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L Postgraduate Symposium 2015

Introduce self, say something like “My presentation is about our model of
how the brain develops a category hierarchy.” Adjust based on previous
presentations

1. Plenty of computational models exist which are able to classify and
categorize objects

2. These models, however, don't quite explain how people actually
develop these category representations, so that was our goal going
into this

3. In cognitive psychology, the prevailing idea is that we develop a
hierarchy of categories throughout our lives. This hierarchy is split
into three levels.
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L Hierarchical Categorization

1. The basic-level is, essentially, what you and | refer to when
discussing an object. What are you sitting in right now? A chair.
What is in front of you? A desk. What do you drive? Maybe a car,
or a motorcycle. Those are all basic-level categories.

2. The basic-level provides a very cognitively efficient representation of
objects. Things in the same basic-level category share many
similarities and have very few differences.

3. These categories emerge because category members share frequent
co-occurrences of properties. The prototypical dog has four legs,
fur, a tail, etc. These features aren't randomly distributed, so we
pick up on ones that frequently appear together and develop
categories from them.

4. The categories are also defined functionally. You sit on a chair but
you don’t necessarily sit on furniture.

m Basic-level
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= Basic level
= Superordinte evel

(Liu et a1 2001)

L Hierarchical Categorization

1. Above the basic level we have the superordinate level which holds
categories like furniture or vehicle. At this level, categories contain a
lot of intra-category differences, both with properties and
functionality

2. For example, a car and a boat are both vehicles, but they have a
huge number of differences, ranging from shape, to size, to
operation and beyond.

3. Also, superordinate-level categories actually vary culture to culture.
For example, our two superordinate categories of animals and plants
are separated into three categories for certain Australian aborigines:
biological, food, and totemic (each human is thought to have a
spiritual connection or a kinship with another physical being, such
as an animal or plant, often called a spirit-being or totem. )

Hierarchical Categorization

m Basic-level
m Superordinate-level (Liu et al., 2001)
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L Hierarchical Categorization

1. On the opposite end of the spectrum, below the basic-level, lies
subordinate categories, such as sedan, dentist’s chair, etc. They are
defined, in part, by what makes them different from the prototypical
member of their basic-level category. A pug is a dog which is short
and has a wrinkly face.

2. Functionally, what you are able to do with a member of a
subordinate-level category isn't much different than what you could m Subordinate-level
do with other members of its basic-level category. For example,
what you can do with a recliner is not much different than what you
can do with an office chair.

3. Finally, subordinate-level categories are also defined by the subtle
correlations of their features. These are the correlations that are
essentially overwhelmed by the stronger ones which define their
basic-level category.

m Basic-level
m Superordinate-level (Liu et al., 2001)
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L Hierarchical Categorization
1. I'll say this for emphasis. The key take-away here is that basic-level

categories emerge from strong correlations of features. That being
the case... (next slide)

Hierarchical Categorization

Basic-level categories emerge from strong correlations of
features (Rosch et al., 1976).
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L Hierarchical Categorization

1. (say it) how do we learn the subtle correlations of subordinate-level
categories? If these subtle correlations are overwhelmed by the
stronger ones which make up the basic-level category, then... (next
slide)

Hierarchical Categorization

m How do we learn the subtle correlations of
subordinate-level categories?
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L Hierarchical Categorization

1. We must offer another explanation for the emergence of
subordinate-level categories

Hierarchical Categorization

m How do we learn the subtle correlations of
subordinate-level categories?

Corollary

Learning subordinate-level categories requires a different
mechanism than the one used for the basic-level.
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L Hierarchical Categorization

1. To that end, we developed the Dominant Property Assembly
Network, or DPAN for short. DPAN is a neural network model
which receives a series of input vectors representing token objects
and learns both basic-level and subordinate-level categorical
representations of the data.

Hierarchical Categorization

m How do we learn the subtle correlations of
subordinate-level categories?

Corollary

Learning subordinate-level categories requires a different
mechanism than the one used for the basic-level.

Based on this information, we've developed the Dominant
Property Assembly Network (DPAN) to model the acquisition of
basic and subordinate-level categories.
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I—Input Data

1. The input data we work with is laid out as such. We use a bit
vector to represent a token object such that each bit represents an
abstract, arbitrary feature of that object. For example, one bit could
mean ‘“short legs” or “squished nose” or something. The main idea
is that each vector represents one of eight different cat or dog
breeds based on the combination of features. Every dog breed has
bits 0 through 9 active, every cat breed has bits 6 through 15 active,
with the overlap representing features shared by both dogs and cats.
After that we have a series of bits representing the different breeds,
where two bits indicate features specific to that breed. Finally, at
the end, we have a set of 5 random idiosyncratic properties which
are simply unique, completely uncorrelated, random features.

Input Data

15

23

31

HEEEEN

Dog

Shared

Cat

Dog Breed

Cat Breed

Figure: Layout of the input items

Idiosyncratic
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I—Sample Input: Pug

1. This is an example of an input vector representing pug. As you can
see, the dog features are all active, the cat features are not, and
there are two bits active which represent “pug-like” features, unique
to this breed.

Sample Input: Pug

Dog

6 9

Shared | Cat

15

Dog Breed

23

Cat Breed

31

Idiosyncratic
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L—Sample Input: Tabby
1. And this is an example of a tabby vector. Again, notice the cat

properties are active, dog properties are inactive, and the two
“tabby features” are active.

Sample Input: Tabby

Dog

6 9

Shared | Cat

15

Dog Breed

23

Cat Breed

31

Idiosyncratic
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L-The Dominant Property Assembly Network -
Overview

1. This is the architecture of DPAN. Starting from the bottom, the
rich property complex holds the raw input vector. Above that, the
dominant property assembly provides a sort of “property workspace”
by holding a volatile copy of the rich property complex. This plays a
very important role when learning subordinate-level categories,
which | will discuss shortly. Next is a series of synaptic weights
which connect the DPA to the localist property assembly. In the
localist property assembly, each unit encodes an internal
representation of the network’s learned categories.

The Dominant Property Assembly Network - Overview

Localist Property Assembly

‘ [ D:g | ] ca | [Pug] [Tabby ‘ Dominant Property Assembly
‘ I Dog | ca | [ Pug ] [ Tabby ] ‘ Rich Property Complex

Figure: DPAN is organized into three layers. The rich property complex
(RPC), the dominant property assembly (DPA) and the localist
property assembly (LPA)
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1. DPAN's learning is accomplished using O'Reilly and Munakata’s
Conditional Principal Component Analysis, or CPCA, algorithm.
During training, an input vector is read into the rich property
complex. It is then copied into the dominant property assembly.
The network calculates the activity of the units in the localist
property assembly, chooses the one with the highest output, and
selects it as the winner. It then updates the weights from the
winning unit to the DPA

Conditional Principal Component Analysis

Localist Property Assembly

Dominant Property Assembly

Cat | [Pug | [ Tabby | ‘ Rich Property Complex

Figure: CPCA (O'Reilly & Munakata, 2000) provides the core learning
mechanism for DPAN
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L—Conditional Principal Component Analysis
1. These are the important equations used by the CPCA learning

algorithm in DPAN. The activity of each unit is the weighted sum of
the input vector.

Conditional Principal Component Analysis
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L—Conditional Principal Component Analysis

1. The weights of the winning unit are updated using the hebbian
learning rule equation 2, where alpha is the learning rate, y is the
unit's output, and x is the input. Essentially, this rule dictates that
if the unit is active and the input is on, the weight grows stronger.
If the unit is active and the input is off, the connection weakens. It
also enforces a floor and ceiling on the value of the weights, in our

case 0 and 1 respectively. If the unit is not active, nothing happens.

Conditional Principal Component Analysis

[
@

Awyj = ajyj(x; — wij)
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L Conditional Principal Component Analysis ere

1. Oreilly and munakata provide a derivation proving that the value of
any given weight is just the probability that the unit's output is one
given that the input is 1. Thus, CPCA is able to represent
correlations in input data.

2. Recall that basic-level categories are developed by observing the
strong correlations of features, but we need another mechanism to
learn the subtle correlations which are overwhelmed by the strong
ones. This being the case, cpca in-and-of-itself is not sufficient to
learn subordinate-level categories. To provide a mechanism which
learns subordinate-level categories, DPAN utilizes Inhibition of
Return, or IOR.

Conditional Principal Component Analysis

[
@
@

Awyj = ajyj(x; — wij)

wi = Ply; = 1] = 1)
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I—Inhibition of Return u.

Localist Property Assembly

IOR allows DPAN to investigate the differences between a token object
and its basic-level category in order to learn their more subtle correlations.
To illustrate this, I'll walk through the steps the network takes during
training. At this state, there is an input vector for “pug” sitting in both
the RPC and the DPA. This network has already seen several inputs, so it
already has a unit which encodes the basic-level category “dog.”

[ [ ca ] [l | Dominant Propery Assembly

I [ BB | R Proveny Complex

Figure: Inhibition of return is the mechanism by which DPAN is able to
learn the subtle correlations of subordinate-level categories
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I—Inhibition of Return

The activity of each unit is calculated and a winner is selected, shown
here in red. Since the unit for “dog” most closely represents the given
input, that is selected to be the winning unit.

Inhibition of Return

Localist Property Assembly

‘ Dominant Property Assembly

IS A Bl EEE | RichProvery Compiex
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L Inhibition of Return

Next, the weights from the DPA to the “dog” unit are updated. Again,
everything up to and including this point are all part of the standard
CPCA algorithm.

Inhibition of Return

Localist Property Assembly

‘ Dominant Property Assembly

| S E EE [ | o roery Complex
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I—Inhibition of Return

Now the network begins the IOR steps. The value of the winning unit's
weight is copied into the DPA. That is, the DPA now contains the
network’s internal representation of the basic-level “dog” category.

Localist Property Assembly

A
PN

Dominant Property Assembly

| S E EE [ | o roery Complex
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I—Inhibition of Return

In order to investigate the difference between the basic-level category and
the input object, the DPA is subtracted from the RPC. That is, the
network'’s basic-level category is subtracted from the observed input
object. What's leftover are the subtle correlations which are not fully
represented in the network’'s basic-level category. In this case, it would be
the “pug-like” features. Since all pugs are dogs and share the same
dog-like features, those are wiped-out during this property-level inhibition.

Inhibition of Return

Localist Property Assembly

‘ Dominant Property Assembly

IS A Bl EEE | RichProvery Compiex
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I—Inhibition of Return

Now that the DPA basically only contains the interesting “pug-like”
features, the activity is recalculated and a new winner is selected. This is
the second inhibition operation: the network does not allow the same
unit to win twice, since doing so would obviously just have the basic-level
category win again.

Inhibition of Return

Localist Property Assembly

‘ Dominant Property Assembly

IS A Bl EEE | RichProvery Compiex
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I—Inhibition of Return

WiIth a new winner selected that best represents the pug-like features in
the DPA, the network next copies the RPC back into the DPA. This is
because the winning unit needs to learn ALL of the features of the input
object, not just the subtle ones.

Inhibition of Return

Localist Property Assembly

‘ Dominant Property Assembly

IS A Bl EEE | RichProvery Compiex
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I—Inhibition of Return

Finally, the weights of the new winner are updated. So what we have here
is a winning unit which really likes these pug features, but then updates
its weights based on the both the pug features as well as the dog features.

Inhibition of Return

Localist Property Assembly

‘ Dominant Property Assembly

IS A Bl EEE | RichProvery Compiex
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L Results

1. Up next we have the actual results of a DPAN execution. The
network was presented with 5000 input vectors with a uniform
probability of being a dog breed, either pug, spaniel, beagle, or
corgi, or a cat breed, either tabby, maine coon, siamese, or persian.

Results

Figure:

Weights

Execution after 200 training items



2015-08-24

A neural network model of hierarchical category
development

L Results

1. In these examples, I'm showing a heat map of the weight matrix.
Each column vector represents one unit in the LPA.

Results

Figure:

Weights

Execution after 200 training items
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L Results

1. In the first phase of training, the network forms basic-level
categories. When presented with one of the dog breeds, the network
will select the unit representing dog and update the weights
accordingly. This is analogous to a person seeing, say, a pug and
saying “That is a dog.”

Results

Figure:

Weights

Execution after 200 training items
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L Results

In the next phase of training, the basic-level categories have been
solidified and the network begins to use its IOR operation to learn
subordinate-level categories. For most of the subordinate-level categories,
the basic-level unit still wins first, then the inhibiton operation allows the
subordiante-level unit to win next. This phase of training is analogous to
a person seeing a pug and saying “That dog is a pug.”

Results

Figure

Weights

. Execution after 1600 training items
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In the third phase of training, the units have settled and all
subordinate-level categories have at least one representative localist unit.
When presented with a token object, the winning unit is that of the
subordinate-level category, effectively altering the network’s basic-level.
This last phase is analogous to a person seeing a pug and saying “That is
a pug.” This phenomenon of altering the basic-level is observed in adult
experts. For example, a layman is more likely to call a pug a dog, while a
dog breeder would call it a pug straight away.

Results

Weights

Figure: Execution after 5 epochs (25000 training items total)
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Figure: Execution with I0R dissbled sfer 100 pachs

Finally, we ran an experiment where we completely disabled the IOR
operation in an effort to illustrate how crucial it is. As expected, the
network was only able to learn basic-level categories for the token
objects. Without the IOR operation, the subtle correlations that define
the subordinate-level categories are swallowed up by the stronger ones
that define the basic-level.

Results

Weights

Figure: Execution with IOR disabled after 100 epochs
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L Future Work

1. The next steps for us are to actually apply DPAN to real-world
image data. The input we have used so far has just been
experimental, abstract toy data. With the proof of concept out of
the way, we would like to embed it into a computational vision
system to train on actual data.

Future Work

m Apply DPAN to real-world image data
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L Future Work

1. We also would like to investigate how DPAN handles properties, and
whether or not they can coexist within the same network. Recall
that we brought up the sentences “The dog is a pug” and “The
pug”. In these sentences the word “pug” can act as either a subject
or a predicate, but the same cannot be said for basic properties such
as “brown” or “fluffy.” We would like to investigate the possibility
of encoding these properties as individual units within the same
system, so that we would have one unit which represents “pug” and
another unit which represents “brown” all in the same network.

Future Work

m Apply DPAN to real-world image data

m Investigate how DPAN may handle non-categorical properties
(e.g. brown or fluffy)
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L Additional Components of DPAN's Learning
Mechanism

If there is time, it is useful to discuss some of components of DPAN that
allow it to work so effectively. Each unit has an individual learning rate
which decreases based on its gradient of weight change. This prevents
units which have “settled” from overlearning. It's a useful metric for
measuring how far along training is. If a unit has a level weight change
gradient, it basically has learned a category, which means inhibition of
return can safely begin.

Additional Components of DPAN's Learning Mechanism

m Each unit has an individual learning rate
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L Additional Components of DPAN's Learning
Mechanism

If there is time, it is useful to discuss some of components of DPAN that
allow it to work so effectively. Each unit has an individual learning rate
which decreases based on its gradient of weight change. This prevents
units which have “settled” from overlearning. It's a useful metric for
measuring how far along training is. If a unit has a level weight change
gradient, it basically has learned a category, which means inhibition of
return can safely begin.

Additional Components of DPAN's Learning Mechanism

m Each unit has an individual learning rate

m The learning rates and the IOR starting condition are
dependent on each unit's gradient of weight change
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L Additional Components of DPAN's Learning
Mechanism

If there is time, it is useful to discuss some of components of DPAN that
allow it to work so effectively. Each unit has an individual learning rate
which decreases based on its gradient of weight change. This prevents
units which have “settled” from overlearning. It's a useful metric for
measuring how far along training is. If a unit has a level weight change
gradient, it basically has learned a category, which means inhibition of
return can safely begin.

Additional Components of DPAN's Learning Mechanism

m Each unit has an individual learning rate
m The learning rates and the IOR starting condition are
dependent on each unit's gradient of weight change

m When the change gradient has leveled off, the unit has reach
stability and the learning rate is reduced to zero
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L Additional Components of DPAN's Learning
Mechanism

If there is time, it is useful to discuss some of components of DPAN that
allow it to work so effectively. Each unit has an individual learning rate
which decreases based on its gradient of weight change. This prevents
units which have “settled” from overlearning. It's a useful metric for
measuring how far along training is. If a unit has a level weight change
gradient, it basically has learned a category, which means inhibition of
return can safely begin.

Additional Components of DPAN's Learning Mechanism

m Each unit has an individual learning rate

m The learning rates and the IOR starting condition are
dependent on each unit's gradient of weight change

m When the change gradient has leveled off, the unit has reach
stability and the learning rate is reduced to zero

m IOR only occurs when the change gradient is level
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