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Motivation

● Increasing number of cores per die
– Worrisome power budget

– Unequipped OS resource management

Intel i7 AMD Phenom II Intel Xeon Phi
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Motivation: Scheduling

● Keep the system utilized just enough to lower 
the power budget
– Conservative core allotment

● Allot cores so that application performance is 
maximized
– Liberal core allotment
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Dynamic Multiprogramming

● Adapt allotment size to actual application 
processing requirements

– Each application must provide knowledge 
on its exposed parallelism

– The OS can intelligently partition available 
resources
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Summary

● Palirria
– Method for estimating a task-based workload's 

concurrency
● Accurate, lightweight, online, no training

– Built upon a variation to traditional work-stealing
● Deterministic Victim Selection (DVS) replaces victim 

selection in any work-stealing scheduler
➔ Good performance with less worker threads for 

workloads of irregular parallelism
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Task-centric programming models

● Expose independent computations, 
executable in parallel

● Adapt easily
– Logical, not bound to hardware

main
Spawn

Spawn

task

task

Sync

Sync

main
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Work Stealing

● Pre created pool of worker threads
● Local task queue per worker thread

● Workers place spawned tasks in their queue
● If worker idle:

1.Steals from its own task-queue

2.Steals from a remote task-queue (victim)

● Victim selection: find a non-empty remote queue
– Traditionally employs some randomness
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From Estimation to Adaptation

● Estimate a workload's parallelism
– Metric for quantifying parallelism

● Decide adequate allotment size
– Conditions for requesting change
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Parallelism Estimation: Metrics

● Traditional black box approaches
➔ Measure cycles or other perf. counters
✗  Estimate based on past behavior
✗  Hardware dependent

● Could we exploit the scheduling?
➔ Parallelism currency: task-queue size
✔ Estimate based on future processing needs
✔ Hardware agnostic
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Parallelism Estimation: Decision

● Maybe add more workers
– Over-utilized allotment

– Non empty task queues

● Probably need less workers
– Under-utilized allotment

– Empty task-queues
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Parallelism Estimation: Issues

● Threshold: What queue size should decide 
over-utilization?

● Overhead: How many workers should qualify 
this condition?

● Balance: What if some workers are over- and 
others under- utilized?

● Random victim selection hinders estimation
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Scheduling Support
for Parallelism Estimation

● Must normalize work discovery latency
– Predictable distribution of tasks among workers

● Must infer global status from some workers
– Uniform distribution of tasks among workers
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DVS: Deterministic Victim Selection

● Completely non-random victim selection

➔ Uniformly distributes tasks to all workers
➔ Reduces worst latency for task discovery
➔ Maintains performance

Paper: G. Varisteas, M. Brorsson. DVS: Deterministic Victim Selection to 
Improve Performance in Work-Stealing Schedulers. MULTIPROG 2014, Vienna

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139400
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DVS: Worker Classification

● Model available workers as a virtual mesh grid
● Classify workers

based on location
– X: vertically & 

horizontally from 
the source

– Z: at maximum 
distance from 
the source

– F: what remains
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Palirria: Decision Policy

● Under-utilized: decrease
– All workers in Z

have empty task-queue

● Over-utilized: increase
– All workers in X

have more than L tasks in 
their task-queue

● Balanced: no change
– If otherwise
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Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer 
victims
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Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer 
victims w

i
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Palirria: Over-utilization condition
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Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer 
victims

● Oi: workers that have wi 
as their primary victim

w
i

Outer victims of w
i

L > 3
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Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer 
victims

● Oi: workers that have wi 
as their primary victim

● L tunes tolerance

w
i

Outer victims of w
i

L
i
 > 3
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Palirria: Over-utilization condition

● Li > |Oi|

– |Oi|: Number of Outer 
victims

● Oi: workers that have wi as 
their primary victim

● L = |Oi| + 1

● L is calculated when 
constructing the victim-set

w
i

Outer victims of w
i

L
i
 > 3
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ASTEAL: prominent related work

● Metric: cycles spent on wasteful actions
– Failed steal attempts

● Samples the cycle counter of all workers
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Palirria Evaluation

● All implementations using the same WOOL 
scheduler

● Linux on a 48-core Opteron Numa system
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Accuracy

● Dynamically changed allotment size over time
● WOOL: best fixed size execution time
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Accuracy: irregular workloads
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Accuracy: regular workloads
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Wastefulness

● Percentage of the avg per worker
execution time spent:
– idling

– on failed steal attempts

   n: fixed n-workers

AS: Asteal adaptive

PA: Palirria adaptive

%
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Wastefulness: irregular workloads
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Wastefulness: regular workloads
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Conclusions

● Non-random workload distribution techniques
– Are efficient

– Enable accurate estimation of parallelism

● Task-queue size 
– Quantifies future parallelism

– Is hardware agnostic
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Summary

● Palirria
– Method for estimating a task-based workload's 

concurrency
● Accurate, lightweight, online, no training

– Built upon a variation to traditional work-stealing
● Deterministic Victim Selection (DVS) replaces victim 

selection in any work-stealing scheduler
➔ Good performance with less worker threads for 

workloads of irregular parallelism
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Thank you
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Dynamic Resource Allocation

● The operating system knows resource 
availability

● The application runtime knows resource 
requirements
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Two Level Scheduling Scheme
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Flow of Tasks

Parallel program
sequence of parallel sections

One parallel section
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Flow of Tasks

main Spawn

Spawn

Spawn

Spawn

Spawn

task task

task task

task task

Spawn
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Task Scheduling Issues

● Adaptation of allotment size
– Dynamically estimate actual parallelism
➔ Predictable distribution of tasks

● Uniform distribution
– Available tasks equally distributed
➔ Controllable distribution of tasks
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Work-stealing

● Victim selection
– Random

● Uncontrollable  distribution

– Semi-random (leap-frogging)
● Unpredictable distribution

– Non-random?
● Controllable and predictable distribution
● Can it be as fast?
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DVS: Deterministic Victim Selection
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DVS: Deterministic Victim Selection
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DVS: Workers' Useful Time
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DVS: First successful steal latency
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DVS: Execution time
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DVS: Execution time
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