on the GPU.
An important factor a↵ecting the performance is the hy-

brid MPI+OpenMP setup - how many MPI processes and
how many OpenMP threads each. This has non-trivial ef-
fects on the cost of communications, shared cache space,
NUMA e↵ects and others. In addition to this, the size of
mini-partitions or blocks formed and assigned to threads by
OpenMP can be modified, trading o↵ the number of blocks
(load balancing) with block size (cache locality). Figure 8
shows the e↵ects of varying these parameters on the per-
formance, observe that as the number of MPI processes in-
creases, a larger block size is preferred, up to a point where
the load imbalance is significant.
Per-loop breakdowns for the Xeon Phi are shown in Ta-

ble 8 for the best combination of MPI+OpenMP in each
case. Performance is generally slightly better compared to
CPU 1 (Table 7). adt_calc does not show signs of being
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appropriate for the hardware being used. Through this, we
can exploit new features in the Phi, such as gather instruc-
tions, vector reduction, etc., and integrate it seamlessly into
the OP2 toolchain. We had to override the malloc, free

and realloc functions to ensure allocations are aligned to
a 512 bit boundary (which does not happen automatically),
so the aligned load instructions could be used when appro-
priate.

To compile for the Phi, we used the -O3 -mmic -fno-

alias -mcmodel=medium -inline-forceinline flags, and ex-
ecuted all applications natively on the device, o✏oad mode
is currently not supported, because it requires extensive
changes to the backend in order to manage halo exchanges.
Tests included pure MPI execution and di↵erent combina-
tions of MPI processes and OpenMP threads, setting
I MPI PIN DOMAIN = auto. Due to the nature of
the OP2 OpenMP parallelization approach, there is no data
reuse between threads, which is likely why we observed very
little (<3%) performance di↵erences between the settings of
KMP AFFINITY , therefore we only report results with
the compact setting. In all MPI+OpenMP hybrid tests, the
total number of OpenMP threads is 240 (60 cores, 4 threads
each), as the number of MPI processes vary, so does the
number of OpenMP threads per process to give a total of
240.

Figure 6 shows performance figures on the Xeon Phi, solv-
ing the 720k cell mesh. Similar to the CPU, vectorization
gives a significant performance boost, but the di↵erence is
even higher, 2-2.2 times in single and 1.7-1.82 times in dou-
ble precision. Unlike in the case of the CPU, the hybrid
MPI+OpenMP gives better performance than the pure MPI
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OpenMP block size and the MPI+OpenMP combination

on the 2.8M cell mesh in double precision

Table 8: Timing and bandwidth breakdowns for the
Airfoil benchmarks in double(single) precision using
the vectorized MPI+OpenMP backend on the Xeon
Phi

Kernel 720k cells 2.8M cells
Time BW Time BW

save soln 0.58(0.25) 80(90) 2.18(1.18) 84(76)
adt calc 2.0(1.16) 57(50) 6.83(3.33) 68(72)
res calc 7.52(5.47) 45(38) 24.1(17.4) 61(48)
update 2.55(1.93) 77(50) 8.77(4.69) 89(83)

version - which is due to the MPI messaging overhead be-
coming significant when the number of processes goes be-
yond 120. Quadrupling the problem size to 2.8M cells shown
an even bigger gap between the non-vectorized and the vec-
torized version, as shown in Figure 7, while the pure MPI
version speeds up by 2.5 in single and 1.95 in double preci-
sion, for MPI+OpenMP the di↵erence is 4.8 and 3.9 times,
with the non-vectorized version performing unreasonably
slow, the reasons for which are currently not well under-
stood. Comparing the runtimes of the small and the large
mesh however reveals that the Xeon Phi is actually quite
sensitive to being fully utilized; while the problem size is
four times bigger, it only takes 2.97 times more time in sin-
gle and 3.25 times more time in double precision to finish
the execution for the vectorized MPI+OpenMP version. As
a comparison, these figures are almost exactly 4 times (or
slightly higher due to caching e↵ects) on the CPU, and 3.85
times on the GPU.
An important factor a↵ecting the performance is the hy-

brid MPI+OpenMP setup - how many MPI processes and
how many OpenMP threads each. This has non-trivial ef-
fects on the cost of communications, shared cache space,
NUMA e↵ects and others. In addition to this, the size of
mini-partitions or blocks formed and assigned to threads by
OpenMP can be modified, trading o↵ the number of blocks
(load balancing) with block size (cache locality). Figure 8
shows the e↵ects of varying these parameters on the per-
formance, observe that as the number of MPI processes in-
creases, a larger block size is preferred, up to a point where
the load imbalance is significant.
Per-loop breakdowns for the Xeon Phi are shown in Ta-

ble 8 for the best combination of MPI+OpenMP in each
case. Performance is generally slightly better compared to
CPU 1 (Table 7). adt_calc does not show signs of being

Table 6: Timing and bandwidth breakdowns for the
Airfoil benchmarks in double(single) precision using
the OpenCL backend on a single socket of CPU 1,
with problem sizes halved

Kernel 720k/2 cells 2.8M/2 cells
Time BW Time BW

save soln 1.13(0.43) 41(53) 4.15(2.18) 44(41)
adt calc 5.00(3.61) 23(16) 18.27(13.23) 26(18)
res calc 8.74(7.92) 42(26) 31.43(29.91) 47(28)
update 3.76(1.68) 52(58) 14.65(7.34) 53(53)
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Figure 4: Vectorization with explicit vector intrinsics

and OpenCL, performance results of the Airfoil bench-

mark in single (SP) and double (DP) precision on CPU

1 and 2 using the 720k cell mesh

ized, when using vector intrinsics, vectorization is explicit.
Figures 4 and 5 show performance results comparing the
vectorized and the non-vectorized code on CPU 1 and CPU
2 in both single and double precision on a mesh with either
720k or 2.8M cells. The pure MPI versions are consistently
faster than the MPI+OpenMP versions, because at this scale
the overhead of MPI communications is almost completely
hidden, while OpenMP has some overhead due to threading
[10] and the colored execution.

Observe that the improvement in single precision is 67-
97%, but in double precision it is only 15-37%; this is due
to the fact that twice as much data has to be transferred
in double precision, but the length of the vector registers is
the same, therefore only half the number of floating point
operations can be carried out at the same time. Another
important observation is that comparing the runtimes in
single and double precision, we only see a 30-40% di↵er-
ence in the baseline (recall that without vectorization the
computational throughput is the same in single and dou-
ble precision), while the vectorized version shows an almost
perfect 80-110% speedup when going from double to single
precision.

Table 7 shows per-loop breakdowns of the vectorized Air-
foil benchmark on CPU 1, both single and double preci-
sion, and both problem sizes. Comparing double precision
bandwidth values with that of Table 4, it is clear that the
two direct kernels (save_soln and update) were already
bandwidth-limited, therefore their performance remains the
same, however, adt_calc almost doubled in performance,
and res_calc also sped up by 30%, providing further ev-
idence that these kernels were, to some extent, bound by
compute throughput. Switching to single precision should
e↵ectively half the runtime of di↵erent loops, because half
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Figure 5: Vectorization with explicit vector intrinsics

and OpenCL, performance results of the Airfoil bench-

mark in single (SP) and double (DP) precision on CPU

1 and 2 using the 2.8M cell mesh

Table 7: Timing and bandwidth breakdowns for the
Airfoil benchmarks in double(single) precision using
the vectorized pure MPI backend on CPU 1

Kernel 720k cells 2.8M cells
Time BW Time BW

save soln 1.01(0.28) 45(82) 4.1(2.0) 45(45)
adt calc 3.3(1.33) 34(44) 12.7(5.2) 37(46)
res calc 5.06(3.5) 73(59) 19.5(13.5) 76(62)
update 3.33(1.5) 59(65) 14.6(7.0) 54(56)

the amount of data is moved, which matches the timings of
direct loops on the large mesh, however, superlinear scaling
can be observed on the small mesh on save_soln; this is
due to the fact that this kernel follows update, and modifies
a subset of the same data, some of which remains in the
cache. On the large mesh this artefact disappears. The ker-
nel adt_calc gains further speedups (2.4 times) by moving
to single precision, due to the higher computational through-
put, which hints at this kernel still being compute-limited
in double precision on CPU 1 - on CPU 2, where theoret-
ical computational throughput is 40% higher, the speedup
is near the expected, 1.9 times. The kernel res_calc is af-
fected by a high number of gather and serialized scatter op-
erations, moving to single precision only improves runtime
by 30%, which hints at this kernel being limited by control
and caching behavior.

6.5 Vector Intrinsics on the Xeon Phi
One of the main arguments in favor of the Xeon Phi is that

applications running on the CPU are trivially ported to the
Phi. While this is true to some extent as far as compilation
and execution goes, performance portability is a much more
important issue. On the higher level, the balance of MPI
and/or OpenMP is usually slightly di↵erent, and on a lower
level vectorization is needed more than ever to achieve high
performance. As long as one depends on compiler auto-
vectorization this is automatic to some extent, but as we
have discussed, unstructured gird algorithms do not auto-
vectorize well. Therefore, the use of intrinsics is necessary,
and since the instruction set is not backwards-compatible,
they have to be changed. Our approach of wrapping vectors
in C++ classes, using constructors and operator overloading
to hide vector intrinsic instructions permits us to generate
the same code for both CPU and Phi vectorization, and then
through compiler preprocessor macros select classes that are

Double(Single) precision breakdowns

For reference, on the CPU:
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Figure 9: Comparison of execution times of the Airfoil

benchmark on the 2.8M cell mesh on di↵erent hardware

compute-limited, but the performance penalty from gather
operations and serialized scatter operations in res_calc is
more severe, making this loop significantly slower than on
the CPU. An important factor influencing runtime is the
time spent in MPI communications, either sending/receiv-
ing halo data in res_calc or performing a global reduction
in update to compute the residual. Both of these operations
result in implicit synchronization; the time spent actually
transferring data is negligible compared to the time spent
waiting for data to arrive due to di↵erent processes getting
slightly out of sync and then waiting for each other to catch
up at a synchronization point. On the smaller problem this
takes up to 30% of total runtime, but is reduced to 13%
on the larger problem, whereas on the CPU this is only 7%
and 4% respectively. This points to load balancing issues,
explaining some of the performance di↵erences between the
small and the large mesh.

6.6 Performance overview
Having analysed the performance of di↵erent platforms,

we have exposed a number of bottlenecks that a↵ect perfor-
mance of di↵erent loops. We have seen that direct loops are
bandwidth-bound on all hardware regardless of using vector-
ization or not. The adt_calc loop is shown to be compute
limited (due to the low throughput of sqrt operations) when
vectorization is not utilized, and remains so on the slower
CPU, but becomes bandwidth bound on CPU 2, the Xeon
Phi and the GPU. Finally, res_calc is generally limited by
gather and the serialized scatter operations on all hardware.
While the CPU and the GPU are largely una↵ected by load
balancing issues, as shown by minimal performance di↵er-
ences between the small and the large problem, the Xeon
Phi requires the larger problem to run e�ciently.

Figure 9 shows performance results on all platforms on the
2.8M mesh in both single and double precision. The perfor-
mance of the Xeon Phi is consistently somewhere between
the faster and the slower CPU - while simple direct kernels
do run faster than on either CPUs, res_calc is significantly
slower, pulling the total runtime up. For the CPUs and the
GPU the performance di↵erences are related to the di↵er-
ences in bandwidth; 13-18% between the two CPUs (with
16% bandwidth di↵erence) and the K40 is 2.1-2.4 times
faster than CPU 2, but has almost three times the band-
width.

Relative performance of di↵erent loops compared to CPU
1 are displayed in Table 9 and show how well di↵erent ar-

Table 9: Relative timing breakdowns for di↵erent
loops of the Airfoil benchmark in double precision
on the 2.8M cell mesh on di↵erent hardware

Kernel CPU 1 CPU 2 Xeon Phi K40
save soln 1.0 1.04 1.88 5.11
adt calc 1.0 1.43 1.87 4.67
res calc 1.0 1.33 0.81 1.79
update 1.0 1.03 1.67 4.49

chitectures handle the di↵erent degrees of irregularity in
memory accesses that are present in these loops. Direct
loops, such as update and save_soln have regular memory
accesses, therefore performance follows the available band-
width. adt_calc indirectly gathers and directly writes, it
utilizes caches e�ciently, performance improvements are in
line with the improvements on direct kernels (except be-
tween CPU 1 and 2, due to the limited throughput of sqrt).
The kernel with the most irregular memory accesses - res_calc
- su↵ers from serialization; the longer the vector units are,
the more severe the performance degradation: the improve-
ment on the Xeon Phi is 2.3 times less than that of a direct
loop, and on the GPU 2.8 times. While in absolute terms
this still results in the GPU outperforming the CPU, an
application with even more irregular, scatter-gather kernels
would see less overall benefit from the use of accelerators.

7. CONCLUSIONS
In this paper we have started by presenting a study of

parallel programming abstractions and how the OP2 ab-
straction for unstructured grids can map onto them. By
utilizing all levels of parallelism, ranging from distributed
memory using MPI, through shared memory multithreading
using OpenMP, to either SIMT using CUDA and OpenCL
or SIMD using explicit vector intrinsics, we have shown how
OP2 can map execution to this multi-level parallel setting.
Through supporting OpenCL and vector intrinsics we aimed
to enable vectorized execution on modern Intel CPUs and
the Xeon Phi. One of the main questions was whether a
SIMT program can be e�ciently compiled to SIMD machine
code through Intel’s support for the OpenCL language. We
have shown that while OpenCL is adequately portable, at
the time of writing the driver and the runtime are not very
e�cient - this is expected to improve with time and with
the introduction of new instruction sets. When compared
to the simple (non-vectorized) OpenMP execution, runtime
is only slightly better; even though some degree of vector-
ization is carried out, there is a large overhead coming from
the runtime system.
A code generation and a backend system was set up in

OP2 to support the use of vector registers and intrinsics.
While this approach is the most involved amongst all parallel
programming approaches supported in OP2, it does improve
CPU performance significantly; speedups of 1.7-2.0 in single
and 1.15-1.4 in double precision are observed. We show that
by applying vectorization, the performance is pushed very
close to the practical limits of the hardware, usually bound
by bandwidth to DRAM, but in some cases control or low-
throughput arithmetics.
We have introduced support for the Intel Xeon Phi as

well, and confirmed that vectorization is even more impor-
tant than in the case of the CPUs, with speedups of 2-2.2
in single and 1.7-1.82 in double precision as a result of ap-

Relative speedup over CPU 1 in double precision



Summary
• Based on high-level specifications and domain specific 

knowledge, it is possible to automate parallel execution 
• Map to different parallel programming languages, abstractions 

and execution models using code generation 
• Vectorization for unstructured mesh computations is thus 

achievable, although far from ideal 
• OpenCL is “nice” but slow - compiler is unable to bridge the gap 
• AVX is “ugly” but fast - we do it instead of the compiler 

• Constraints of the hardware are still important, especially the 
penalty due to serialization when incrementing indirect data

Thank you! Questions?


