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Abstract

This report describes a revised version of the model of working memory episode
representations described in Takac and Knott (2014). The new model is adapted in
several ways to enable distributed representations instead of localist ones used in
the original model.

1 Introduction
In Takac and Knott (2014) we described a model of the storage of episode representa-
tions in working memory (WM). Our key idea was that episodes are stored as prepared
sequences of attentional and motor operations involved in experiencing an episode. The
architecture of the model is shown in Figure 1. The model was trained on sequences
of SM signals representing episodes of different types—intransitive, transitive, intran-
sitive with prepositional phrase (PP) complement, simple causative, and causative with
PP. The set of all possible episodes was generated by the transcription rules listed in Ta-
ble 1. In our original model, individual SM signals were represented by localist coding
(one-hot, i.e. one neuron on and all the others off); this paper describes the modification
of the model exploring distributed representations in various components of the model.
For details of the original model, please refer to Takac and Knott (2014); here we only
describe the differences between the original model and the new one (Section 2) and
the results of experiments with the distributed model (Section 3).

2 A modified network using distributed representations
In this section we describe modifications to the network enabling it to use distributed
representations.

Distributed representations should improve the network’s ability to generalise away
from training examples. For instance, if the distributed representation of a cat includes
representations of properties also shared by dogs, then the network should be able
to use its experience of episodes involving cats to make (partial) predictions about
episodes involving dogs, and vice versa. The ability to represent generalisations is
particularly important in the candidate episodes buffer. Here, distinct episodes are
represented as separate localist units. Clearly, for reasons of computational complexity,
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Episode : Intransitive | IntrWithPPComplement | Transitive |
SimpleCausative | CausativeWithPP

Intransitive : Agent IntrVerb .
IntrWithPPComplement : Agent IntrVerb2 PP .
Transitive : Agent Target TransVerb .
SimpleCausative : Agent Target CausativeVerb ResultVerb .
CausativeWithPP : Agent Target CausativeVerb ResultVerb2 PP .

Agent : AnimateObj
Target : AnimateObj | InanimateObj
PP: Preposition Landmark
Landmark : Target

AnimateObj : man | dog | cat
InanimateObj : cup | ball | chair
Preposition : under | behind | near
IntrVerb : die | walk | lie | sneeze | sit | sleep | smell |

run | snore | breathe
IntrVerb2 : sneeze | sit | sleep | smell | run
TransVerb : grab | hit | push | shove | see | bite | hold |

squeeze | kick | hug
CausativeVerb : caused
ResultVerb : break | stop | go
ResultVerb2 : go | hide

Table 1: Transcription rules for episodes of different types. The colon separates the
head and tail of each rule, alternative tails are separated with |. Words starting with
capital letters are non-terminal symbols. There are 35 terminal symbols, corresponding
to individual sensorimotor signals/operations and an end-of-episode (.).
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Figure 1: Architecture of the model (Takac and Knott, 2014).

there cannot be one unit in the buffer for each possible episode representation. In fact
the candidate episodes buffer is not intended to function as a medium that can store
all possible episodes in fine detail: in our model the medium with that capacity is the
dynamic episodic buffer, which does indeed represent episodes very productively, as
shown in the main paper. The role of the candidate episodes buffer is rather to guide
the agent’s experience of episodes, by offering a constantly updating distribution of
the most likely episodes, or in action contexts, of the most desirable episodes. This
distribution does not need to include representations of every possible episode—just of
those which are in contention for being the most likely or desirable. And it does not
need to represent specific episodes: in fact it would be useful if units in this medium
could represent types of episode, each covering many possible specific episodes. In
this section we describe a revised version of our network that operates on distributed
input representations.

2.1 Distributed representation of concepts in the input layer
In the localist model with 1-hot coding in the input layer (i.e. one input neuron for
each of the 35 possible sensorimotor elements), representations of all sensorimotor
operations were equally dissimilar from each other. To allow for modelling of seman-
tic errors and better generalization, we replaced 1-hot coding with distributed/featural
representation of concepts.

We chose a simple distributed scheme in which each concept is represented by a
set of generic semantic features (see Table 2). This scheme enables a graded notion of
similarity between concepts, in which, for instance, the concept DOG is increasingly
dissimilar to the concepts CAT, MAN, BALL, CHAIR and HIT. As well as the generic
features used to implement this similarity metric, each concept had a unique feature
distinguishing it from all other concepts. The network’s input layer contains one unit
for each feature (18 units for generic features, 35 for unique features). A concept
is represented as a distributed pattern of activation over these units, with 1 coding
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presence of a feature and 0 coding its absence.
The same coding is used both in the input SM signal and the aggregate SM signal

layers. While the sparse distributed code in the input layer is always binary, the aggre-
gate layer is fed top-down, i.e. with noisy information reconstructed from the weights
of the neurons in the signal encoding SOM. In the localist model with 1-hot coding,
this information could be directly interpreted as a probability distribution or degree of
presence of individual SM signals; in the distributed model the noisy signal can repre-
sent any combination of features, which allows for generalizations, e.g. by representing
generic features and no unique feature (or more than one unique feature). In order to in-
terpret a noisy signal in terms of the original SM signals, we record cosine-similarities
between the noisy signal and binary feature based sparse codes of each SM signal and
then norm them dividing by their sum to obtain a probability distribution of interpreted
SM signals.

2.2 Distributed representation of episode traces in the dynamic
episodic buffer

An episode trace in the dynamic episodic buffer represents a sequence of SM signals
in the signal-encoding SOM. In the localist model, the trace representing a sequence of
n signals comprised exactly n units, corresponding to the winning units in the signal-
encoding SOM at each step of the sequence. In the distributed model, we choose to
represent each signal in an episode trace with a group of units, namely the k most
active units in the signal-encoding SOM (henceforth called the k winners). We do
this to ensure that the candidate episodes buffer learns to represent similar episodes in
neighbouring units. While the dynamic episodic buffer has the same topographical or-
ganisation as the signal-encoding SOM, this organisation is not visible to the candidate
episodes buffer. Like any SOM, this network learns to represent commonly occurring
patterns in its input; whether these patterns involve adjacent units in the input vector or
not is of no importance. Consequently, we must ensure that representations of similar
signals in episode traces involve overlapping groups of units, rather than just adjacent
units. For this reason, the k winners in the signal-encoding SOM are copied to the
dynamic episodic buffer at each time step. As before, at each time step the activities
of all units in the dynamic episodic buffer are proportionally downscaled at each time
step before the new units are added, so the buffer continues to code the order of input
signals by their level of activity. As we will discuss in the following section, the k
should not be too large, so that the k units encoding each signal are reasonably close to
each other, ideally forming a connected area with the most active unit in the centre. We
experimented with different values of parameters and k = 3 yielded the best results.

Recall that the signal-encoding SOM uses a special constraint to ensure that re-
peated input signals are represented separately. In the localist model the constraint
requires that units already used to represent a signal in the current episode trace are
excluded from competition, so that a new unit will be selected to represent a repeated
signal. In the distributed model, we replaced this fixed rule with a soft one: during
the episode recording in the signal encoding SOM, the activity of each neuron in the
competition phase is computed as the similarity of its weights with the input and con-
text minus the activity of the corresponding neuron of the trace in the dynamic episodic
buffer. Hence the trace in the dynamic episodic buffer serves as a top-down inhibitor
for the competition in the signal encoding SOM.
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SM signal Features
. EndOfSequence, F1
MAN Object, Human, Animate, F2
DOG Object, Animate, F3
CAT Object, Animate, F4
CUP Object, Inanimate, F5
CHAIR Object, Inanimate, F6
BALL Object, Inanimate, F7
UNDER SpatialRel, F8
NEAR SpatialRel, F9
BEHIND SpatialRel, F10
CAUSE Action, Causative, F11
GRAB Action, Manual, F12
HIT Action, Manual, F13
PUSH Action, Manual, F14
SHOVE Action, Manual, F15
SQUEEZE Action, Manual, F16
WALK Action, Self-Movement, F17
RUN Action, Self-Movement, F18
GO Action, Self-Movement, F19
LIE Action, Self-position, F20
SIT Action, Self-position, F21
SMELL Action, Sensory, F22
SEE Action, Sensory, F23
SNORE Action, Physiological, F24
BREATHE Action, Physiological, F25
SNEEZE Action, Physiological, F26
SLEEP Action, Physiological, F27
HOLD Action, Arms, F28
HUG Action, Arms, F29
BITE Action, Mouth, F30
KICK Action, Leg, F31
BREAK Action, Result, F32
STOP Action, Result, F33
HIDE Action, Result, F34
DIE Action, StateChange, F35

Table 2: Featural representation of sensorimotor signals. Features F1–F35 represent
unique individual properties of each SM signal.
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Fragment length 0-25% 25-50% 50-75% 75-100% 100% total
Grammatical 75.2% (22.3) 78.0% (8.0) 85.7% (7.3) 93.0% (6.2) 94.3% (6.2) 85.0% (5.5)
Compatible 100.0% (0.0) 96.6% (3.4) 94.8% (4.4) 90.2% (5.8) 92.4% (6.7) 94.8% (3.5)
Matches 0.0% (0.0) 4.4% (1.7) 41.5% (6.7) 88.0% (6.3) 91.3% (6.9) 42.1% (4.1)
Rank 4.08 (3.48) 2.25 (0.44) 1.38 (0.14) 1.01 (0.02) 1.00 (0.00) 1.83 (0.80)
Rankable 75.2% (22.3) 76.1% (7.7) 83.8% (7.5) 88.1% (6.6) 91.3% (6.9) 82.6% (5.4)

Table 3: Prediction performance of the model using distributed representations, on
initial fragments of different lengths of 100 episodes from the training set. Results are
averaged over ten different simulation runs. Numbers in parentheses represent standard
deviations.

2.3 Modified inhibition-of-return during episode replay
With episode traces now consisting of winners ordered by activities plus some areas
around them, we need to also modify the mechanism of episode replay. When replaying
the episode trace in the dynamic episodic buffer, the winner is determined in normal
competition, and the winner activates its isomorphic neuron in the signal encoding
buffer, as before. But in the inhibition-of-return phase (the removal of this element),
not only the winner, but all the neurons within some neighbourhood radius r around
it are inhibited. If the removal of the whole sparse distributed representation of the
current element is successful, the next element can be again determined by normal
competition and so on. The value of r should be large enough to cover all the k winners
representing an element, but small enough not to cover neurons representing other
elements of the sequence. We experimented with different combinations of k and r and
r = 9 (expressed as squared Euclidean distance of neuron positions) worked the best.

3 Results
We trained the network with randomly generated sequences of sensorimotor opera-
tions, generated in the same way as those used to train the localist model (Takac and
Knott, 2014), but now represented using the distributed scheme described above. In
this section we summarise the performance of the trained network.

3.0.1 Immediate serial recall

After training we presented the modified network with the same three sets of sequences
as the localist model. The model correctly recalled 94.6% (SD 3.8%) of seen se-
quences, 93.3% (SD 3.7%) of unseen sequences and 93.3% (SD 6.3%) of sequences
containing repetitions. These results are worse by approximately 5% than those of
the localist model. The drop is mainly due to the performance of the radius-based
inhibition-of-return mechanism described above. Sometimes not all the units in a group
were inhibited, leading to signals being repeated; sometimes units in other groups were
inhibited, leading to signals being omitted.

3.0.2 Predicting complete episodes from fragments

We again exposed the trained network to 100 sequences randomly selected from the
training set element by element, and examined its predictions about completions af-
ter each element. The results are shown in Table 3. Across the board, the distributed
model’s performance is slightly better than that of the localist model. While distributed
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CAT RUN
BALL UNDER

CAT BALL CAUSE HIDE DOG UNDER CAT BALL CAUSE HIDE MAN BEHIND CAT BALL SQUEEZE CAT BALL
CAT BALL CAUSE HIDE DOG BEHIND HOLD

CAT BALL CAUSE HIDE CAT UNDER CAT BALL CAUSE HIDE CHAIR BEHIND CAT BALL CAUSE CAT BALL
HIDE CHAIR NEAR HUG

CAT BALL CAUSE GO CHAIR BEHIND CAT BALL CAUSE HIDE BALL NEAR

CAT BALL CAUSE GO DOG BEHIND CAT BALL CAUSE GO BALL NEAR
CAT BALL CAUSE GO CAT BEHIND

Figure 2: Extract from a ‘hit map’ of the candidate episodes buffer, showing for each
unit which input sequences it was the winner for.

representations make immediate recall of episodes slightly harder, they slightly im-
prove1 its ability to generate predictions about episode completions.

3.0.3 Representation of generalisations

The main reason for using distributed representations in the network was to allow it to
generalise away from training episodes, and to allow explicit representation of gener-
alisations in the candidate episodes buffer. To test the network’s ability to generalise,
we added a new object concept RABBIT to the network, which overlaps extensively
with the animal concepts CAT and DOG, and also to a lesser extent with all animate
concepts, and to a still lesser extent with all object concepts. We trained the signal-
encoding SOM on a training set of 1000 input signals selected at random from the set
of input signals excluding the signal RABBIT. Then we presented the trained SOM
with the unseen signal RABBIT and used the winning unit’s weights to reconstruct a
pattern of activity in the input layer. The signals closest to the unseen input RABBIT
were indeed CAT and DOG, followed by other animate concepts, and then other object
concepts. This indicates that the signal-encoding SOM has some ability to generalise.

To examine the potential for generalisations in the candidate episodes buffer, we
created a ‘hit map’ representing for each unit which input episodes it became the win-
ner for. A fragment of this map is shown in Figure 2. As can be seen, the buffer has
clear topographic organisation, with neighbouring units encoding episodes with similar
structure and content. There are also some units that encode more than one episode,
which again have similar structure and content. So both local regions and individual
units have the potential to encode generalisations over episodes. However, our cur-
rent method of reconstructing signals from units in the candidate episodes buffer does
not allow these generalisations to be transmitted to lower layers. When a signal is re-
constructed from a unit representing a mixture of specific episodes, either one of the
episodes dominates the other and a single specific episode is produced as output, or
a mixture of signals from both episode representations is reconstructed. In this latter
case, the activity levels of units in the reconstructed representation no longer reliably
indicate the temporal sequence in which signals should occur, and it is likely that an un-
grammatical sequence of signals is produced. So while the candidate episodes buffer
shows some potential as a medium for representing generalisations over episodes, it
cannot yet translate these into coherent top-down expectations about sensorimotor se-
quences.

1The distributed model performed better by 3.7% in total grammaticality, 0.2% in compatibility, 0.8% in
matches, 0.09 in rank, and 5.1% in rankability of predicted episodes.
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4 Conclusion
In this report we described a revised version of the model of working memory for
episodes using distributed inputs, and distributed encodings of signals and episodes
in the SOM layers. The comparison between the localist and distributed versions of
the model shows that the distributed model is worse in immediate serial recall and
slightly better in prediction of episodes from their fragments. While there is still room
for improvement, the results indicate that our proposed architecture can be adapted to
operate with distributed representations.
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