
Palirria:
Accurate On-line Parallelism Estimation

for Adaptive Work-Stealing

Georgios Varisteas, Mats Brorsson

PMAM, February 2014

 KTH
 Royal Institute of Technology

2

Motivation

● Increasing number of cores per die
– Worrisome power budget

– Unequipped OS resource management

Intel i7 AMD Phenom II Intel Xeon Phi

3

Motivation: Scheduling

● Keep the system utilized just enough to lower
the power budget
– Conservative core allotment

● Allot cores so that application performance is
maximized
– Liberal core allotment

4

Dynamic Multiprogramming

● Adapt allotment size to actual application
processing requirements

– Each application must provide knowledge
on its exposed parallelism

– The OS can intelligently partition available
resources

5

Summary

● Palirria
– Method for estimating a task-based workload's

concurrency
● Accurate, lightweight, online, no training

– Built upon a variation to traditional work-stealing
● Deterministic Victim Selection (DVS) replaces victim

selection in any work-stealing scheduler
➔ Good performance with less worker threads for

workloads of irregular parallelism

6

Task-centric programming models

● Expose independent computations,
executable in parallel

● Adapt easily
– Logical, not bound to hardware

main
Spawn

Spawn

task

task

Sync

Sync

main

7

Work Stealing

● Pre created pool of worker threads
● Local task queue per worker thread

● Workers place spawned tasks in their queue
● If worker idle:

1.Steals from its own task-queue

2.Steals from a remote task-queue (victim)

● Victim selection: find a non-empty remote queue
– Traditionally employs some randomness

8

From Estimation to Adaptation

● Estimate a workload's parallelism
– Metric for quantifying parallelism

● Decide adequate allotment size
– Conditions for requesting change

9

Parallelism Estimation: Metrics

● Traditional black box approaches
➔ Measure cycles or other perf. counters
✗ Estimate based on past behavior
✗ Hardware dependent

● Could we exploit the scheduling?
➔ Parallelism currency: task-queue size
✔ Estimate based on future processing needs
✔ Hardware agnostic

10

Parallelism Estimation: Decision

● Maybe add more workers
– Over-utilized allotment

– Non empty task queues

● Probably need less workers
– Under-utilized allotment

– Empty task-queues

11

Parallelism Estimation: Issues

● Threshold: What queue size should decide
over-utilization?

● Overhead: How many workers should qualify
this condition?

● Balance: What if some workers are over- and
others under- utilized?

● Random victim selection hinders estimation

12

Scheduling Support
for Parallelism Estimation

● Must normalize work discovery latency
– Predictable distribution of tasks among workers

● Must infer global status from some workers
– Uniform distribution of tasks among workers

13

DVS: Deterministic Victim Selection

● Completely non-random victim selection

➔ Uniformly distributes tasks to all workers
➔ Reduces worst latency for task discovery
➔ Maintains performance

Paper: G. Varisteas, M. Brorsson. DVS: Deterministic Victim Selection to
Improve Performance in Work-Stealing Schedulers. MULTIPROG 2014, Vienna

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139400

14

DVS: Worker Classification

● Model available workers as a virtual mesh grid
● Classify workers

based on location
– X: vertically &

horizontally from
the source

– Z: at maximum
distance from
the source

– F: what remains

15

Palirria: Decision Policy

● Under-utilized: decrease
– All workers in Z

have empty task-queue

● Over-utilized: increase
– All workers in X

have more than L tasks in
their task-queue

● Balanced: no change
– If otherwise

16

Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer
victims

17

Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer
victims w

i

18

Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer
victims w

i

Outer victims of w
i

19

Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer
victims w

i

Outer victims of w
i

20

Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer
victims w

i

Outer victims of w
i

L > 3

21

Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer
victims

● Oi: workers that have wi
as their primary victim

w
i

Outer victims of w
i

L > 3

22

Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer
victims

● Oi: workers that have wi
as their primary victim

● L tunes tolerance

w
i

Outer victims of w
i

L
i
 > 3

23

Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer
victims

● Oi: workers that have wi as
their primary victim

● L = |Oi| + 1

● L is calculated when
constructing the victim-set

w
i

Outer victims of w
i

L
i
 > 3

24

ASTEAL: prominent related work

● Metric: cycles spent on wasteful actions
– Failed steal attempts

● Samples the cycle counter of all workers

25

Palirria Evaluation

● All implementations using the same WOOL
scheduler

● Linux on a 48-core Opteron Numa system

26

Accuracy

● Dynamically changed allotment size over time
● WOOL: best fixed size execution time

27

Accuracy: irregular workloads

28

Accuracy: regular workloads

29

Wastefulness

● Percentage of the avg per worker
execution time spent:
– idling

– on failed steal attempts

 n: fixed n-workers

AS: Asteal adaptive

PA: Palirria adaptive

%

30

Wastefulness: irregular workloads

31

Wastefulness: regular workloads

32

Conclusions

● Non-random workload distribution techniques
– Are efficient

– Enable accurate estimation of parallelism

● Task-queue size
– Quantifies future parallelism

– Is hardware agnostic

33

Summary

● Palirria
– Method for estimating a task-based workload's

concurrency
● Accurate, lightweight, online, no training

– Built upon a variation to traditional work-stealing
● Deterministic Victim Selection (DVS) replaces victim

selection in any work-stealing scheduler
➔ Good performance with less worker threads for

workloads of irregular parallelism

34

Thank you

35

Dynamic Resource Allocation

● The operating system knows resource
availability

● The application runtime knows resource
requirements

36

Two Level Scheduling Scheme

37

Flow of Tasks

Parallel program
sequence of parallel sections

One parallel section

38

Flow of Tasks

main Spawn

Spawn

Spawn

Spawn

Spawn

task task

task task

task task

Spawn

39

Task Scheduling Issues

● Adaptation of allotment size
– Dynamically estimate actual parallelism
➔ Predictable distribution of tasks

● Uniform distribution
– Available tasks equally distributed
➔ Controllable distribution of tasks

40

Work-stealing

● Victim selection
– Random

● Uncontrollable distribution

– Semi-random (leap-frogging)
● Unpredictable distribution

– Non-random?
● Controllable and predictable distribution
● Can it be as fast?

41

DVS: Deterministic Victim Selection

42

DVS: Deterministic Victim Selection

43

DVS: Workers' Useful Time

44

DVS: First successful steal latency

45

DVS: Execution time

46

DVS: Execution time

47

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

