FGDR: <u>Fine-G</u>rained Contact Pattern Characterisation and <u>Dynamic Message Replication</u> Control for Message Routing in Delay-tolerant Networks(DTN)

> Luming Wan Supervisor: Haibo Zhang

DTN

- Node:
 - high mobility, low power, fixed contact range
- Rare infrastructure
- No guaranteed end-to-end connectivity
- No fixed topology
- Hardware constraints: power, bandwidth, memory etc.
- Packets: Store-carry-forward
- Long latency

Network Model Assumption

Message passed from C to D

Motivation

- Most of the prediction-based routing protocols leverage the entire history contacts and make an average overall estimation for routing prediction, which leads to inaccuracy
- Cannot immediate detect contact pattern change
- Message replication control is not efficient by only using forwarding metric:
 - Node A forward message to B if: f(A,D) < f(B,D)</p>

FGDR

- Fine-grained contact pattern characterisation
- Dynamic message replication control

Contact pattern

 Contacts between devices usually exhibit a high degree of repetition

Fine-grained contact pattern characterisation

- History contacts are stored in a bit matrix
- The history contacts of each contacted node are stored in a sliding window
- Each index in the sliding window represents a fixed time duration in real world (1 hour by default)
- 0 represents no contact in current time slot, 1 otherwise
- The length of all sliding windows are limited to 672 for exactly four weeks of history record
- The outdated data are removed in FIFO approach

Dynamic Message Replication Control

• Eliminate unnecessary message replication

 A node stop forwarding replica for a message if there are enough message replicas in the network

Dynamic Message Replication Control

After a few time units

- E_m :Expected delivery probability
- P_m : Achieved delivery probability
- *P_m*:Time-dependent direct delivery probability

$$P_m(B,D) = 1 - \prod_{i=1}^n (1 - p_m^i)$$

Dynamic Adjust Threshold γ_m

- γ_m is dynamic adjusted depends on the current status of the packet m:
 - If the remaining packet lifetime $\Delta t_m \psi$, $\gamma_m \psi$
 - If the remaining expected delivery probability $\Delta E_m \downarrow, \gamma_m \uparrow$

$$\gamma_m^{new} = \min\{\gamma_m^{old} \times \frac{\Delta t_m}{T_m} \times \frac{E_m}{\Delta E_m}, \gamma_0\}$$

Message Routing Algorithm

*/

Algorithm 1: Replication and Forwarding at Sender		
1 2 3 4	<pre>/* Upon encountering node b: for each message m in a's buffer do if $Dest_m == b$ then Forward message m to node b; Delete message m;</pre>	*/
5	else	
6		
7	Send SV_a to node b ;	
8 9 10	/* Upon receiving ACK for SV_a : for $each < ID_m, \bar{p}_m > in ACK$ do case $P_m(k) < E_m \& \bar{p}_m \ge E_m$ $\case forward message m to b;$	*/
11 12 13	case $P_m(k) < E_m \& \bar{p}_m < E_m$ Generate a replica of m and forward it to b ; Update $P_m(k)$;	
14 15	case $P_m(k) \ge E_m \& \bar{p}_m > p_m^0$ Forward message <i>m</i> to <i>b</i> ;	

Algorithm 2: Replication and Forwarding at Receiver		
1 2 3	/* Upon receiving SV_a from node a : for $each < ID_m, Dest_m, T_m, \gamma_m > in SV_a$ do if node b carries a replica with ID_m then Continue;	
4 5 6 7	else Calculate \bar{p}_{bDest_m} according to Eq. (7). if $\bar{p}_{bDest_m} \ge \gamma_m$ then $\lfloor \text{Add} < ID_m, \bar{p}_{bDest_m} >$ to the ACK message;	
8	Send ACK to node <i>a</i> :	

When A encounter B: for each message m in A's buffer: - if B is the destination of m: send message to B - else: Calculate p_m^B - if E_m^A is not fulfilled: - if $p_m^B \geq \gamma_m$: Case1: $P_m^A < E_m^A$ and $p_m^B \ge E_m^A$ forward Case2: $P_m^A < E_m^A$ and $p_m^B < E_m^A$ replicate - else: (E_m^A is fulfilled) Case3: $P_m^A \ge E_m^A$ and $p_m^B > p_m^A$ forward

Performance Evaluation

- Nodes are generated based on data traces
- Packets' lifetime: randomly selected from 2 hours to 1 week
- Real world data trace:
 - Cambridge:
 - 223 nodes in total
 - 2 months
 - Almost perfect regular contact pattern
 - MIT Reality:
 - 20883 nodes
 - 11 months
 - Lots of noise and opportunistic contacts

Performance Evaluation(Cambridge)

Performance Evaluation(MIT Reality)

Thanks!