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Abstract

In this report we present technical details of a novel connectionist model of episode
representations in working memory, including details of encoding, training input
and training regime, numerical parameters and results of simulations of different
experimental tasks.

1 Introduction

We present a neural network model of how the brain encodes episodes and individuals
in semantic working memory (WM). The model rests on the assumption that concrete
episodes, and the individuals that participate in them, are perceived through sensorimotor
(SM) routines with well-defined sequential structure. It differs from our previous model of
WM for episodes (Takac and Knott, 2015) in many aspects:

1. Not only episodes, but also individuals are stored in semantic WM as prepared sen-
sorimotor routines that can be internally replayed.

2. We distinguish between object types and tokens, i.e. the system can represent richer
properties of individual token objects, including their current location.

3. We added a system for representing recently seen individuals, which supports dis-
course referencing to previous individuals (expressed in language with pronouns or
definite articles).
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Figure 1: Architecture of the model of WM individuals and WM episodes.

4. The model provides a novel account of binding: specifically, of how individuals are
bound to semantic roles in episodes (such as agent and patient). Agent and pa-
tient are represented in separate places, as content-addressed pointers to a common
medium. In this way, cross-role generalization is possible, while the ability to repre-
sent different expectations about agents and patients is retained.

5. The model is extended with a situation update system able to predict a distribution
of possible next episodes.

This report serves as supplementary material for a complete article (Takac and Knott,
2016), hence it is restricted to technical details of the model.

2 Architecture

Our model is illustrated in Figure 1. The WM media are above the grey line; SM media are
below it. WM media representing individuals are on the left, and WM media representing
episodes are on the right.

The WM individual medium holds a representation of a single selected individual.
It stores the sequence of SM operations through which a single object, or a homogeneous
group of objects, is established. There are three operations in the sequence. The first
operation activates a spatial location. This location can be an arbitrary place in the
observer’s current environment, but it can also be the location of the observer himself, or
of his interlocutor. The selected location therefore sets a person field, to either 1 (self), 2
(interlocutor) or 3 (external individual). In each case, a place field is also set, indicating
the location in a map of the current environment. The second operation selects a number,
which can be singular or plural. Our account of this operation rests on the model of Walles
et al. (2014; 2008), in which attention can be allocated either to the global form or the local
form of a selected stimulus (in the sense of Navon, 1977). In the former case, the object
classifier is configured to identify a single object at the attended location; in the latter
case, it is configured to classify a homogeneous group of objects, and return the type these
objects collectively share. The final operation identifies the properties of the attended
object or group, which can include an open-class object type, but also other information,
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including semantic information that is picked up in grammatical gender, and miscellaneous
properties that set the object/group apart from others of its type.

When the fields of a WM individual are fully defined, a rehearsal operation is enabled,
that replays the sequence of SM operations through which the individual was established.
This involves transient activation firstly of a spatial location (in parietal cortex), then of
a spatial scale (in the temporoparietal junction, see e.g. Robertson et al., 1988; Fink et
al., 1996), then of a type and associated properties (in inferotemporal cortex). While the
replay process activates SM representations sequentially, the fields of the WM individual
stay active tonically, in parallel, in line with evidence about the prefrontal assemblies that
store prepared SM sequences in monkeys (as discussed in Takac and Knott, 2015).

The layers representing a WM individual provide input to another layer, the candidate
WM individuals (cWM-ind) layer, which stores associations between the location,
number and properties of attended individuals over a short interval, and thus comes to
represent a collection of individuals that have recently been attended to. A partially
specified WM individual can function as a query to the cWM-ind layer: if we specify a
location, we may be able to retrieve an associated number and set of properties (and vice
versa). If an individual is retrieved from the cWM-ind layer, it is classed as ‘old’; if not, it
is classed as ‘new’ (see Section 5 for details). These attributes are recorded in the status
field of the WM individual, which is not part of the prepared sequence. We envisage both
linguistic and nonlinguistic roles for the cWM-ind layer. Linguistically it can represent the
set of salient referents in an ongoing discourse. Nonlinguistically it can hold expectations
about the location and identity of objects in the current scene.

The WM media representing episodes are structurally similar to those representing
individuals. The WM episode medium holds a representation of a single selected episode,
stored as a planned sequence of operations. The first operation activates a representation
of the agent of the episode. The second operation activates a representation of the patient
of the episode (if there is one). The remaining operations activate a representation of the
action that occurs. This can be causative or noncausative; in the former case, a dedicated
network for controlling causative actions is activated before the action proper is represented
(see Lee-Hand and Knott, 2015 for details of this proposal, which are not relevant to the
current model). Again these planning representations are content-addressed pointers to
operations in other media: they are active in parallel in the planning medium, but when
the WM episode is executed or rehearsed, the representations they point to become active
one a time. A key idea is that the ‘agent’ and ‘patient’ media contain pointers to WM
individuals rather than directly to SM signals. These pointers are created when the episode
is experienced. The first WM individual activated during experience of an episode is copied
to the ‘agent’ medium of the WM episode, and later, the second WM individual to be
activated is copied to the ‘patient’ medium. These copy operations are shown in red in
Figure 1. (In fact, as the figure shows, we do not copy all the fields of a WM individual into
slots in the WM episode, only information about number and properties. In this way, the
WM system for individuals specialises in encoding locations of individuals, while the WM
system for episodes abstracts away from information about location and ‘newness’.) When
all the fields in a WM episode have been filled, the episode can be rehearsed, just like a
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WM individual. In this process, the WM individuals representing the agent and patient
become active in sequence, one at a time, creating temporally separate opportunities to
rehearse their own associated sub-sequences (see experiments in Section 11.1).

Once the WM episode medium is filled, it serves as input to the candidate WM episodes
medium implemented as a self-organizing map or SOM (Kohonen, 1982). The primary
function of this medium is to hold representations of multiple episodes active in parallel for
various purposes, such as representing a probability distribution over remembered episodes
consistent with the current content of the WM episode medium, or possible episodes typi-
cally following in the current situation context (as predicted by the Next episode prediction
system, see below).

WM episode feeds another medium: the current situation. This is implemented
as a recurrent self-organising map: specifically, an MSOM (Strickert and Hammer, 2005).
Thanks to recurrent connections, units in the MSOM are organised to represent episodes in
particular contexts, i.e. as whole situations. The MSOM activity represents a probability
distribution of remembered situations consistent with the current WM episode, and serves
as input to another medium, the predicted next episode layer, which is isomorphic to
the candidate WM episodes layer. The current situation layer is linked to the predicted
next episode layer via a fully connected network: during training this network learns to
map the current situation to the content of the candidate WM episode system at the next
time step: that is, it learns transition probabilities between pairs of successive episodes.
The trained network generates a distribution of predicted next episodes. This distribution
is conveyed to the candidate WM episodes layer via 1:1 connections. The distrinction in
the candidate WM episodes layer supplies top-down expectations about the content of the
next WM episode, which can be further propagated to the WM individual medium.

Now we will revisit individual components of the model in more detail.

3 First-order SM media

First-order SM media (below the grey line in Figure 1) are isomorphic to the WM individual
and WM episode areas they are linked to. Perception of an episode (see Section 10) is
simulated by generating a sequence of activity patterns in the first-order SM media that
in turn generate identical activity patterns in the WM individual and WM episode areas.
A particular way of encoding actions, objects, and their properties is specified below.

4 WM Individual

The WM individual layer consists of 69 units in areas encoding location, number, properties
and status. Location consists of a set of 3 localist units for person (1, 2, 3) and further
36 units together coding a spatial position (place, see below). Number is coded by 2
units (for Sg, Pl). Properties area includes a set of 3 units for grammatical gender (Male,
Female, Neutral), 12 units for type-specific features—animacy, type (person, dog, cat, bird,
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cup, ball, chair) and hierarchy-imposing properties (is-human, can-fly, can-be-grabbed, see
Table 3) and 11 units together encoding a colour of the object (see below). The status
is coded by 2 units (new, old). Each set of units can either encode a single property
unambiguously, or a probability distribution over properties.

Spatial position of objects (situated on a 100 x 100 grid) is coded by a population of 6x6
neurons with Gaussian receptive fields evenly covering the grid. The ‘misc’ area in Figure 1
represents a single property—colour. Colour is coded by a population of 11 neurons with
Gaussian receptive fields in 3D RGB space, responding maximally to 11 basic colours (see
Figure 4). Such population coding is neurally plausible and there is a straightforward
mathematical way of computing the likelihoods of different stimuli given the activities of
neurons in the population (Jazayeri and Movshon, 2006).

5 Candidate WM individuals

The cWM-ind layer is a variable-sized convergence zone of units fully connected with the
WM individual layer: when a novel candidate individual is encountered, a new unit in the
cWM-ind layer is recruited and the current values of WM individual units are copied into
its connection weights (one-shot learning).

When complete, the WM individual is first passed as a query to the cWM-ind layer,
to find out whether the individual it represents has recently been encountered. For each
candidate unit currently active in the cWM-ind layer, we compute the likelihood that it
corresponds to the current stimulus in the WM individual. This reduces to the average
pairwise KL divergence (Kullback and Leibler, 1951) between the respective areas of the
WM individual and the candidate unit weights, as derived by Jazayeri and Movshon (2006).
We outline the derivation below.

Let us assume an unknown sensory stimulus activates a population of N neurons with
broad tuning curves fi so that each neuron responds with activity ni. Then the log like-
lihood that the unknown stimulus is equal to a particular value θ can be computed as a
simple weighted sum of the responses of the neurons, where the activity of each neuron is
weighted by the log of its own tuning function in θ:

logL(θ) =
N∑
i=1

ni log fi(θ)(1)

Let us first assume that the population of N neurons with activities ni elicited by
an unknown stimulus reside in the WM individual layer as a part of it that represents
a single property e.g. person, number, place, gender, or colour. Let us further assume
that the cWM-ind layer contains representations of K individuals, where the j-th unit
remembers the actual value θj of the same property for a particular individual in its weights

~w(j) =
(
w

(j)
i

)
= (fi(θj)) for i = 1..N . We can then use Equation 1 to evaluate for each

remembered individual how likely it is that it is currently perceived in WM individual. If
both ni and fi(θj) population codes are normalised (i.e. the sum of ni for i = 1..N equals
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to 1, and the same holds for fi(θj)), they can be conceived as probability distributions and
the negative form of the expression in Equation 1 represents their cross-entropy, i.e.

NLL(θj)=−logL(θj)=−
N∑
i=1

ni log fi(θj)=−
N∑
i=1

ni logw
(j)
i =H(~n, ~w(j))(2)

That means the most likely candidate J is the one with the smallest value of NLL(θJ)
(which is always non-negative). However, it is well possible that the currently perceived
individual is novel, i.e. none of the remembered ones. To be able to determine that, we
need to set a threshold τ such that an individual is considered novel, if NLL(θj) > τ . The
problem is that even for a perfect match ~n = ~w(j) their cross-entropy is not zero, but it
is equal to the entropy H(~n). In order to be able to use an absolute threshold τ , it is
reasonable to substitute the measure NLL(θj) with

KL(~n, ~w(j)) = H(~n, ~w(j))−H(~n)(3)

which is their Kullback-Leibler (KL) divergence. This measure is zero if and only if ~n =
~w(j).

Now because a WM individual does not consist of just a single property, but several
population codes—for person, place, number, type, and colour, the KL divergence is de-
termined pairwise between respective areas of WM individual and the weights of each
candidate unit in cWM-ind system for each property and then they are averaged to yield
a single KL value, which is then compared to the threshold1 τ to determine whether the
currently perceived individual is novel.

If a likely-enough existing candidate is returned, it is updated (its weight values are
replaced by the corresponding values in WM individual) and the WM individual’s status
is set to ‘old’; otherwise a new entry in the layer is created (again with weights copied from
the WM individual) and the WM individual’s status is set to ‘new’. Candidate units that
have not been updated for the last 20 episodes are then removed. The WM individual is
then copied (along with its status) to the appropriate layer in the WM episode medium:
either the ‘agent’ layer or the ‘patient’ layer.

As we have shown, KL divergence helps us to determine which of the remembered
individuals is likely being perceived right now. However, the cWM-ind system serves yet
another function. As we describe in Section 7.1, the candidate WM episode medium can
generate top-down expectations in the agent or patient area of the WM episode medium
that can be further copied to WM individual. Now the content of WM individual does not
represent an actually perceived individual, but rather a blend of expectations, e.g. that
an individual should be either cat or dog and either black or white. To evaluate which of
the actual individuals remembered in the cWM-ind system matches this expectation best,
we again use the average pairwise KL divergence, but now with swapped arguments, i.e.
as KL(~w(j), ~n), where ~w(j) are the weights of j-th unit in cWM-ind system and ~n is the

1Because individuals do not change properties in our experiment, we use the threshold close to zero,
namely τ = 0.005.
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content of the WM individual copied from the WM episode expectation. Units are made
active inversely proportional to their KL value:

aj = exp(−c ·KL(~w(j), ~n)(4)

where c = 3 is the sensitivity. Activities are then normalised so that the sum of their
activities is 1:

Aj =
aj∑K

k=1 ak
(5)

Now we refine the expectation in the WM individual by top-down propagating the
combination of weight vectors of the active cWM-ind units mixed proportionally to their
activities:

~y =
K∑
j=1

Aj · ~w(j)(6)

Refining the expectation in this way is important because the expectation copied from
the WM episode medium does not contain place information—the expected location is
supplied from cWM-ind medium. We test this experimentally—see Section 11.2.3.

6 WM episode

Agent and patient parts of the WM episode are isomorphic to the relevant parts of the
WM individual: the num/props areas are isomorphic to the number and properties areas
of the WM individual, and the pers/status areas are isomorphic to the person and status
areas of the WM individual (the place representation from WM individual is not copied).
‘Cause’ is a single neuron that is ‘on’ for causative actions and ‘off’ otherwise. The ‘action’
area consists of 22 localist units for actions (see Table 1) and 11 units for their distributed
featural codes.

7 Candidate WM episodes system

The candidate WM episodes (cWM-ep) medium is a self-organising map or SOM that
takes input from the WM episode medium and is trained on episodes represented in this
medium. It learns to represent episodes as localist units, organised so that similar episodes
are close together in the map. Each localist unit can encode (in its incoming weights) a
particular combination of representations in the agent, patient and action media, and thus
can represent a complete episode by itself. We use a modified SOM that can also keep track
of frequencies of episodes (by recording how often a particular unit became a winner—see
below).

The SOM we use in our experiments has N=400 (20x20) units. Each unit has a 90-
dimensional vector ~wi of incoming weights from the WM episode medium and a scalar
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Grab=(TGrab:3;Manual:2)

Hit=(THit:3;Manual:2)

Push=(TPush:3;Manual:2)

Pat=(TPat:3;Manual:2)

Stroke=(TStroke:3;Manual:2)

Walk=(TWalk:3;Self-Movement:2)

Run=(TRun:3;Self-Movement:2)

Lie=(TLie:3;Self-Position:2)

Sit=(TSit:3;Self-Position:2)

Sing=(TSing:3;Mouth:2)

See=(TSee:3;Sensory:2)

Snore=(TSnore:3;Physiological:2)

Sneeze=(TSneeze:3;Physiological:2)

Sleep=(TSleep:3;Physiological:2)

Hold=(THold:3;Arms:2)

Hug=(THug:3;Arms:2)

Bite=(TBite:3;Mouth:2)

Kick=(TKick:3;Leg:2)

C+Break=(TBreak:3;Causative:2;Result:2)

C+Stop=(TStop:3;Causative:2;Result:2)

C+Hide=(THide:3;Causative:2;Result:2)

C+Go=(TGo:3;Causative:3;Self-Movement:2)

Table 1: Featural representation of actions. Features starting with ‘T’ represent type-
specific properties, others represent general binary properties. The numbers represent
‘strength’ of the feature, computationally equivalent to the number of identical localist
units coding the same feature.
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weight pi reflecting the relative frequency of ‘hits’ for this unit, i.e. the proportion of times
this unit was the most active unit.2

During training, the incoming weights ~wi are updated using the standard SOM learning
rule (Kohonen, 1982)

~wi(t+ 1) = ~wi(t) + γ ·G(I, i) · [~x(t)− ~wi(t)](7)

where ~x(t) is the input in the current time step t (the content of WM episode medium), γ is
the learning rate, G is a Gaussian neighbourhood function G(I, i) = exp(−‖rI − ri‖2 /σ2)
with the width σ, I is the index of the winning neuron, and rI , ri are lattice coordinates
of neurons I, i.

For the purposes of training, the winner is determined as the unit I with the minimal
Euclidean distance between its weight vector ~wI(t) and the current input ~x(t).

The activity Ai(t) of each unit is then computed as

ai(t) = pi(t) · exp(−c · d2(~wi(t), ~x(t)))(8)

Ai(t) =
ai(t)∑N
j=1 aj(t)

(9)

The Gaussian term exp(−c · d2(~wi(t), ~x(t))) reflects the likelihood that the current
input ~x(t) corresponds to an episode remembered in the weights ~wi(t) of the i-th unit (the
parameter c expresses the sensitivity of the Gaussian), pi(t) is its frequency-based prior.
The activities are then normalised to sum to 1, so the computation follows the Bayesian
rule and the overall activity in the candidate WM episode SOM can be interpreted as a
probability distribution over possible remembered episodes corresponding to the current
WM episode input.3

The SOM weights are initialised to random real numbers between 0 and 3. The learning
rate γ decreases linearly from 1 to 0.5 during the first 5000 episodes, then stays constant
at 0.5. The Gaussian neighbourhood size σ decreases linearly from 20 to 1 during the
first 5000 episodes, then to 0.1 during the next 15000 episodes. The sensitivity c of the
Gaussian activation term is set to 1. In order to smooth the priors, each scalar weight has
an initial value of 1 (i.e., at the beginning we assume a uniform prior pi = 1/400 for each
unit).

2In fact, a scalar weight is increased each time a unit becomes the winner, hence it records the absolute
frequency and the weights are normalised (i.e. divided by a scalar weight of a special unit increased each
time any unit becomes a winner) when used. A more biologically plausible method where weights could
not grow indefinitely would be to increase a scalar weight of the winning unit by a small amount and
renormalise the scalar weights of all the units right then so that their sum is 1 in each step. In this way,
the scalar weight would be biased towards more recent winners.

3The activities can be (approximately) normalised in a biologically plausible way by receiving a global
inhibitory signal proportional to their cumulated activity coming from a special layer—see O’Reilly and
Munakata (2000), chapter 3.5. However, we normalise them by simple direct division.
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7.1 Top-down reconstruction from the active SOM

If we interpret the current activity pattern in the SOM as a probability distribution of
possible episodes (as remembered in weights of the SOM’s units), we can compute expected
values of the episode representation by propagating the activities top-down via the weights
connecting the cWM-ep medium with the WM episode.4 The resulting activity ~y in the
WM episode is computed as

~y =
N∑
j=1

Aj(t) · ~wj(t)(10)

8 Current situation medium

The Current situation medium has a recurrent architecture: as shown in Figure 1, it
takes as input the current episode, plus its own internal representation of the history of
preceding episodes—‘the current context’. It is implemented as an MSOM (Strickert and
Hammer, 2005)—a type of SOM enhanced with recurrent connections. As in any SOM,
units representing similar episodes happening in similar contexts are close to each other on
the map. The activity of the whole map can be interpreted as a probability distribution
over situations (episodes in contexts). Together with the Next episode prediction network
(see the next section) the current situation SOM can learn transition probabilities between
episodes, and can therefore make predictions about the next episode, similar to those made
by a trained simple recurrent network (SRN: Elman, 1990). An advantage of the MSOM
over a SRN is that each MSOM unit explicitly remembers the situation it represents in
its weights: this means that a situation can be reconstructed by top-down propagation
from these weights back to the WM episode medium. This can in principle be used for
reconstructing a remembered situation from a fragment presented in WM episode medium.
Similar to the cWM-ep SOM, the activity Ai(t) of each unit is computed as

ai(t) = exp(−c · disti(t))(11)

Ai(t) =
ai(t)∑N
j=1 aj(t)

(12)

The distance disti(t) is a combination of the squared Euclidean distance between its
regular weight ~wi and the input vector ~x(t), and between the context weight ~ci and the
recursive context descriptor ~c(t) (for details see Strickert and Hammer (2005)):

disti(t) = (1− α) · ‖~x(t)− ~wi‖2 + α · ‖~c(t)− ~ci‖2(13)

The context descriptor

~c(t) = (1− β) · ~wIt−1 + β · ~c It−1(14)

4Another option would be to combine the weight vectors of just K most active units with an extreme
case K = 1, i.e. reconstructing only the most probable candidate. However, in all our experiments we
combine activities of all 400 units.
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is a combination of the regular weight vector and the context weight vector of the winning
unit It−1 from the previous time step (the initial ~c(0) is set to zero vector).

During training, the regular weights ~wi are updated using the standard SOM learning
rule (7) and likewise the context weights

~ci(t+ 1) = ~ci(t) + γ ·G(I, i) · [~c(t)− ~ci](15)

where γ is the learning rate and G is a Gaussian neighbourhood function with linearly
decreasing σ from 20 to 1 in the first 5000 episodes and then to 0.1 in episode 20000. In
all our experiments, we use α = 0.6, β = 0.2 and the learning rate γ linearly decreasing
from 1 to 0.5 in the first 5000 episodes and constant thereafter.

9 Next episode prediction system

The Current situation medium represents a current episode in its context formed by preced-
ing episodes. The Next episode prediction system (Next-ep) uses this medium to capture
relations between the whole episodes, namely their transition probabilities. This system
is implemented as a single layer of perceptrons with linear activation functions and the
softmax function applied to their outputs. The input is the current situation medium (400
units), the output is 400 perceptrons together forming a layer isomorphic to the cWM-ep
medium, which represents a distribution of possible next episodes. The weights are adapted
using a standard Delta rule (Rosenblatt, 1962) with a constant learning rate 0.9.

In order to learn to predict the next episode, the system must be trained at the moment
when the Next-ep’s output layer contains the prediction from the previous episode, but the
cWM-ep already represents the actual next episode. This can be achieved by the following
sequence of operations:

1. Update the current situation by propagating the current content of the WM
episode through links to the Current situation.

2. Predict the next episode by propagating through links from the Current situation
to the Next-ep medium.

3. Perceive the next episode by filling the WM episode and propagating through
links to the cWM-ep medium.

4. Train the Next-ep system by the error signal defined by difference between the
activity pattern in cWM-ep (the target) and the content of the Next-ep.

5. Continue from Step 1.

After some training, the result of prediction from Step 2 can be propagated/copied to
the isomorphic c-WMep medium where it would represent a prior distribution of possible
next episodes and can be further propagated top-down to the WM episode medium in
a standard way (see Section 7.1) to generate prior expectations (see the experiment in
Section 11.4).

11



10 Training

Our system is exposed to a continuous stream of episodes incoming via primary SM media.
This modifies the state of the system in three ways:

1. Instantly—by direct flow of information, copying the activities from SM media to the
WM individual medium and later to the WM episode medium, thus eliciting some
immediate activity patterns;

2. By forward propagation via weighted connections in the Candidate WM individu-
als, Candidate WM episodes, Current situation, and Next episode prediction media,
creating a pattern of activities in these media;

3. By long-term learning—modifying the connection weights in the Candidate WM
individuals (one-shot update of an existing candidate unit, or addition of a new
unit, in case of a novel individual), Candidate WM episodes SOM, Current situation
MSOM, and Next episode prediction media (gradual learning).

10.1 Generation of episodes

The training happens all the time in all of the media in parallel. Episodes in the stream
are generated stochastically from transcription rules (see Table 2). Transitive episodes
involve an agent, patient and transitive action, e.g. A woman stroked a cat, intransitive
episodes involve an agent and an intransitive action, e.g. The dog sleeps, and causative
episodes involve an agent, patient and unaccusative action with a special ‘cause’ signal,
e.g. A man broke (caused to break) a chair.5 Each generated episode specifies types of
the individuals involved (i.e. woman, cat, in case of A woman stroked a cat). Now it
is necessary to determine token individuals of these types. We want to model a situation
where a person can encounter novel individuals, but also re-encounter some of the recently
seen individuals (so that s/he can learn to represent narratives such as A man hit a dog.
The dog bit the man. He ran., i.e. we need to create a basis for indefinite and definite
articles and pronouns. In addition to that, there is a limited number (N = 100 in most
of our experiments) of ‘permanent’ individuals that can feature in episodes repeatedly
(to model familiar individuals), and a potentially open set of newly generated (unknown)
individuals. There are two special permanent individuals of type person representing ‘me’
(the system itself) and ‘you’ (its dialog interlocutor).

In practice, a list of recently generated individuals is maintained, and when an indi-
vidual of a certain type is needed, it is drawn from the list (if available) with probability

5An unaccusative action is one that involves an object that is not semantically the agent of the action:
examples would be ‘breaking’ or ‘dropping’. (Causative actions can also produce actions that in other
circumstances are volitional: for instance, a person can ‘walk a dog’, but we do not include these in our
training episodes.)
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Episode -> Transitive:86 | Intransitive:24 | Causative:40

Human -> Man | Woman

Dog -> WDog | BDog

Animal -> Dog | Cat

Animate -> Human | Dog | Cat | Bird

AnimateWODogCat -> Human | Bird

Agent -> Human | Dog | Cat

Thing -> Cup | Chair | Ball

Patient -> Human | Dog | Cat | Cup | Chair | Ball | REFL

Transitive -> TrHuman:38 | TrAnimal:48

TrHuman -> TrHumanAnim:14 | TrHumanThing:21 | TrPatM:1 |

TrPatF:1 | TrStroke:1

TrAnimal -> Animal Patient AnimalTrAction

TrHumanAnim -> Human AnimateWODogCat HumanTrAction

TrHumanThing -> Human Thing HumanTrAction

TrPatM -> Man BDog Pat

TrPatF -> Woman WDog Pat

TrStroke -> Human Cat Stroke

HumanTrAction -> Grab | Hit | Push | See | Hold | Kick | Hug

AnimalTrAction -> Hit | Push | See | Bite

Intransitive -> IntrWOBird:24 | IntrBird

IntrWOBird -> Agent IntrAction

IntrBird -> Bird Sing

IntrAction -> Walk | Lie | Sneeze | Sit | Sleep | Sing | Run |

Snore

Causative -> CausHumanOnAnimates:2 | CausAnimalOnAnimates:20 |

CausOnThings:18

CausHumanOnAnimates -> Human Human CausActionOnAnimates

CausAnimalOnAnimates -> Animal Animate CausActionOnAnimates

CausOnThings -> Agent Thing CausActionOnThings

CausActionOnThings -> C+Break | C+Hide

CausActionOnAnimates -> C+Stop | C+Go

Table 2: Transcription rules for stochastic episode generation. ‘|’ character separates
alternatives; each alternative is generated with the probability proportional to the number
after the colon (if omitted, a default value of 1 is assumed). REFL means reflexive patient
(i.e. identical with the agent individual).
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preattend = 0.99, otherwise a new individual is generated and added to the list. Non-
permanent individuals that have not been reused for past 20 steps are removed from the
list.6

10.2 Generation of properties of individuals

Each individual has specific properties such as number, gender, colour and location (see
below). Some properties non-randomly correlate with types:

• Gender—all animate individuals (people, dogs, cats, birds) are male or female, while
all things (cups, chairs, balls) are neutral.

• Colour—is stochastically chosen from Gaussian distributions centred on 11 basic
colours for things; on pink, yellow, and black for people; on black, white and brown
for animals.

• Location—all individuals are placed on positions on a 100x100 grid so that all things
are placed (randomly) in the lower half of the grid, all people in the top left quadrant,
all animals in the top right quadrant (with white dogs in the upper half of this quad-
rant and black dogs in its lower half). These regularities will help us to verify that
the candidate WM individual system produces correct expectations about locations
(see Section 11.2.3).

In addition to that, each individual has fixed type-specific features (see Table 3). These
features are represented more strongly to impose a similarity hierarchy (people (dogs
cats) birds) ((cups balls) chairs), so that, for instance, dogs are more similar to cats
than to birds, and so on.

As we mentioned, the system is not repeatedly exposed to a fixed training set, but to a
continuous stream of generated episodes. However, for measuring purposes, we divide this
stream into 40 epochs—each epoch involves 500 training episodes.

Experiencing an episode involves presenting its components in a specific sequence in the
model’s SM media. For transitive episode, the sequence is (agent→patient→trans-
action), for intransitive it is (agent→intrans-action) and for causative it is
(agent→patient→cause-signal+unergative-action). In each case the agent and
patient signals have a sequential structure of their own, namely
location→number→type/properties. Each of these latter sequences is then sent
to the WM individuals medium, activating the different components of a WM individual
representation one by one.

6It is necessary to distinguish between the list maintained by the individual generator that simulates
the external environment and a list of candidate WM individuals maintained by the cognitive system itself:
these are different lists with their own mechanisms of update and removal.
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HumanType=(THuman:3;Animate:2;Human:2)

DogType=(TDog:3;Animate:2)

CatType=(TCat:3;Animate:2)

BirdType=(TBird:3;Animate:2;Flies:2)

CupType=(TCup:3;Inanimate:2;Grabbable:2)

ChairType=(TChair:3;Inanimate:2)

BallType=(TBall:3;Inanimate:2;Grabbable:2)

Table 3: Featural representation in the ‘type’ area of WM individual. Features starting
with ‘T’ represent type-specific properties, others represent general binary properties. The
numbers represent ‘strength’ of the feature, computationally equivalent to the number of
identical units coding the same feature.

11 Experiments

In this section we describe experiments focusing on different aspects/tasks in the model.
Unless specified otherwise, the regularities described above are present in training sets in
all our experiments. For some experiments, we introduced further regularities—these are
described with the experiments.

11.1 Testing the sequence-based binding scheme

To demonstrate the new scheme for binding semantic roles in episode representations to
individuals, we must show how the WM representations created during experience of an
episode allow it to be replayed. To test this, after each episode is presented, the WM episode
medium is used as input to a replay process, in which the layers in this medium activate
the representations they point to one by one. Whenever a representation is activated in
the WM individuals medium, an analogous replay routine is executed in this medium.
If the binding scheme is effective, we should recover the same sequence of first-order SM
signals that were presented to the network during experience of the episode. Once the first-
order SM signals are recreated, they are compared to the representation of the individual
that was recorded in the original episode. Among all occurrences of agents and patients
in 500 episodes in each training epoch we evaluate the proportion of cases when these
representations match. Across all training epochs, the representations of individuals were
correctly matched in 99.7–100% of cases; this demonstrates that our proposed binding
mechanism is effective.

11.1.1 Replaying unseen episodes

It is important that the network is able to encode and replay episodes that it has not seen
before. This is a problem for some models of episode representation; for instance, models
that encode episodes as sequences using simple recurrent networks (SRNs, Elman, 1990)
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have difficulty representing episodes involving unseen sequences. (This is the case, for
instance, for the early model of McClelland et al., 1989, and for more recent models such
as Sutskever et al., 2014.) In our model, the WM episode medium should be able to encode
unseen episodes just as well as seen ones, since all WM episodes are constructed using the
same general procedure. To confirm this, we tested the trained network’s ability to encode
and replay episodes that were not encountered during training (i.e, the episodes were
previously unseen combinations of object types and the types were instantiated with novel
token individuals). We tested on 100 unseen episodes in each training epoch; 99.5–100%
of these unseen episodes were perfectly reconstructed, indicating that the WM episode
network can effectively represent unseen episodes, and allow them to be replayed.

11.2 Testing the network’s prediction/generalisation abilities

The network can make several kinds of prediction; we will focus on three progressively
more complex predictions.

11.2.1 Expectations about actions

To begin with, the cWM-ep SOM can make predictions about the episodes that are likely
to occur, which are refined as an episode is experienced. Its predictions about actions are
easiest to demonstrate, since it represents actions directly. To test the accuracy of these pre-
dictions, we exploited the following regularities in the episodes that were presented to the
system: Birds always sang (bird→sing); also when people interacted with dogs and cats,
they always patted dogs and stroked cats (person→dog→pat, person→cat→stroke).
We presented a bird as agent, or a person as agent and a dog or cat as patient (with the rest
of the WM episode medium unfilled/inactive), to the trained cWM-ep SOM, to generate
a distribution over expected episodes. We then used the pattern of activities in the whole
SOM to reconstruct a distribution of expected actions (see Section 7.1). Figure 2 shows
that these distributions are correctly weighted towards the actions encountered during
training.7

11.2.2 Prior expectations about agents

The cWM-ep SOM can also make predictions about the agents and patients of episodes.
These are more complex, because its predictions must be relayed to the WM individuals
system, which refines them based on its own knowledge. We first consider the system’s
predictions about the agent of an episode. To test these, we exploited the regularity that
all episodes had animate agents. We then generated a prior distribution over episodes in
the cWM-ep SOM (based on the relative hit frequency for each SOM unit remembered in

7These graphs show particular instances of the three episode fragments; however, a similar pattern was
also obtained when averaging across multiple instances with different token individuals.
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Figure 2: Action types predicted in the cWM-ep layer for 3 episode fragments. From top
to bottom: person→dog→?, person→cat→?, bird→?.

its scalar weight, see Section 7).8 We reconstructed a distribution over types/properties in
the agent part of the WM episode, again based on the pattern of activities of all SOM units
(see Section 7.1). Then we copied this distribution to the WM individual layer, where it
provided input to the cWM-ind network. Because this input represents an expectation,
each unit in the cWM-ind layer is activated proportionally to how well it matches the
expectation (based on the KL divergence between the unit’s weights and the expected
WM individual, see Section 5). The predicted distribution of types/properties in the WM
individual medium is then generated top-down as a linear combination of types/properties
stored in the weights of all cWM-ind units, mixed proportionally to their activities. In
this way, the resulting distribution reflects the system’s knowledge of recently-encountered
individuals.

Figure 3 shows the system’s predictions about the type of the agent, both within the
WM episode system and in the WM individual system, where they are biased by knowledge
of the individuals that have actually been encountered in the scene. Both systems predict
that inanimate agents are not possible. However, in the context where predictions were
made, there were many more humans than animals; the WM individuals system thus biases
its expectations about the agent towards humans.

11.2.3 Predictions about properties and locations

The WM episodes and WM individuals systems also interact in generating useful predic-
tions about the locations and properties of individuals encountered during episode percep-

8Another possibility based on predictions from the Next episode prediction system is explored in Sec-
tion 11.4.
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Figure 3: Prior expectations on the agent type generated top-down by the cWM-ep and
cWM-ind layers.

tion. To test these, we exploited some further regularities in the training episodes: in all
episodes involving humans interacting with dogs, the dogs were black if the agent was a
man, and white if the agent was a woman; additionally, all white dogs were located in the
upper half of the top-right quadrant of the grid and black dogs in the lower half of this
quadrant.

We then generated an underspecified representation in the WM episode: in the agent
part, we activated a representation of a person (either man or woman), and in the patient
part we activated the type dog (unspecified for colour); the rest of the WM episode units
stayed inactive. We used this representation to generate a distribution in the cWM-ep
SOM, and used the SOM activity to reconstruct predicted distributions of patient features
(see Section 7.1). These were in turn copied to the WM individual, where they were
refined by the cWM-ind network in light of its own knowledge, as before. Figure 4 shows
the activity in the colour-coding features of the resulting WM individual expectation. The
system correctly predicts a colour centred on black in RGB space for man→dog episodes,
and on white for woman→dog episodes. Importantly, unlike expectations in WM episode
medium, the cWM-ind layer is also able to generate expectations about the location of
the dog: these are illustrated in Figure 5. There is a general bias towards the top-right
quadrant, since dogs always appear there. But there are also specific biases towards the
location of the black or white dogs that the system has recently encountered, that are
based on its expectations about the colour of the patient dog.

11.3 Generalization to unseen object types

Finally, note that generalisations in the cWM-ind layer also allow it to make sensible
predictions about unseen episodes. For instance, if the system has experienced episodes
where people interact with dogs and cups as targets, but not with cats or balls, it should
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Figure 4: Expectations about the colour of the patient generated by the cWM-ep and
cWM-ind layers for episode fragments woman→dog (top) and man→dog (bottom).

nonetheless make predictions about the likelihood of episodes in which people interact
with cats or balls, based on the similarity relations between these types of target. Cats are
similar to dogs, and cups are similar to balls in our coarse-coded object representations,
so the system should predict that people’s actions on cats will more closely resemble their
actions on dogs, while their actions on balls will more closely resemble their actions on
cups. To test this, we retrained the network using episodes generated by a version of
transcription rules in Table 2 in which people always patted dogs and grabbed cups and no
episodes involved a cat or a ball as a patient. Then we presented the cWM-ep SOM with
a person as an agent and a cat or a ball as a patient, and generated a distribution over
expected episodes. We used all active units in this distribution to reconstruct a distribution
over expected actions. As shown in Figure 6, the action for the unseen cat target is biased
towards ‘pat’ while the action for the unseen ball target is biased towards ‘grab’.
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Figure 5: Expectations about location of the patient generated by the cWM-ind layer for
for episode fragments woman→dog (left) and man→dog (right). Darker areas mean
stronger expectations. Black (yellow) dots represent actual locations of currently present
black (white) dogs.

11.4 Predicting sequences of episodes

Recall that, thanks to recurrent connections, the Current situation MSOM represents
episodes together with their context (that in a compressed form encodes preceding episodes).
Activity in this medium serves as input to the Next episode prediction system that gen-
erates a distribution of possible next episodes in its output layer isomorphic to cWM-ep
system (see Sections 8 and 9). To test this ability, we presented our system with a se-
quence of training episodes, encoded as in the previous experiments, but with additional
constraints on transitions between episodes: when a person hit a dog and then the (same)
person patted the (same) dog, the dog always bit the person; however, when a person
patted a dog without hitting it previously, any random episode would follow. Then we
tested the trained network by presenting it with an episode (person→dog→pat) in two
conditions—either preceded by the episode of the person hitting the dog (A), or a different
episode (B). In each condition we propagated the information through the Current situa-
tion and Next episode prediction media to obtain a distribution of possible episodes. This
distribution was then propagated as a prior top-down expectation to the candidate WM
episode system. From there we reconstructed an expected distribution of agents, patients
and actions in the WM episode medium in a standard way (see Section 7.1). Figure 7
shows the predicted agent and patient types in both conditions: while in the condition A
(patting after hitting the dog, top row in the figure) there is a clear prediction of dog agent
and human patient, while in the condition B (bottom row) there is a general prediction of
animate agents and all possible patients.

Regarding action (Figure 8), the system correctly predicts biting in the condition A.
‘Bite’ is the strongest candidate in the condition B too, but the distribution is flat and

20



 0

 0.5

 1
G

ra
b

H
it

Pu
sh

W
al

k
R
un Li
e Si
t

Si
ng Se
e

Sn
or

e
Sn

ee
ze

Sl
ee

p
H

ol
d

H
ug Bi
te

Ki
ck

Br
ea

k
St

op
H

id
e

G
o

Pa
t

St
ro

ke

 0

 0.5

 1

Figure 6: Action types predicted in the cWM-ep layer for episode fragments per-
son→ball→? (top) and person→cat→? (bottom).

involves other actions too.
We also inspected the activity patterns in the cWM-ep medium and Current situation

after presenting the episode (person→dog→pat) in the WM episode medium. While
the activity pattern in the cWM-ep was identical, the Current situation medium responded
with different (though neighbouring) winners: a unit with map coordinates [16, 2] in the
condition A and [1, 15] in the condition B, because the episode appeared in different con-
texts.

We were also interested whether the system could capture the knowledge that the dog
and the man in the predicted episode are the same individuals as in the preceding ‘a man
patted a dog’ episode, which, on the level of episodes, can be expressed via predicting their
properties like number, colour, gender correctly. In our episode, ‘Yellow’ men (Pl) patted
a black female dog (Sg). However, in the predicted ‘dog bites person’ episode the predicted
black dog (Sg) was male with odds 80:20, and the predicted male person was in singular
(odds 70:30) and the unit for pink colour outperformed the yellow one (25:20). This is
caused by low ‘granularity’ of the cWMep system. In order to capture all the properties
correctly, it would need to store all their combinations in weights of separate units. Given
the current cWM-ep capacity (400 units), the system often generalises across individuals
while correctly distinguishing types (see also discussion in Section 12).

Finally, we inspected what happens after the expectation in the WM episode is re-
layed through the cWM-ind system. With expectations about the dog agent, the system
activated units for 3 individual black dogs (one male and two female, one of the female
being the correct one) and in the resulting expectation the gender skewed back toward fe-
male (odds 62:38). Regarding the male patient, the expectation stayed with Sg man with
dominantly pink colour. The reason is the cWMind system tries to match the expectation
copied from cWM-ep system as well as possible (and biases it by the properties of matching
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Figure 7: Prior expectation about the agent and patient of an episode following the episode
(person→dog→pat) in the condition A (the man hitting the dog previously, top row)
and B (a different previous episode, bottom row).
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Figure 8: Prior expectation about the action of an episode following the episode
(person→dog→pat) in the condition A (the man hitting the dog previously, top row)
and B (a different previous episode, bottom row).
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individuals it currently remembers).

12 Discussion

In this report, we have provided technical details of a novel model of representation of
episodes and individuals in working memory. However, the model goes beyond working
memory: we envisage that the Current situation and Next episode media also participate
in long-term memory (LTM). In this sense, information stored in the connection weights is
long-term, while a current pattern of activities constitute a working memory representation.
Also, the model is far from being complete; in the future we plan to enhance it with other
LTM media for LTM individuals and spatial and temporal contexts.

One remaining issue to discuss is the representational capacity of the model, namely its
SOMs (cWM-ep and Current situation). The theoretical upper bound for episode types9

is 368, so the cWM-ep SOM can represent each episode type by a different unit. By
exposing the trained cWM-ep to 500 stochastically generated episodes and recording the
winning units for each episode, we found out that it indeed never represented two different
episode types by the same units. However, in many cases units generalised across individual
properties such as colour or gender. To test the hypothesis that, given enough units, the
SOM would distinguish individuals, we ran another experiment where all episodes involved
just dogs, cats and 2 transitive, 2 intransitive and 2 causative actions (i.e. 20 episode
types), moreover the individuals were fixed—the world consisted of 7 dogs and 3 cats that
featured in all the episodes. We inspected the SOM winning units in the same way as
above, and now the system distinguished between individuals: all episodes involving the
same individuals and action were represented by the same units, while an episode of the
same type involving different individuals was represented by a different unit. A (frequent)
exception to this was generalization across individuals in one of the roles, e.g. episodes
involving a particular individual dog as agent biting one of two individual cats in the
patient role. Clearly, the cWM-ep medium cannot store all possible combinations of all
possible individuals in different roles, but this is not its purpose anyway. The medium is
flexible enough to adapt to its capacity limits by generalising over smaller and less frequent
differences. The same holds for the Current situation medium, where the combinatorial
possibilities of episodes in different contexts would be even more demanding.
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