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A simulationist model of episode representations in working memory
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Abstract

We present a neural network model of how the brain encodes episodes and individuals in semantic
working memory (WM). The model rests on the assumption that concrete episodes, and the
individuals that participate in them, are perceived through sensorimotor routines with well-defined
sequential structure. In our model, episodes and individuals are stored in semantic WM as prepared
sensorimotor routines, that can be internally replayed. This assumption allows a neural model of
semantic representations with several new features. Firstly, the model provides a novel account of
binding: specifically, of how individuals are bound to semantic roles in episodes (such as agent and
patient). Secondly, it gives a novel account of hierarchical structures in semantic representations:
specifically, an account of how the representations of individuals participating in an episode are
embedded within a representation of the episode. Thirdly, the model is able to represent large
probability distributions over episodes, and over the properties of their participant individuals,
rather than just representations of a few selected episodes and individuals. This capability allows a
novel account of how top-down expectations influence processing in real time during the experience
of new episodes. Finally the model supports a novel account of the interface between WM and
long-term memory.

Keywords: semantic working memory, embodied cognition, simulation, neural binding, neural
networks

1. Introduction

While traditional models of human working memory (WM) focus on memory for phonological
and visuospatial material (Baddeley and Hitch, 1974; Baddeley, 1992), in recent years a consen-
sus has emerged that the human WM system also stores representations that should be termed
‘semantic’ (Martin et al., 1994; Fletcher and Henson, 2001; Fiebach et al., 2007; Jackendoff, 2010,
Shivde and Anderson, 2011). This extended conception of WM partly stems from Baddeley’s
own revision of his classic model, to include an ‘episodic buffer’ holding modality-independent
semantic representations (Baddeley, 2000). Baddeley argues for this medium on several grounds.
One relates to memory storage: Baddeley argues that an episode occurring in the world cannot be
directly encoded in hippocampal long-term memory (LTM), because hippcampal learning mecha-
nisms operate over short timescales, on the order of 100ms (Abraham et al., 2002) while episodes in
the world take much longer than this to occur. Another argument relates to behaviour: Baddeley
argues that an agent must maintain a representation of ‘the current situation’, identifying events
which have recently occurred, and supporting decisions about future actions and events, to explain
how patients with impaired long-term memory can perform relatively normally on complex tasks
such as playing bridge. A final argument relates to language. In phonological WM experiments,
subjects are much better at recalling well-formed sentences than unrelated sequences of words:
Baddeley argues this is because the meaning of a sentence, stored separately from its phonology,
provides an additional cue to recall. In fact Baddeley proposes that the episodic buffer can hold
more than the meaning of a single sentence; he also invokes the episodic buffer to explain why
amnesic patients, who are unable to retain information about a text for any length of time, can
nonetheless recall the ‘gist’ of a paragraph of text over a short period.
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In Baddeley’s account, a key role for the episodic buffer is to interface between several other
cognitive modalities. It is a medium linking the low-level sensorimotor (SM) representations pro-
duced as episodes are experienced in the world to the more abstract representations of episodes
stored in hippocampal LTM; at the same time, it has links to phonological WM, to explain how
semantic representations can aid phonological recall. The notion that semantic WM representa-
tions are an important interface medium is echoed by many subsequent studies. In Fletcher and
Henson’s (2001) account, semantic information to be encoded in LTM must first be maintained
and/or elaborated in WM, and semantic information retrieved from LTM also becomes active in
WM. Other accounts focus on how semantic WM representations interface with language. Fiebach
et al. (2007) find evidence that interpreting verbal stimuli results in the activation of semantic rep-
resentations in WM; Shivde and Anderson (2011) find evidence that the semantic representations
activated by verbal stimuli are maintained for the duration of semantic WM tasks (but crucially,
not beyond this duration). Several studies find evidence that during sentence production, parts of
the message to be realised by the sentence are stored in semantic WM prior to its generation (see
e.g. Martin and Freedman, 2001; Martin et al., 2010; Slevc, 2011; but see Martin et al., 2014 for
some caveats). Finally, there are accounts where semantic WM representations buffer information
relevant to action. For instance in Itti and Arbib’s (2006) model, an agent builds a representation
of a ‘minimal subscene’ in his current environment, which binds the parameters for an action to be
performed or observed. (In this model, the subscene representation also interfaces with language.)

While there is some agreement that semantic WM representations interface with several dif-
ferent modalities, there is still relatively little understanding about the form of semantic WM
representations, and about how they are organised. In this paper, we address these questions in
a neural network model of semantic WM. A computational model can make a useful contribution
to a debate about the format of semantic WM representations, because it can integrate findings
about the role of these representations as they interface with several different cognitive processes.
If the semantic WM representations that interface with the SM system are the same as those that
interface with language, and with LTM, experimental findings about all three interfaces define
multiple simultaneous constraints on the format of semantic WM representations. In our model,
we use constraints relating to one interface to help answer questions about other interfaces. In the
first instance, a constraint on the semantic WM system relating to its interface with SM processing
suggests a new solution to a ‘binding problem’ that features in network models of language pro-
cessing: how to bind representations of the participants in an episode to the semantic roles they
play (e.g. agent, patient). The resulting model of semantic representations in turn suggests a
new account of hierarchically structured syntactic domains within sentences, which we express in
a model of sentence production. It also suggests a new way of representing ‘situations’ in semantic
WM, in the context of a model of inference and decision-making.

In Section 2 we outline some requirements for a model of WM semantic representations, drawing
on recent experiments as well as well-known results, and discussing interfaces with language,
LTM and the SM system where appropriate. Our aim here is to suggest linking hypotheses,
that suggest identities between elements of cognitive models of different cognitive systems, that
help to state a single unified account of semantic WM. We also introduce a key proposal of our
model: that experience of episodes in the world, and of the individuals that participate in them,
happens through temporally extended SM routines with well-defined sequential structure, and
that semantic representations in WM retain this structure. In our model, individuals and episodes
are represented in semantic WM as prepared SM routines, that can be internally rehearsed or
simulated. In Section 3 we outline a new model of semantic role-binding that exploits this idea,
and discuss how the new model supports a new conception of hierarchical domains in syntax,
and a new way of representing whole ‘situations’ using probability distributions over episodes.
The model itself is introduced in Section 4, and its training and evaluation are described in 5. In
Sections 6 and 7 we describe how the model interfaces with language, and with long-term memory.
We conclude with a discussion in Section 8.
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2. The structure of the semantic WM system

What types of information does the semantic WM system hold? Baddeley’s (2000) model
focusses on two types of information: semantic WM is able to hold a single episode representation,
encoding the meaning of a recently-heard sentence, or an experienced episode prior to its storage
in LTM, but it is also able to store representations larger than a single episode, expressing the
gist of a paragraph of text, or the state of play of a complex game. We will add one other type of
information to the list: if semantic WM is able to represent a single episode, it must also be able to
represent the agents or objects that participate in this episode. We will refer to the representations
larger than a single episode as situations, and the entities that participate in a single episode
as individuals. In this section we review what is known about the WM storage of individuals,
episodes and situations, and discuss how these storage systems relate to one another.

2.1. WM representations of individuals

While some aspects of our WM for individuals are covered in Baddeley’s model by the ‘vi-
suospatial sketchpad’, that holds WM representations of visually presented stimuli, the topic of
WM for individuals is in fact a research field in its own right, of great relevance for an account of
semantic WM. Research into WM representations of objects and their properties has been con-
ducted within two experimental paradigms, one using behavioural experimental methods and one
using brain imaging and recording methods. We will consider these separately.

Behavioural methods. A starting point for many recent behavioural studies is Luck and Vogel’s
(1997) investigation of subjects’ ability to detect a change in a visually presented array of objects.
Luck and Vogel made two key observations. Firstly, subjects’ ability to detect a change deterio-
rated rapidly if there were more than four objects in the presented array. This indicates a capacity
limit of some kind for the WM resource used to represent the objects. Secondly, subjects’ perfor-
mance did not depend on whether change was constrained to occur in one visual ‘feature’ of the
objects (e.g. colour) or could occur in one of several features (colour, size, orientation and shape).
This suggests that the capacity limit is not defined in units of visual features. Luck and Vogel
proposed instead that the capacity limit is defined in units of whole objects—specifically, that the
WM medium used to store the properties of objects contains four ‘slots’, which can each store a
complete object representation. This proposal is supported by several other experiments; see e.g.
Awh et al. (2007); Anderson et al. (2011). (There is also interesting evidence that each ‘slot’
can hold a homogeneous group of individuals of a given type, as well as a single token individual;
see in particular Feigenson, 2008). However, there are also experimental results suggesting that
the capacity of WM for object properties is defined in more abstract informational units. Several
studies have shown that success in the change-detection task can depend on the complexity of the
features that distinguish objects as well as just on the number of objects or groups. Complexity
can be defined in terms of the subtlety of colour variations (Wilken and Ma, 2004) or the use of
3D rather than 2D stimuli (Alvarez and Cavanagh, 2004); in either case, if the amount of infor-
mation that must be retained about each object is increased, the number of objects that can be
simultaneously encoded in WM is less than four. A similar reduction is observed if objects are
distinguished by properties of their sub-parts (see e.g. Davis and Holmes, 2005). In summary, the
medium that holds WM representations of objects and their properties appears to make use of
both object-based encodings and feature-based encodings. How it does this remains a fairly open
question.

Brain localisation methods. The brain imaging and recording strand of research into WM object
representations focusses on analysing the patterns of neural activity and connectivity that occur
during the delay period of WM tasks. Aspects of these patterns must encode the information
that is retained about objects and their properties. One clearcut finding is that during the delay
period of a WM task, there are patterns of activity outside the primary sensory and motor areas,
primarily in prefrontal cortex (PFC), that encode aspects of the material to be retained. Single-
cell studies of macaque PFC provide particularly clear data about the nature of these patterns.
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spatial location visual form/properties

convergence zone units

spatial location visual form/properties Sensory/motor (SM) cortices

Prefrontal cortex (PFC)

Figure 1: A simple model of PFC mechanisms for holding representations of individuals in WM

Some PFC cells encode individual features of the objects being remembered—for instance, just
the location of an object, or just an intrinsic property such as colour or size (see e.g. Wilson
et al., 1993; Rao et al., 1997). Others encode task-relevant combinations of features, such as
location and colour (Rao et al., 1997; Rainer et al., 1998). Similar results have been found in
human PFC (see e.g. Curtis and D’Esposito, 2003; Takahashi et al., 2013). These studies provide
good evidence that there are circuits in PFC that can maintain representations of perceptually-
encountered objects, even when these objects are not present before the senses. They also suggest
that PFC units can hold associations between the features of objects in WM. A unit that holds
associations between several features must be linked to units that represent each of these features
individually: it functions as a ‘convergence zone’, whose meaning resides in its pattern of links
to assemblies in other areas (see Damasio and Damasio, 1994). In some prefrontal circuits such
associative links are learned gradually, over extended periods (e.g. Averbeck et al., 2006). But
there are also synaptic mechanisms in PFC that operate over short timescales, allowing PFC
units to hold short-term associations between stimuli in service of WM tasks (see Stokes, 2015
for a review). The picture of WM representations that emerges so far is sketched in Figure 1.
When an object is presented, its properties (e.g. location and form) are represented in assemblies
in various sensory areas (predominantly parietal and inferotemporal cortex). These assemblies
activate corresponding assemblies in PFC, that again hold particular properties of objects, but
can sustain their activity during a delay period when the object is removed. Associations between
these PFC assemblies are stored in temporary connections to units in a ‘convergence zone’, which
can also sustain their activity.

One question that arises with this scheme is why there should be intermediate prefrontal units
that store the spatial location and intrinsic properties of a perceived object separately. This might
be because in some cases the agent is not required to represent all the features of the object in
WM. However, as discussed earlier, there is often no penalty in representing more than one of an
object’s features. We would like to raise another possibility: the location and intrinsic properties
of a perceived object are in fact activated at different times in the SM cortices, as well as at
different locations. The spatial location of an object must be selected and attended to before the
object can be categorised in any detail (for classic results, see Treisman and Gelade, 1980, and for
recent single-cell evidence see e.g. Moore and Armstrong, 2003; Zhang et al., 2011). In addition,
representations of the attended spatial location in primary SM areas fade quite fast (Posner et
al., 1984; Ro et al., 2003; Müller and Kleinschmidt, 2007), so there is some utility in storing the
location and properties of an object separately in WM buffers, where they can be represented
in parallel. In fact the ability of PFC to maintain parallel representations of stimuli that occur
sequentially is seen by many as central to its role in WM; and it will be central to our model.

Note that the convergence-zone scheme sketched in Figure 1 can model WM for multiple ob-
jects, as well as WM for associations between properties of a single object. It cannot hold multiple
object representations in parallel: if we activate the location and properties of two objects simul-
taneously, there is a well-known ‘binding problem’, whereby both locations are indiscriminately
associated with both sets of properties. However, a convergence-zone unit can learn an association
between the features of one object, and retain this for a short period even after it ceases being
active. Assume two objects, O1 and O2, are attended to in succession. When O1 is presented,
convergence-zone units can be recruited to hold associations between its properties. Then PFC
activity can be reset and O2 can be presented, with a different set of convergence-zone units be-
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ing recruited to hold associations between O2’s properties. Now activating a property of O1 will
retrieve a pattern in the convergence zone layer that will reactivate the other properties of O1,
and similarly for O2. In fact, if the pool of convergence-zone units is small enough, and properties
are represented with distributed encodings, then crosstalk within the network could explain the
‘informational’ limits on WM for multiple objects discussed above (Wilken and Ma, 2004; Alvarez
and Cavanagh, 2004).

The model of prefrontal WM sketched in Figure 1 is somewhat complicated by another set of
findings. As well as activity in PFC during the delay period of a WM task, there is also often
activity in primary sensory areas, or in motor areas, if there are motor representations of objects
to be maintained: see D’Esposito (2007) for a review of these findings. For instance, in macaque,
there is delay-period activity in inferotemporal cortex, reflecting intrinsic object properties retained
in WM (Nakamura and Kubota, 1995; Takeda et al., 2005), and in intraparietal cortex, reflecting
locations to be retained (Andersen and Buneo, 2002). Similar results are again found in humans
(see e.g. Curtis et al., 2004; Schluppeck et al., 2006). Computationally, this delay-period activity
in primary SM areas is hard to understand, because we expect it to interfere with any sensory
or motor processing occurring during this time (Deco and Rolls, 2008). However, there is an
interesting potential explanation, consistent with a model where PFC assemblies play the primary
role in WM storing object properties. It could be that WM representations in PFC support the
active rehearsal of the SM experiences they encode during the delay period—perhaps at rapid
speeds that enable storage in the hippocampus. We can envisage a rehearsal mechanism that
temporarily disengages SM areas from interaction with the world, and puts them under the control
of PFC assemblies, to allow the re-enactment (possibly speeded) of the SM experiences they store.
On this model, the convergence-zone representations of objects held in PFC (see Figure 1) can
be temporarily activated during the delay period, in a manner that reactivates associated PFC
assemblies, and also, indirectly, assemblies in primary SM areas. This hypothesis is supported by
several recent studies showing that the neural populations in primary SM areas that encode object
properties during a delay period are active transiently, rather than tonically. For instance, Meyers
et al. (2008) showed that the cells in macaque inferotemporal (IT) cortex that encode the category
of a remembered object do so better at particular times during the delay period, that endure on
the order of a few hundred milliseconds. A similar result is found in an fMRI study of human
extrastriate visual cortex (Sreenivasan et al., 2014). There is some evidence that the reactivation
of remembered stimulus properties happens cyclically, at particular phases in the theta cycle; see
e.g. Lee et al. (2005) for evidence from macaque extrastriate visual cortex and Fuentemilla et al.
(2010) for MEG evidence in humans. Poch et al. (2011) have shown in the human MEG data that
this cyclic reactivation is coupled with cyclic activity in the hippocampus, and that the strength
of this coupling correlates with performance in a WM task. There is also evidence for dynamic
patterns of activity in PFC during WM maintenance. This is shown in the study by Meyers et
al. (2008) discussed above. Finally, there is evidence that stimuli held in WM are encoded in
temporally structured patterns of activity in PFC, not just tonically active patterns. Siegel et al.
(2009) recorded activity in macaque PFC neurons during a task that required them to remember
two objects, presented sequentially. They found that the PFC neurons that encoded the identity
of objects during the delay period did so best at two specific phases of a 32Hz cycle. Moreover,
information about the first object presented was best decoded at the first of these two phases,
while information about the second object was best decoded at the second phase, ‘as if. . . object
information was multiplexed in the 32Hz oscillation according to object order’. Additionally, the
32Hz oscillation was modulated by a slower 3Hz cycle: spikes carried most information about both
objects at a particular phase in this cycle. These findings are certainly compatible with a model
in which representations of perceived objects are stored in prefrontal WM, and then replayed, so
they can be stored more permanently in the hippocampus. (This idea is further supported by
evidence that the brain uses the same codes to represent the SM properties of objects in WM and
LTM; see Brady et al., 2011 for a review.)

In summary, there is evidence that objects and their properties are stored in WM in temporary
assemblies of PFC neurons that can be transiently reactivated, in a manner that reactivates their
associated SM representations (and possibly associated representations in the hippocampus). But
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there are several questions that remain. Firstly, what prefrontal mechanism is responsible for the
transient reactivation of these temporary object representations in PFC? Secondly, it should be
recalled that alongside transiently active WM assemblies in PFC, there are also PFC assemblies
that encode object properties in sustained activity over the whole delay period. (Recent studies
confirm there are two groups of PFC neurons that encode remembered object properties, one with
sustained activity over the delay period and one with variable activity; for instance, this is shown
in macaque by Mendoza-Halliday et al., 201, and in rats by Baeg et al., 2003.) If convergence-zone
units can store associations between the properties of objects without being tonically active, what
role is played by the tonically active object representations in PFC? Do they perhaps have a role
in reactivating the transient object representations? Finally, there is nothing in the simple model
in Figure 1 to explain why in some circumstances the capacity of WM is defined in units of ‘whole
objects’ rather than in informational units. There are some neural network models that obtain
object-based effects without any explicit notion of ‘slots’ for storing object representations (see in
particular Wei et al., 2012). However, given that semantic WM must store not only individuals,
but the episodes they participate in, there are other reasons to consider a slot-based model, as we
will now discuss.

2.2. WM representations of episodes

In Baddeley’s model, the semantic WM system is able to hold a representation of a complete
episode, involving multiple participants. WM representations of episodes are higher-level objects
than the WM representations of individuals that we discussed in the previous section, and conse-
quently harder to study. However, there is good evidence that episodes are a real unit of cognitive
organisation: for instance, there is evidence that specialised brain networks become active at the
boundaries between experienced episodes (Zacks et al., 2001; 2007; Sridharan et al., 2007). In the
current paper we will make four assumptions that help to cast light on how episode-sized chunks
of experience are represented.

Firstly, we assume that WM episode representations include, or make reference to, WM rep-
resentations of individuals. This is a fairly uncontroversial assumption, but it is of real value in
developing a model of WM episode representations: it means that any model of WM individuals
is also a component of a model of WM episodes. This fact places quite strong constraints on both
models. For instance, if we know that WM individuals are stored in a circuit encompassing cer-
tain prefrontal and primary SM areas, we can infer that this same circuit also participates in the
mechanism that stores episodes in WM. Furthermore, the mechanism that associates individuals
with the semantic roles they play in an episode (such as agent and patient) must operate on the
representations of individuals provided by the model of WM individuals. Conversely, the model
of WM individuals can assume the existence of an episode-storing mechanism that can represent
multiple individuals simultaneously. As already mentioned, one possibility is that the ‘multiple
slots’ proposed in Luck and Vogel’s (1997) model of WM individuals could be slots in a WM
episode representation, that hold the participants in a WM episode.

A second assumption is that the neural machinery that represents an episode in WM should
allow this episode to be actively rehearsed. That is, it should be able to recreate in relevant ways the
patterns of activity that occured when the episode was experienced. This capability is an essential
one if WM episodes are to serve as the interface between SM experience and LTM representations
in the hippocampus: in Baddeley’s model, WM mechanisms must be able to reactivate episode
representations at a timescale appropriate for hippocampal learning. Moreover, as discussed in
Section 2.1, there is good evidence that WM representations of individual objects can be actively
rehearsed. If the WM individuals system is a component of the WM episodes system, as just
argued, then we already know that some components of WM episodes can be rehearsed. But there
is still a question as to what it means to rehearse ‘the experience of a whole episode’.

A third assumption relates to how episodes are experienced. This is an assumption about the
SM processes from which WM representations of episodes are built, rather than about the WM
system as such. We assume that episodes are experienced through SM routines with well-defined
sequential structure. It is uncontroversial that experiencing an episode takes time, and there is
widespread acknowledgement that neural representations of episodes must encode relationships
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between temporally discontiguous events (see e.g. Eichenbaum, 2006). The idea that cognitive
representations of episodes exploit their sequential organisation already features in some models
of episode representation, in particular that of Zacks et al. (2007) and Kemmerer (2012). Our
proposal is that episodes have a component of discrete sequential structure, originating from
the SM operations through which they are experienced. Our background assumption is that
SM experience is organised into sequentially structured SM routines, whose atomic elements are
relatively discrete attentional, perceptual or motor operations (see Ballard et al., 1997). We have
studied the SM processes involved in experiencing simple episodes involving transitive actions,
such as a person grabbing a cup (Webb et al., 2010; Knott, 2012), and causative actions, such as
a person opening a door (Lee-Hand and Knott, 2015), and found good evidence for such routines.
There is strong evidence that the participants in such episodes are attended to one by one, whether
the observer is executing the action him/herself or watching another agent executing the action.
Moreover, there is evidence from several experimental paradigms that the observer attends to
the agent of the episode before the patient, and only activates a representation of the action
category when both the agent and patient have been attended to (for a review of this evidence,
see Knott, 2012; 2014a). This evidence suggests that the attentional actions through which the
agent and patient of an experienced actions are identified may be associated with particular
serial positions in a SM routine—specifically, that the first object attended to is the agent, and
the second object attended to is the patient. This idea has certainly been proposed in linguistic
models of semantic roles. In particular, Dowty (1991) proposes a model in which there are only
two semantic roles: ‘proto-agent’ (the participant that is attentionally most salient) and ‘proto-
patient’ (the participant that is attentionally less salient). In our view, this model is strongly
supported by studies of episode perception.

If episodes are experienced in canonically structured SM routines, there are several implications
for a model of WM storage of episodes. For one thing, a commonality is highlighted between WM
representations of episodes and WM representations of individuals: both representations encode
sequences of SM stimuli. (Recall from Section 2.1, that WM representations of individual objects
maintain parallel representations of location and category, which become active sequentially during
object perception.) On this view, a WM episode representation is essentially, a prepared sequence
of SM operations: given that a WM episode serves to guide the agent’s behaviour in generating
actions or monitoring incoming episodes, it must be able to reactivate the sequentially encountered
components of the episode in real time, in the order they were initially encountered. At the
same time, however, the temporally distinct components of an experienced episode should be
stored in a format that allows them to be presented simultaneously, or near-simultaneously, to the
hippocampus, so the episode can be encoded in LTM.

If an episode is held in WM as a prepared sequence of SM operations, this is useful from a
methodological point of view, as it places them within a category of neural representation that
has been extensively studied in monkeys. There is very good evidence in macaque that prepared
sequences of attentional and/or motor operations are held in assemblies in dorsolateral PFC (see
e.g. Barone and Joseph, 1989; Shima et al., 2007). Of particular interest is the finding that
the component operations in a prepared sequence are active in parallel in these assemblies, even
though they are executed sequentially (Averbeck et al., 2002; Averbeck and Lee, 2007). This gives
them exactly the properties that are needed to serve as WM episode representations, on the above
model: they support sequential replay of experiences, but they also support simultaneous transfer
of episode representations to the hippocampus. It also further emphasises the commonalities
between WM episodes and WM individuals: in both cases, items that occur sequentially in SM
experience are stored in parallel in WM.

A final assumption we will make is that the mechanism that represents episodes in WM inter-
faces with sentence processing mechanisms. Specifically, we assume it represents (in a hearer) the
meaning of a sentence that has just been interpreted, and (in a speaker) the meaning of a sentence
which is about to be produced. These assumptions mean that WM episode representations can
be studied in sentence processing experiments. The idea that sentence processing experiments
provide a means for studying semantic WM representations has surfaced in various forms in the
literature: for instance in Potter and Lombardi’s (1990) hypothesis that short-term recall of a
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sentence is mostly based on its meaning, and in the more nuanced claim of Schweppe et al. (2011)
that such recall engages both phonological and semantic WM processes. Of course sentences also
have syntactic structure, and there is good evidence that elements of syntactic structure are also
stored in WM (see e.g. Potter and Lombardi, 1998; Schweppe and Brunner, 2007). Since some
components of syntactic structure are closely linked to semantic structure, it is possible that se-
mantic WM representations also encode some aspects of syntactic structure. We will make two
specific proposals, that link models of syntax developed by linguists with an account of semantic
WM. Firstly, we will propose that the syntactic relationship between a sentence and its constituent
noun phrases (NPs) reflects the relationship between a WM episode representation and its com-
ponent WM individuals (at least for referential NPs). Secondly, we will propose that the notion
of the ‘syntactic heads’ of NPs and clauses derives from an aspect of the structure of WM episode
and individual representations.

2.3. WM representations of situations

In Baddeley’s model, semantic WM can hold a representation of a single episode, but it can
also represent the ‘context’ that an episode occurs in: for instance, the current state of play in a
game, or the gist of a recently read paragraph of text. A context has both spatial and temporal
components. We have already discussed one aspect of the spatial component: as discussed in
Section 2.1, there is a WM medium that holds representations of recently-encountered individuals,
in a convergence zone that links spatial locations to object properties. This convergence zone can
be thought of as holding a representation of the current spatial context. But we still need to
consider the temporal component: that is, how WM represents ‘the current moment’. We will
refer to this representation as a representation of the current situation.

A representation of the current situation is even more derived than a representation of the
current episode, and thus even harder to investigate empirically. But here again we can make
some helpful cross-disciplinary assumptions that provide constraints for a WM model.

Firstly, we assume that the situation representation must support decisions in the motor system
about what to do next, and expectations in the perceptual system about what will happen next.
Generalising over these cases, we assume that a WM representation of ‘the current situation’
provides top-down input into the SM processes that determine what episode is experienced next,
whether the episode involves an action of the agent or of some external individual. In other
words, it holds ‘prospective’ information (guesses or plans) about the future. There is widespread
agreement that PFC is important in encoding the ‘task’ or ‘cognitive set’ of an agent (see e.g.
Warden and Miller 2010 for recent evidence), but the impact of the current cognitive set is also
seen in modulation of activity in primary SM areas (see Miller and Cohen, 2001). At issue is how
this cognitive set is stored. One interesting finding is that PFC can represent several alternative
possible episodes simultaneously. For instance, Averbeck et al. (2006) show that if a monkey is
choosing between two alternative action sequences, both sequences are represented simultaneously
in the activity of dorsolateral PFC cells. Representations of multiple alternatives can also be
seen in lower-level SM cortices: for instance, in the parietal and premotor areas that select and
control reach actions to target objects, there is evidence that multiple alternative targets are
represented simultaneously at an early stage of processing, with the selected target gradually
becoming dominant over time (see e.g. Shadlen and Newsome, 2001; Cisek and Kalaska, 2005). A
common proposal in recent Bayesian models of neural function is that patterns of neural activity
can represent not only specific actions or perceptual judgements, but also probability distributions
over possible actions or perceptual judgements (see e.g. Kiani and Shadlen, 2009; Pouget et al.,
2013). It is attractive to think of situation representations in this way, as distributions over
all possible atomic states or events (see e.g. Frank et al., 2009). In our model, in line with
this idea, PFC holds a WM representation of ‘the current situation’, which induces a probability
distribution over possible episodes. This representation provides top-down guidance to the process
of experiencing an episode, in real time, that can be seen in dynamic changes to distributions
over possible actions, locations and object properties in lower-level SM cortices. (Note that the
convergence zone linking object locations to object properties can be thought of as holding a
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distribution over possible individuals in the current context, so on this proposal, both the spatial
and temporal components of the current context can be modelled as distributions.)

A second assumption is that the WM representation of the current situation must also support
update operations. There are various ways in which an agent’s cognitive set can be changed. When
unexpected circumstances arise, agents may have to change their plans quite dramatically (see e.g.
Braver and Cohen, 2000), but updates can also occur more gradually and/or predictably during
the performance of a particular task, to register a task-relevant stimulus (Warden and Miller, 2007;
Mante et al., 2013) or to mark a particular component of a complex task as completed (Cooper
and Shallice, 2000). In either case, the update is a function of the episode that has just been
experienced. There is good evidence that update operations are implemented in recurrent circuits
in PFC (Mante, 2013), that extend into subcortical areas in the striatum (see e.g. Dominey
and Bossaoud, 1997). The dopaminergic neurons in these striatal areas appear to have a role in
enabling updates to task set (see D’Ardenne et al., 2012 for recent evidence, and O’Reilly and
Frank, 2006 for a computational model). Computationally, the update operation is a function
that takes a representation of ‘the current situation’, plus a representation of the episode that has
just been experienced, and returns an updated situation. What this means is that the ‘current
situation’ can reflect not just the most recent episode, but a sequence of recent episodes: that
is, it holds ‘retrospective’ information about recently-experienced episodes as well as ‘prospective’
information about upcoming episodes. We assume this is why it is able to hold a representation
of the ‘gist’ of a multi-sentence paragraph of text.

A third assumption is the representation of the ‘current situation’ that is maintained in WM
communicates with an analogous representation in LTM. There is good evidence for representations
of spatial and temporal context in LTM, particularly in parahippocampal areas (see e.g. Epstein
et al., 2007; Turk-Browne et al., 2012): these are important for individuating token episodes
stored in memory (Tulving, 1983). Episodic LTM shows strong sequential organisation, and
is often modelled using a recurrent circuit, in which representations of individual episodes can
update a representation of spatial and/or temporal context (see e.g. Lisman, 1999; Howard et
al. and Kahana, 2002). There is a growing consensus that representations of context in WM are
synchronised with those in hippocampal LTM, particularly those representations that support the
encoding of sequential stimuli (for a review, see Burgess and Hitch, 2005).

A final assumption is that the WM situation representations that influence motor behaviour
and perceptual expectations and communicate with episodic LTM are also involved in language
processing. A representation of ‘the current situation’ is of great importance in language process-
ing. Most obviously, such a representation exerts a strong influence on sentence intepretation, in
helping to choose between alternative possible meanings (see e.g. Pickering and Traxler, 1998;
Traxler, 2014). If the current situation induces a probability distribution over possible episodes,
it can directly inform this disambiguation process, in much the same way it helps decide between
alternative sensory or motor operations during direct experience of the world. In fact, even setting
contextual influences to one side, the basic process of parsing a sentence requires the enumeration
of a very large number of alternative possible structures and associated interpretations. The best-
performing computational models of sentence parsing rely heavily on a ‘chart’ data structure that
represents a large probability distribution over possible interpretations (see e.g. Collins, 1996); it
is likely the brain requires a data structure of this kind too (see e.g. Charniak, 2011). If a WM
situation representation induces a probability distribution over possible episodes, it could also
perhaps serve as the chart that represents alternative possible parses of an incoming sentence. On
this model, the WM situation representation would have a role both in enumerating alternative
possible sentence structures/interpretations, and in weighting these alternatives in the light of the
current context (see Traxler, 2014 for evidence connecting these two roles).

Another important role for the ‘current context’ representation in language is to hold a set
of salient discourse entities. Indefinite noun phrases (e.g. a dog) introduce entities into the
discourse, while definite noun phrases (e.g. the dog) and pronouns (e.g. it) presuppose entities
with particular properties, that have recently been introduced or become salient (Kamp, 1981;
Heim, 1982). The WM medium that stores visuospatial representations of recently-encountered
objects (see Section 2.1) also has a role in representing recently-encountered individuals. There
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is some evidence that this medium is also involved in representing salient discourse referents: for
instance Wallentin et al. (2008) show that subjects processing a sentence introducing discourse
referents create spatial representations in parietal cortex, which can be reactivated by pronouns in
a subsequent sentence. However, there is also evidence that discourse referents and real objects are
represented in distinct neural media (see e.g. Hickok and Bellugi, 2010), so if visuospatial WM has
any direct role in language processing, it is likely to be supplemented with other more language-
specific representations. Nonetheless, there is some evidence that nonlinguistic representations of
the current spatial context also play a role in a linguistic account of reference.

2.4. Summary

In the model outlined above, the semantic WM system comprises five media. One represents
a single object, or a single homogeneous group of objects, specifying its location and intrinsic
properties, or a distribution over likely locations and properties. We will call this medium the
WM individual medium. (We intend the term ‘individual’ to cover both a single object and a
homogeneous group of objects of a single type.) A second medium is a convergence zone whose
units hold short-term associations between the properties and locations of recently-encountered
individuals. We will call this medium the candidate WM individuals medium, since it repre-
sents the possible individuals that can be attended to at the current time. This medium encodes
an aspect of the current ‘spatial context’. A third medium holds a representation of a single whole
episode. This could be an episode that has just been experienced through SM interaction with
the world, or an episode featuring an action that the agent is preparing to execute. We will call
this medium the WM episode medium. We argue that the ‘slots’ that allow storage of three
or four separate individuals in WM are components of the WM episode medium, whose primary
purpose is to represent the multiple participants in an episode. The fourth medium holds a prob-
ability distribution over possible episodes, which guides online processing of new episodes. We
will call this medium the candidate WM episodes medium. The distribution in this medium
is generated by the representation in the final medium, the current situation. The current sit-
uation is updated after each episode that is experienced. In our model, WM individuals and WM
episodes are represented in PFC as prepared sequences of SM operations: one of their roles is to
support the active replay of the sequentially structured SM processes through which individuals
and episodes are perceived. At the same time, they hold tonically active, parallel representa-
tions of their component elements: a format that supports the transmission of individual/episode
representations to longer-term storage in the hippocampus. In our account, all five WM media
interface with LTM representations. WM representations of individuals use the same ‘codes’ as
LTM representations of individuals, and interface with LTM representations of spatial environ-
ments; WM representations of single episodes can be replayed to hippocampal LTM, and WM
representations of whole situations are mapped to sparser, more localist representations of context
in hippocampal/parahippocampal LTM. We also propose that replay operations provide a way
for WM representations to interface with language. Specifically, we propose that producing a
clause involves replaying a WM episode, and producing a noun phrase involves replaying a WM
individual.

In the rest of the paper, we will present a neural network model of representations in these
five media, and how they interact with each other, and with LTM and language. We introduce
the main new ideas in the model in Section 3, and present the model in detail in Section 4; in
Section 5 we describe how the network is trained and tested, and evaluate its performance.

3. Technical innovations in the network

There are two key technical challenges in implementing a WM model with the properties just
outlined. We will describe these in turn, along with our proposed solutions.
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3.1. Binding WM individuals to semantic roles

One challenge is that the WM episode representation must make reference to multiple distinct
individals, and associate each of these with a particular semantic role. If there is a single medium
within which individuals are represented, it is difficult to represent multiple individuals without
blending their properties. If the individuals have to be associated with different semantic roles, it
is also hard to assign specific roles to specific individuals. Several solutions have been proposed
to this problem. We will focus on the two best-known solutions. In the model of van der Velde
and de Kamps (2006), a collection of special-purpose binding units allow the reification of binding
relationships in short-term synaptic weights: each individual participating in an episode can be
linked to its own binding unit, which is in turn linked to a particular semantic role. In the model of
Stewart and Eliasmith (2012), multiple bindings are made possible by the use of high-dimensional
vector representations that permit the results of binding operations to be represented in the same
vector space that represents the elements being bound. However, if episodes are experienced in
canonically structured SM sequences, and are stored in WM as prepared SM sequences, as we
propose, there are some alternative ways of solving the binding problem that are worth consider-
ing. In this scenario, the key point is that representations of the individuals participating in an
episode are guaranteed to be activated one by one during experience—and in a particular order,
whereby the agent is activated first, and then the patient.1 The process that builds a WM episode
representation can take advantage of this ordering constraint.

We envisage that during experience of an episode involving two participants, the agent activates
two WM individual representations in the succession in the same medium: first one representing
the agent, and then one representing the patient. Our first key proposal is that these two repre-
sentations are copied to different slots in the medium representing the current WM episode: the
first representation is copied to a slot representing the agent of the episode; the second is copied
to a slot representing the patient. In the WM episode representation, therefore, the agent and
patient are coded ‘by place’: agents and patients occupy separate areas. Using place-coding to
bind individuals to semantic roles is normally dismissed as something of a straw man: in a simple
place-coding scheme, the representation of a man as an agent has nothing in common with the rep-
resentation of a man as a patient, and this introduces many problems: for a discussion see Chang
(2002). But if slots in a WM episode just hold copies of representations in the (single) medium
representing WM individuals, many of these problems go away: the place-coded slots in a WM
episode representation just hold pointers to representations of WM individuals, which are defined
one by one during experience, and activated one by one during simulation or replay.2 While the
slots representing the agent and patient in the WM episode hold pointers to the same medium,
there is no confusion because the pointers are initialised at different times during experience of an
episode, and dereferenced (i.e. followed) at different times during the replay of a WM episode.

Note that this model of role-binding makes reasonably high demands on storage space: the
slots representing agent and patient in the WM episode medium must each hold a copy of the
WM individuals medium. However, the copy need not be complete: in our model, for instance,
as we will discuss in Section 4, we do not copy information about the location of individuals,
only information about their type and properties, which limits the combinatorial possibilities.
Moreover, the number of copies is quite small: we only need as many copies as there are possible
participant roles within a single episode, which if we use verb subcategorisation as a guide, appears
to be four (see e.g. Traxler, 2011).

Note also that the above proposal only addresses one specific binding problem in semantic
representations, namely how semantic roles in episodes are bound to representations of individuals.
The binding schemes of Stewart and Eliasmith and of van der Velde and de Kamps are much more

1Or the proto-agent and then the proto-patient, to use the terminology of Dowty (1991). We will continue to
use the terms ‘agent’ and ‘patient’, for brevity’s sake.

2The concept of ‘pointers’ is also used by Eliasmith 2013 to refer to the vector-based representations of Stewart
and Eliasmith, in the sense that they are pointers to SM experiences. Our WM representations are also pointers
in this sense; however the ‘copy’ operations we envisage create pointers that have a particular technical role within
our model.
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Figure 2: Architecture of the model of WM individuals and WM episodes. The connection annotated with the
‘delta’ (∆) symbol holds a stored copy of the situation at the previous time point.

general than this: they also cover nested clauses (e.g. in relative clauses and complement clauses),
and they allow representation of arbitrarily deeply nested structures. In fact our model makes
proposals about nested clauses too, but we will defer discussion of these until Section 8. In the
meantime, our model does permit a minimal model of hierarchically nested structures, in that
the representations that are bound to semantic roles (WM individuals) themselves have some
internal structure. In the account we develop in Section 4, the representations of the agent and
the patient that are activated one by one when an episode-denoting sequence plan is rehearsed are
also sequence plans, that can be rehearsed in their own right, so that individual steps within the
episode-denoting sequence can have their own sequential structure. In fact, we propose that this
structure of sequences-within-sequences supports an interesting model of the syntactic relationship
between NPs and their host clauses, as we will discuss in Section 6.

3.2. Representations of probability distributions over episodes

The other challenge for our model of WM is to represent a large distribution of possible episodes
using a neural network. The binding schemes developed by van der Velde and de Kamps (2006)
and Stewart and Eliasmith (2012) allow the representation of a small number of episodes simulta-
neously, but have not been shown to support the simultaneous representation of large numbers of
episodes. Using place-coded representations of agent and patient in the WM episode medium offers
an important advantage here, as it allows very simple localist representations of whole episodes:
we can define localist units that encode particular combinations of agent, patient and action type,
and we are free to envisage a large collection of these localist units, that represent many different
possible episodes or episode types. A pattern of activation over these localist units can straightfor-
wardly encode a probability distribution over possible episodes, and these distributions have many
applications, as we will discuss in Section 4. Note that while these localist episode representations
encode structures that point to WM individuals, rather than to WM individuals themselves, these
pointers can be dereferenced in sensible ways during SM experience, to allow SM processing to be
modulated by expectations about WM episodes, as we will demonstrate in Section 5.

4. Architecture of the model

Our model is illustrated in Figure 2. The WM media are above the thick grey line; SM media
are below it. WM media representing individuals are on the left, and WM media representing
episodes are on the right.

The WM individual medium holds a representation of a single selected individual. It stores
the sequence of SM operations through which a single object, or a homogeneous group of objects,
is established. There are three operations in the sequence. The first operation activates a spatial
location. While locations are initially perceived in an egocentric frame of reference, we assume
the location stored in WM is centred on the observer’s local environment, so it is invariant across
the observer’s attentional shifts: in the prevailing model, this is a location in the hippocampal
‘cognitive map’ (Schmidt et al., 2007). The activated location can be an arbitrary place in the
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observer’s current environment, but it can also be the location of the observer himself, or of
his interlocutor, which can both be defined in the environment-centred frame of reference. The
selected location therefore sets a person field, to either 1 (self), 2 (interlocutor) or 3 (external
individual). In each case, a place field is also set, indicating the location in a map of the current
environment. The second operation selects a number, which can be singular or plural. Our
account of this operation rests on the model of Walles et al. (2014; 2008), in which attention
can be allocated either to the global form or the local form of a selected stimulus (in the sense
of Navon, 1977). In the former case, the object classifier is configured to identify a single object
at the attended location; in the latter case, it is configured to classify a homogeneous group of
objects, and return the type these objects collectively share. The final operation identifies the
properties of the attended object or group, which can include an open-class object type, but also
other information, including semantic information that is picked up in grammatical gender, and
miscellaneous properties that set the object/group apart from others of its type.

When the fields of a WM individual are fully defined, a rehearsal operation is enabled, that
replays the sequence of SM operations through which the individual was established. This involves
transient activation firstly of a spatial location (in parietal cortex), then of a spatial scale (in the
temporoparietal junction, see e.g. Robertson et al., 1988; Fink et al., 1996), then of a type and
associated properties (in inferotemporal cortex). Recall from Section 2.1 that there is strong
evidence for this kind of transient reactivation of SM representations during a delay period. While
the replay process activates SM representations sequentially, the fields of the WM individual
stay active tonically, in parallel, in line with evidence about the prefrontal assemblies that store
prepared SM sequences in monkeys, as discussed in Section 2.2.

The layers representing a WM individual provide input to another layer, the candidate WM
individuals (cWM-ind) layer, which stores associations between the location, number and prop-
erties of attended individuals over a short interval, and thus comes to represent a collection of
individuals that have recently been attended to. This is our model of the convergence zone that
was sketched in Figure 1. A partially specified WM individual can function as a query to the
cWM-ind layer: if we specify a location, we may be able to retrieve an associated number and set
of properties (and vice versa). If an individual is retrieved from the cWM-ind layer, it is classed
as ‘old’; if not, it is classed as ‘new’. These attributes are recorded in the status field of the WM
individual, which is not part of the prepared sequence. We envisage both linguistic and nonlin-
guistic roles for the cWM-ind layer. Linguistically it can represent the set of salient referents in
an ongoing discourse. Nonlinguistically it can hold expectations about the location and identity
of objects in the current scene.

The WM media representing episodes are structurally similar to those representing individuals.
The WM episode medium holds a representation of a single selected episode, stored as a planned
sequence of operations. The first operation activates a representation of the agent of the episode.
The second operation activates a representation of the patient of the episode (if there is one). The
remaining operations activate a representation of the action that occurs. This can be causative or
noncausative; in the former case, a dedicated network for controlling causative actions is activated
before the action proper is represented (see Lee-Hand and Knott, 2015 for details of this proposal,
which are not relevant to the current model). Again these planning representations are content-
addressed pointers to operations in other media: they are active in parallel in the planning medium,
but when the WM episode is executed or rehearsed, the representations they point to become active
one a time. A key idea is that the ‘agent’ and ‘patient’ media contain pointers to WM individuals
rather than directly to SM signals. These pointers are created when the episode is experienced.
The first WM individual activated during experience of an episode is copied to the ‘agent’ medium
of the WM episode, and later, the second WM individual to be activated is copied to the ‘patient’
medium. These copy operations are shown in red in Figure 2. (In fact, as the figure shows, we
do not copy all the fields of a WM individual into slots in the WM episode, only information
about number and properties. In this way, the WM system for individuals specialises in encoding
locations of individuals, while the WM system for episodes abstracts away from information about
location.) When all the fields in a WM episode have been filled, the episode can be rehearsed,
just like a WM individual. In this process, the WM individuals representing the agent and patient
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become active in sequence, one at a time, creating temporally separate opportunities to rehearse
their own associated sub-sequences.

As noted in Sections 1 and 2, our WM model is intended to contribute to a model of syntax as
well as to an account of SM processing. The linguistic roles played by the model will be discussed
in Section 6, but for the moment it is useful to preview that the WM individual and the WM
episode media both carry information that can be conveyed syntactically by heads in a syntactic
structure. Referring to Figure 2, a WM individual carries information about the person, number,
gender and type of the individual in question: all this information is conveyed by heads in a
noun phrase, as we will discuss in Section 6. A WM episode carries copies of all this information
for both the agent and patient, as well as information about the open-class type of the action:
this information is conveyed by heads in a clause, as we will again discuss in Section 6.

The fields in a WM episode also provide input to a layer that represents a probability distri-
bution over possible episodes, the candidate WM episodes (cWM-ep) layer. This layer is a
self-organising map or SOM (Kohonen, 1982): when exposed to training episodes, it learns to rep-
resent episodes as localist units, organised so that similar episodes are close together in the map.
Each localist unit can encode a particular combination of representations in the agent, patient and
action media, and thus can represent a complete episode by itself. As already noted in Section 3.2,
this is only possible because of our use of place-coded representations of agent and patient in WM
episodes. The ‘agent’ and ‘patient’ fields of a WM episode index their fillers by content rather
than just by a formal role label, so these place-coded representations carry information about both
roles and their fillers.

A final component of the network is a medium representing the current situation connected to
a layer trained to predict next episodes. The current situation is implemented in a type of recurrent
SOM, that takes input from the current WM episode, and also from a representation of its own
activity after the previous episode was experienced.3 This network learns to represent ‘the current
situation’ as a function of the episode sequences most commonly encountered during training, so
that similar episode sequences activate similar situations. The predicted next episodes medium
is trained to map the currently active situation onto a representation of the episode that actually
occurs next in the cWM-ep layer, through supervised learning. Because the next episodes layer
is isomorphic to the cWM-ep medium, after training, a representation of the current situation
predicts a distribution of likely next episodes in the cWM-ep layer.

Note that as the cWM-ep layer and the current situation layer are SOMs, they use localist
units to represent episodes and situations respectively. This has some important implications.
For one thing, it means that the model cannot represent every possible episode, or every possible
situation, within these media: there are too many of these in any realistic scenario. But that is
not the purpose of these SOMs: their role is to store the set of episodes and situations that are
actually encountered, and they are configured to do this as efficiently as possible. In particular,
as we will show in Section 5, they are able to learn generalisations over encountered episodes and
episode sequences where capacity is limited. This ability is very important for a model of WM, as
it allows the agent to generate sensible expectations in the face of unseen episodes. At the same
time, there is a medium in the model that can accurately store every possible episode, including
unseen ones: this is the WM episode medium, as we will again demonstrate in Section 5.

A second positive implication of using SOMs is that the network can represent multiple pos-
sible episodes, and multiple possible situations, simultaneously. In particular, as we will show in
Section 5, the network can learn to represent a probability distribution over likely next episodes in
the cWM-ep SOM. This is extremely useful, in many ways. In nonlinguistic processing, this can
be used to select the most likely or most desired episode, or more subtly, to generate distribu-
tions over expected properties and locations in the WM individuals medium as experience of an
episode is under way. In linguistic processing, the distribution can play a useful role in sentence
interpretation, providing information that can help decide between alternative interpretations of
incoming ambiguous sentences, as proposed in Section 2.3.

3For efficiency, this is stored using the weights of the unit representing the previous situation.
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We now give some technical details about the network’s architecture. The WM individual layer
(69 units) consists of localist sets of feature units for person (1, 2, 3), number (Sg, Pl), gender
(Male, Female, Neutral) and status (new, old). Each set of units can either encode a single property
unambiguously, or a probability distribution over properties. The type area also contains feature
sets coding animacy, particular object type (human, dog, cat, bird, cup, ball, chair) and several
properties introducing similarity relations among types (is-human, can-fly, can-be-grabbed), see
Table A.1. Location of objects (situated on a 100 × 100 grid) is coded by a population of 6 × 6
neurons (the ‘place’ area on Figure 2) with Gaussian receptive fields evenly covering the grid. The
‘misc’ area represents a single property, colour, whose value is defined stochastically according to
object type. Colour is coded by a population of 11 neurons with Gaussian receptive fields in 3D
RGB space, responding maximally to 11 basic colours (see Figure 4a). Such population coding is
neurally plausible and there is a straightforward mathematical way of computing the likelihoods
of different stimuli given the activities of neurons in the population (Jazayeri and Movshon, 2006).
First-order SM representations (below the thick grey line in Figure 2) are isomorphic to the WM
individual and WM episode areas they are linked to. Likewise, agent and patient layers of a
WM episode are isomorphic to the relevant parts of a WM individual: the num/props areas are
isomorphic to the number and properties areas of the WM individual, and the pers/status areas
are isomorphic to person and status areas of the WM individual. ‘Cause’ is a single neuron that
is either on or off. The ‘action’ area consists of 22 localist units for actions and 11 units for their
distributed featural codes (see Table A.2). The cWM-ind layer is a variable-sized convergence
zone of units fully connected with the WM individual layer: when a novel candidate individual
is encountered, a new unit in the cWM-ind layer is recruited and the current values of WM
individual units are copied into its connection weights (one-shot learning). The cWM-ep layer is
a SOM with 400 units. Each unit has a 90-dimensional vector of incoming weights from the WM
episode medium and a scalar weight reflecting the relative frequency of ‘hits’ for this unit, i.e. the
proportion of times this unit was the most active unit. These frequency weights serve as priors for
computing the Bayesian probability that the current input corresponds to an episode represented
by a particular unit (see Appendix A.2 for details). The current situation medium is implemented
as an MSOM (Strickert and Hammer, 2005)—a type of SOM enhanced with recurrent connections.
Units representing similar episodes happening in similar contexts are close to each other on the
map. The activity of the whole map can be interpreted as a probability distribution over situations
(episodes in contexts). The MSOM has 400 units. These form the input to the predicted next
episodes medium implemented as a single layer of 400 perceptrons with linear activation functions
and the softmax function applied to their outputs. The output layer is isomorphic to the cWM-ep
medium and represents a distribution of possible next episodes.

5. Training and testing of the network

5.1. Training

Our system is exposed to a continuous stream of 20000 episodes4 generated stochastically from
transcription rules (see Table A.3). Once an episode is generated, token individuals are generated
for each type participating in the episode. The system can encounter novel individuals (with
probability 0.01), but also re-encounter some of the recently seen individuals of the same type (if
available). Each individual has a type, a number, a colour and a location. Colour is stochastically
chosen from Gaussian distributions centred on 11 basic colours; location is selected randomly
from positions on a 100× 100 grid, represented using coarse coding in the system’s 6× 6 location
medium. Each episode is presented to the WM system as a sequence of input items. Episodes are of
three types: transitive (agent→patient→trans-action), intransitive (agent→intrans-action) and
causative (agent→patient→cause-signal→unergative-action). In each case the agent and patient
signals have a sequential structure of their own, namely location→number→type/properties. Each
of these latter sequences is sent to the WM individuals medium, activating the different components

4For measuring purposes, we divided this stream into 40 epochs of 500 training episodes each.
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of a WM individual representation one by one. When complete, the WM individual is first passed
as a query to the cWM-ind layer, to find out whether the individual it represents has recently
been encountered. For each candidate unit currently active in the cWM-ind layer, we compute
the likelihood that it corresponds to the current stimulus in the WM individual (Jazayeri and
Movshon, 2006). This reduces to the average pairwise KL divergence (Kullback and Leibler, 1951)
between the respective areas of the WM individual and the candidate unit weights (see Appendix
A.4). If a likely-enough candidate is returned, it is updated if necessary and the WM individual’s
status is set to ‘old’; otherwise a new entry in the layer is created and the WM individual’s
status is set to ‘new’ (candidate units that have not been updated for N episodes are removed).
The WM individual is then copied (along with its status) to the appropriate layer in the WM
episode medium: either the ‘agent’ layer or the ‘patient’ layer. When a complete episode has
been presented to the system, the layers in the WM episode are passed as input to the cWM-ep
SOM. This SOM learns in the standard way (Kohonen, 1982). The current situation MSOM is
also trained in a standard way (Strickert and Hammer, 2005). The weights of connections to
the predicted next episodes layer are adapted using a standard Delta rule (Rosenblatt, 1962). In
order to learn to predict the next episode, the system must be trained at the moment when the
Next-ep’s output layer contains the prediction from the previous episode, but the cWM-ep already
represents the actual next episode. This can be achieved by the following sequence of operations:

1. Update the current situation by propagating the current content of the WM episode
through links to the Current situation.

2. Predict the next episode by propagating through links from the Current situation to the
Next-ep medium.

3. Perceive the next episode by filling the WM episode and propagating through links to
the cWM-ep medium.

4. Train the Next-ep system by the error signal defined by difference between the activity
pattern in cWM-ep (the target) and the content of the Next-ep.

5. Continue from Step 1.

Note that while learning in the cWM-ind layer happens in a ‘one-shot’ manner, it only hap-
pens gradually in the cWM-ep SOM, current situation MSOM, and the predicted next episodes
layer. For more technical details, including the values of learning parameters see Takac and Knott
(2015b).

5.2. Testing the sequence-based binding scheme

To demonstrate the new binding scheme, we must show how the WM representations created
during experience of an episode allow it to be replayed. To test this, after each episode is presented,
the WM episode medium is used as input to a replay process, in which the layers in this medium
activate the representations they point to one by one. Whenever a representation is activated
in the WM individuals medium, an analogous replay routine is executed in this medium. If the
binding scheme is effective, we should recover the same sequence of first-order SM signals that
were presented to the network during experience of the episode. In our tests, the sequence was
perfectly reconstructed for 99.7–100% of episodes across all training epochs; this demonstrates
that our proposed binding mechanism is effective.

It is important that the network is able to encode and replay episodes that it has not seen
before. This is a problem for some models of episode representation; for instance, models that
encode episodes as sequences using simple recurrent networks (SRNs, Elman, 1990) have difficulty
representing episodes involving unseen sequences. (This is the case, for instance, for the early
model of McClelland et al., 1989, and for more recent models such as Sutskever et al., 2014). In
our model, the WM episode medium should be able to encode unseen episodes just as well as seen
ones, since all WM episodes are constructed using the same general procedure. To confirm this, we
tested the trained network’s ability to encode and replay 100 episodes that were not encountered
during training. 99.5–100% of these unseen episodes were perfectly reconstructed, indicating that
the WM episode network can effectively represent unseen episodes, and allow them to be replayed.
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Figure 3: (a) Action types predicted in the cWM-ep layer for 3 episode fragments. From top to bottom:
man→dog→?, man→cat→?, bird→?. (b) Prior expectations on the agent type generated top-down by the cWM-ep
and cWM-ind layers.

5.3. Testing the network’s prediction/generalisation abilities

The network can make several kinds of prediction; we will focus on three progressively more
complex predictions. To begin with, the cWM-ep SOM can make predictions about the episodes
that are likely to occur, which are refined as an episode is experienced. Its predictions about
actions are easiest to demonstrate, since it represents actions directly. To test the accuracy of
these predictions, we introduced some regularities into the episodes that were presented to the
system. Birds always sang (bird→sing); also when people interacted with dogs and cats, they
always patted dogs and stroked cats (person→dog→pat, person→cat→stroke). We presented a
bird as agent, or a person as agent and a dog or cat as patient, to the trained cWM-ep SOM, to
generate a distribution over expected episodes. We then used the pattern of activities in the whole
SOM to reconstruct a distribution of expected actions (see Appendix A.3). Figure 3a shows that
these distributions are correctly weighted towards the actions encountered during training.

The cWM-ep SOM can also make predictions about the agents and patients of episodes. These
are more complex, because its predictions must be relayed to the WM individuals system, which
refines them based on its own knowledge. We first consider the system’s predictions about the agent
of an episode. To test these, we exploited the regularity that all training episodes had animate
agents. We then generated a prior distribution over episodes in the cWM-ep SOM (based on the
relative hit frequency for each SOM unit remembered in its scalar weight). We reconstructed a
distribution over types/properties in the agent part of the WM episode, again based on the pattern
of activities in the whole SOM. Then we copied this distribution to the WM individual layer, where
it provided input to the cWM-ind network. Because this input represents an expectation, each
unit in the cWM-ind layer is activated proportionally to how well it matches the expectation
(based on the KL divergence between the unit’s weights and the expected WM individual, see
Appendix A.4). The predicted distribution of types/properties in the WM individual medium is
then generated top-down as a linear combination of types/properties stored in the weights of all
cWM-ind units, mixed proportionally to their activities. In this way, the resulting distribution
reflects the system’s knowledge of recently-encountered individuals. Figure 3b shows the system’s
predictions about the type of the agent, both within the WM episode system and in the WM
individual system, where they are biased by knowledge of the individuals that have actually been
encountered in the scene. Both systems predict that inanimate agents are not possible. However,
in the context where predictions were made, there were many more humans than animals; the
WM individuals system thus biases its expectations about the agent towards humans.

The WM episodes and WM individuals systems also interact in generating useful predictions
about the locations and properties of individuals encountered during episode perception. To test
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these, we exploited theseregularities in the training episodes: in all episodes involving humans
interacting with dogs, the dogs were black if the agent was a man, and white if the agent was a
woman; additionally, humans always appeared in the top-left quadrant of the spatial array, and
animals in the top-right quadrant. We then generated an underspecified representation in the WM
episode: in the agent part, we activated a representation of a person (either man or woman), and
in the patient part we activated the type ‘dog’ (unspecified for colour); the rest of the WM episode
units stayed inactive. We used this representation to generate a distribution in the cWM-ep SOM,
and took the 10 most active units from this distribution to reconstruct predicted distributions of
patient features. These were in turn copied to the WM individual, where they were refined by the
cWM-ind network in light of its own knowledge, as before. Figure 4a shows the activity in the
colour-coding features of the resulting WM individual expectation. The system correctly predicts
a colour centred on black in RGB space for man→dog episodes, and on white for woman→dog
episodes. Importantly, unlike expectations in WM episode medium, the cWM-ind layer is also
able to generate expectations about the location of the dog: these are illustrated in Figure 4b.
There is a general bias towards the quadrant containing animals, since dogs always appear in this
quadrant. But there are also specific biases towards the location of the black or white dogs that
the system has recently encountered, that are based on its expectations about the colour of the
patient dog.
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Figure 4: (a) Expectations about the colour of the patient generated by the cWM-ep and cWM-ind layers for
episode fragments woman→dog (top) and man→dog (bottom). (b) Expectations about location of the patient
generated by the cWM-ind layer for these episodes. Darker areas mean stronger expectations. Black (yellow) dots
represent actual locations of currently present black (white) dogs.

Finally, note that generalisations in the cWM-ind layer also allow it to make sensible predictions
about unseen episodes. For instance, if the system has experienced episodes where people interact
with dogs and cups as targets, but not with cats or balls, it should nonetheless make predictions
about the likelihood of episodes in which people interact with cats or balls, based on the similarity
relations between these types of target. Cats are similar to dogs, and cups are similar to balls
in our coarse-coded object representations, so the system should predict that people’s actions on
cats will more closely resemble their actions on dogs, while their actions on balls will more closely
resemble their actions on cups. To test this, we retrained the network using episodes generated by
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a version of transcription rules in Table A.3 in which people always patted dogs and grabbed cups
and no episodes involved a cat or a ball as a patient. Then we presented the cWM-ep SOM with
a person as an agent and a cat or a ball as a patient, and generated a distribution over expected
episodes. We used all active units in this distribution to reconstruct a distribution over expected
actions. As shown in Figure 5, the action for the unseen cat target is biased towards ‘pat’ while
the action for the unseen ball target is biased towards ‘grab’.
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Figure 5: Action types predicted in the cWM-ep layer for episode fragments person→ball→? (top) and
person→cat→? (bottom).

5.4. Testing the situation update network

In this section we test the situation update network at the top right of Figure 2. Recall from
Section 2 that the distribution of candidate episodes can be interpreted as a reflection of ‘the
current situation’. It is important that this distribution is updated whenever an episode occurs,
because the occurrence of an episode can have a large impact on the episodes which the agent
should now expect to happen, or on the actions he himself should now execute.

To test this ability, we presented our system with a sequence of training episodes, encoded as in
the previous experiments, but with additional constraints on transitions between episodes: when a
person hit a dog and then the (same) person patted the (same) dog, the dog always bit the person;
however, when a person patted a dog without hitting it previously, any random episode would
follow. Then we tested the trained network by presenting it with an episode (person→dog→pat)
in two conditions—either preceded by the episode of the person hitting the dog (A), or a different
episode (B). In each condition we propagated the information through the Current situation and
Next episode prediction media to obtain a distribution of possible episodes. This distribution
was then propagated as a prior top-down expectation to the candidate WM episode system.
From there we reconstructed an expected distribution of agents, patients and actions in the WM
episode medium in a standard way. Figure 6 shows the predicted agent and patient types in both
conditions: while in the condition A (patting after hitting the dog, top row in the figure) there is
a clear prediction of dog agent and human patient, while in the condition B (bottom row) there
is a general prediction of animate agents and all possible patients.

Regarding action (Figure 7), the system correctly predicts biting in the condition A. ‘Bite’
is the strongest candidate in the condition B too, but the distribution is flat and involves other
actions too.

6. Applications of the WM model in a model of syntax

As discussed in Sections 1 and 2, our model of WM is also intended to model certain aspects
of language processing. In those sections we discussed how the WM model can supply aspects of
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Figure 6: Prior expectation about the agent and patient of an episode following the episode (person→dog→pat) in
the condition A (the man hitting the dog previously, top row) and B (a different previous episode, bottom row).
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Figure 7: Prior expectation about the action of an episode following the episode (person→dog→pat) in the condition
A (the man hitting the dog previously, top row) and B (a different previous episode, bottom row).
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the ‘current discourse context’ representation that plays various roles in an account of parsing,
interpretation and referring expression semantics. In this section, we argue that the WM model
can also play an interesting role in an account of syntactic structures: in particular in an account
of syntactic heads.

In models of syntax, sentences have hierarchical structure: they are nested structures of
phrases, rather than flat lists of words. Phrases define local syntactic domains within a sen-
tence. While some components of a phrase have relatively fixed positions within it, others have a
domain that extends over the whole phrase: they can influence elements elsewhere in the phrase,
and cross-linguistically, they can appear at different positions within the phrase in different lan-
guages. These elements whose syntactic influence extends over a whole phrase are called heads.
The concept of a syntactic head is introduced in different ways in different syntactic frameworks.
We will adopt a Chomsykan syntactic framework, which we will term ‘Minimalism’ (1995)5 which
presents a particularly clear model of the aspects of syntactic structure that are found in all lan-
guages. (If we are looking for aspects of syntax that reflect the semantic WM system, we can
expect to find them cross-linguistically, rather than just in some languages.) We outline the Min-
imalist account of phrases and heads in Section 6.1; in Section 6.2 we propose that aspects of this
account reflect structures in semantic WM, as it is conceived in our model.

6.1. The concept of a syntactic head, in the Minimalist framework

In Minimalism, a sentence has two syntactic structures: a logical form (LF) and a phonetic
form (PF). The LF of a sentence represents its semantic structure, roughly speaking; accord-
ingly, LF structures are relatively invariant across languages. The PF of a sentence is derived
from its LF structure. Crucially, there are several alternative ways of doing this, and different
languages have different conventions about how it is done: this means that PF structures are
language-dependent. In the Chomskyan model, LF structures encode innate aspects of syntactic
knowledge, that infants do not have to learn; infants only have to learn the language-specific con-
ventions about how to map LF structures to PF structures. This innate knowledge is traditionally
taken to be language-specific knowledge, encoded in a dedicated module of the brain. But another
possibility, more consistent with modern neuroscience, is that LF structures convey information
about general-purpose cognitive mechanisms (Hauser et al., 2002) or about the architecture of
specific cognitive systems that interface with language, such as the SM or WM systems, in accor-
dance with ‘embodied’ accounts of language (see e.g. Feldman and Narayanan, 2004; Barsalou,
2008). Our general hypothesis is that LF structures convey information about the architecture
of the semantic WM system—and indirectly, about the sequential structure of the SM processes
that interface with this system.

With the above preliminaries, we will now introduce the Minimalist conception of heads, for
two types of phrase: clauses and noun phrases. The LF structure of the transitive clause a dog
chases the big cats is shown in Figure 8a, and the LF structure of its object noun phrase the big
cats is shown in Figure 8b. The square boxes indicate the core structural elements of each phrase.
Each box is an X-bar schema or XP, which is the basic recursive building block for syntactic
structures (in Minimalism and several other syntactic frameworks, most prominently Pollard and
Sag, 1994). Each word in the phrase appears at the head of its own X-bar schema: thus a verb (V)
heads or ‘projects’ a VP (see Figure 8a) and a noun (N) heads/projects an NP (see Figure 8b).
Heads are shown in red in the figures.

In the Minimalist representation of a transitive clause, the VP is dominated by two higher
XPs, that introduce the verb’s arguments: AgrSP introduces the subject, and AgrOP introduces
the object. These elements are introduced at specifier positions, which are shown in blue in the
figures.6 The heads of AgrSP and AgrOP are not words, but ‘agreement features’, that carry the
kind of information signalled by agreement inflections on verbs. For instance, the head of AgrSP

5We use the term ‘Minimalism’ somewhat loosely: our adopted model also includes elements from the theory
preceding Minimalism, which is also succinctly summarised in Chomsky (1995).

6The subject and object also appear at positions within the VP, but we will not discuss those here.
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Figure 8: (a) LF structure of a transitive clause. (b) LF structure of a determiner phrase.

carries the information signalled by the agreement inflection -s in the verb chases. Agreement
features can relate to person, number and various types of gender; they convey coarse-grained
information about the verb’s arguments.

The key thing about the positions occupied by heads is that information can travel between
these positions. This is represented in different ways in different syntactic theories: in Minimalism,
heads are required to move from one head position to other head positions. For instance, in the
clause structure in Figure 8a, the inflected verb chases originates at the head of VP, but must
move to the head of AgrOP and then the head of AgrSP. This movement mechanism models how
the verb is able to carry information about its subject and object, even if it is distant from these
constituents in the clause. Head movement operations are also used to explain differences in surface
word ordering conventions in different languages. In some languages, like Māori and French, the
verb is pronounced early, while in others, like Japanese and English, it is pronounced late: in
Minimalism, these differences are attributed to different conventions about how LF structures
map to PF structures.

A similar notion of head movement is used in an account of the structure of noun phrases. Since
the work of Abney (1996), the noun projection (NP) is taken to be introduced by a projection
of the determiner (DP). The head of this projection (D) introduces a referential element—an
anonymous ‘x’—and the head of NP supplies a predicate to apply to this x. A key semantic
contribution of the D head is to indicate whether the x it introduces is new in the discourse or
not: an indefinite determiner (e.g. a) indicates that it is, while a definite determiner (e.g. the)
indicates that it is not.7 In most Minimalist models, there is an intermediate XP between the DP
and NP, NumP, whose head introduces a number agreement feature, as shown in Figure 8b (see
e.g. Ritter, 1991; Zamparelli, 2000). (The gender and person features do not head their own
XPs: gender is assumed to be conveyed by the N head, and person by the D head.) The head
movement operation explains many phenomena in the syntax of nominals: for instance, how nouns
and determiners can carry number information, or how in some languages nouns can appear at
‘high’ positions, locally with determiners (see e.g. Grosu, 1988; Taraldsen, 1990). To take a simple
example, consider the differences in the ordering of nouns and adjectives in English and French:
in English we say the big cats, while in French we would say the cats big. If we assume that the
adjective big occupies the specifier of NP, this ordering difference can be explained by positing

7‘Quantifying’ determiners (e.g. all, most) also introduce referents: we will discuss these determiners briefly in
Section 7.3.
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that N is pronounced at its low position in English, but at a higher head position in French.
Whichever syntactic framework is used, the idea that information can ‘move’ between head

positions in a right-branching structure of XPs is common currency for syntacticians. Note that
this movement is only permitted within certain limits. For instance, the heads in a DP struc-
ture cannot freely move out of the DP to head positions in the clause. Some head information
from some DPs is transmitted to the clause: for instance, in French, the person, number and
gender features of the subject appear on the verb, while in Hungarian, verbs must sometimes
also agree with the object. A key task for a neural model of language is to identify the neural
mechanisms responsible for agreement phenomena: that is, to provide a model of how information
is transmitted between head positions in syntactic structures.

6.2. A SM interpretation of LF structures and syntactic heads

In many neural models of syntax, the syntactic structure of a sentence is a declarative rep-
resentation, in which different parts of the structure are represented by different assemblies of
neurons (see e.g. Reilly, 1992; Mayberry and Miikkulainen, 2008; Kalchbrenner et al., 2014). In
these models, implementing head movement involves transmitting information spatially, from one
part of the assembly to another. This is a difficult operation for neural networks. However, there
is another possible interpretation of syntactic structures, which is more consistent with the model
of SM processes and WM representations presented in this paper. On this view, an LF structure
represents a dynamic SM process—specifically, a sequentially organised SM routine. Recall from
Section 4 that a WM episode is stored as a prepared SM routine, involving three operations: an
action of attention to the agent, and action of attention to the patient, and the activation of a
(possibly causative) motor action. These three operations can be neatly mapped onto the LF
structure of a transitive clause, as shown by the green annotations in Figure 8a. A WM individ-
ual is also stored as a prepared SM routine, again involving three operations: first, selection of
a spatial location (which can reactivate an existing WM individual or create a ‘new’ one), next
activation of a classification scale (which determines whether a singular or plural stimulus will be
categorised), and finally activation of an open-class object category. These operations map neatly
onto the LF structure of a nominal expression, as shown by the green annotations in Figure 8b.
The highest XP (DP) selects a referential element x, and identifies whether this is new or old in
the current context: this is exactly what is done by the operation of selecting a salient spatial
location, and determining whether or not it matches one of the candidate individuals in WM. The
next XP (NumP) identifies the referent as being singular or plural: this is exactly what is done by
the operation of selecting a classification scale. The last XP (NP) identifies an open-class object
category; this is what is done by the operation of object classification.

These mappings between LF structures and SM routines are the basis for a strongly embodied
model of language syntax (see Knott, 2012; 2014b for details). In this embodied model, the LF
structure of a phrase denoting a concrete individual or episode is interpreted as a description
of the SM routine through which this individual or episode was experienced. Experiencing the
individual or episode involves executing a sequence of SM operations, and the individual or episode
is stored in semantic WM as a prepared sequence of SM operations (as described in the current
paper). Generating a phrase that denotes the individual or episode involves replaying the stored
SM routine, in a special cognitive mode called language mode, where SM signals can activate
output phonological items, through associations learned by exposure to a given language. The
right-branching structure of XPs in the LF structure of a phrase is a reflection of the sequential
structure of this replayed SM routine. A neural network model of sentence generation based on
this proposal is presented in Takac et al. (2012; 2015a).

Within this SM interpretation of LF structure, there is a very natural account of head move-
ment. As discussed in the current paper, the prefrontal assembly that stores a prepared sequence
of SM operations in WM holds representations of each of the prepared operations in parallel.
When the assembly is used to replay or simulate the stored SM sequence, there will be tonically
active representations of all of the prepared operations in prefrontal cortex throughout the replay
process, alongside the sequence of transiently active representations. If syntactic heads are phono-
logical items that are read from the prefrontal areas holding these tonically active representations,
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Figure 9: Interfaces between the semantic WM system and surface phonology

as shown in Figure 9, we can directly explain their extended syntactic locality: they can be pro-
nounced at any point during the replay process. On this account, head movement does not reflect
transmission of information ‘in space’, from one part of a neural structure to another, but rather
the persistence of information in time. Specifically: the right-branching structure of XPs in LF
represents a temporally extended process—the process of rehearsing a stored SM routine—and
the movement of material between head positions reflects the presence of neural signals that are
sustained in time during this rehearsal process. This account of head movement is quite straight-
forward to implement in a neural network. The network presented in Takac et al. (2012; 2015a)
can learn languages with different constituent orderings, by learning to pronounce heads ‘early’ or
‘late’; it can also learn a variety of non-local syntactic dependencies that manifest the extended
syntactic domain of heads, such as agreement inflections on verbs and pronominal clitics on verbs,
all with over 98% accuracy, even when generating structures unseen during training.

The WM model presented in the current paper extends this plan-based conception of heads
in two ways. Firstly, it provides an account of nested syntactic structures, in which a phrase
containing one group of heads appears at a point within a larger phrase with its own group
of heads. In the current WM model, a transitive episode is stored in WM as a planned SM
routine, featuring an action of attention to the agent, an action of attention to the patient, and
a motor action. These tonically active planned actions are conveyed by the heads in a transitive
clause: the elements shown in red in the clause structure in Figure 8a. But when the stored SM
routine is rehearsed, there are particular points when WM individuals are transiently activated:
the WM individual representing the agent is activated as the first replayed operation, and the WM
individual representing the patient is activated as the second replayed operation. These activations
of WM individuals happen at specific points during replay of the episode, as indicated by the blue
elements in Figure 8a. But when a WM individual is activated, this presents an opportunity for
a secondary replay operation, in which the SM routine involved in apprehending the associated
individual is rehearsed. During this secondary replay process, the planned operations associated
with a particular WM individual are tonically active. These active elements correspond to the
heads of a given DP within the clause, (see e.g. the red elements in the object DP structure shown
in Figure 8b). There are also transient SM signals active at particular points in the secondary
replay process. These correspond to the fixed-position specifiers within the DP, for instance
adjectives (as shown in blue in Figure 8b). In short, the concept of nested replay operations in our
WM model is the basis for an account of the local domain of heads within a DP: they can move
within a DP, but not beyond it. While constraints about head locality are essentially stipulated in
a stand-alone model of syntax, the current account explains them: they are derived from a model
of semantic WM for SM processes.

The second contribution of the current WM model is in accounting for how information about
heads can be transmitted between DPs and their host clauses. Recall from Section 6.1 that some
head information from DPs is transmitted to the clause: for instance, the person, number and
gender of the subject and object can sometimes surface in verb inflections or clitics. Not all head
information can be transmitted this way: in particular, information about the open-class noun head
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cannot move outside its local DP in any language. In our model, this transmission reflects a genuine
transmission of information within WM structures: namely, the copying operations through which
place-coded representations of the agent and patient are created in WM episodes (again annotated
by red lines in Figure 9). Recall that during experience of an episode, the WM individual medium
first holds a representation of the agent, and afterwards, a representation of the patient: however,
each of these representations is copied to distinct areas within the WM episode medium—and these
latter representations are tonically active within a replayed WM episode. These copy operations
thus provide a mechanism which allows heads in the clause to convey information about the agent
and patient—which would allow the verb to carry inflections or clitics signalling the agent or
patient. An important point is that the areas in the WM episode that hold copies of the fields of
a WM individual have their own interfaces to phonology (as shown explicitly in Figure 9). This
means that the information that can be expressed phonologically about the agent and patient
from an active WM episode might not be the same as the information that can be conveyed from
an active WM individual. In particular, we can posit that information about person, number and
gender can be conveyed phonologically from both media, while information about open-class object
type can only be conveyed from WM individuals. On this hypothesis, the pattern of transmission
of head features from DPs to clauses is explained by the copy operation that creates place-coded
representations of the agent and patient in a WM episode, plus ideas about the capacity of the
interfaces between WM individuals/WM episodes and surface phonology. (Note that the copy
operation that creates place-coded representations of the participants in a WM episode plays an
essential role in this account. This is another piece of evidence in favour of a place-coded model of
WM episode participants, separate from the representational advantages of place-coding discussed
in Section 3.)

7. Applications of the WM model in an account of LTM

As discussed in Sections 1 and 2, semantic WM representations interface not only with SM
experience and with language, but also with LTM. Although this interface has not yet been
implemented in our model, the WM model was designed with certain ideas about the interface in
mind; in this section, we will outline these ideas.

7.1. Interfaces to episodic and semantic LTM

A key idea is that that there are divisions in the WM model that echo the distinction in
LTM between semantic memory and episodic memory. Semantic memory is memory for
facts about objects, while episodic memory is memory for events occurring at particular times
and places (Squire, 1987). The prototypical facts about objects are facts about their properties,
so one central component of semantic memory is memory for the properties of objects. Within
this type of memory, facts about the location of objects are a special case, held in specialised
circuits; see e.g. Moscovitch et al. (1995). Semantic memory also supports the representation
of generalisations across groups of objects, to allow statements about the properties collectively
possessed by several objects, or the typical properties of objects of a certain type (Csibra and
Gergely, 2009; Leslie and Gelman, 2012). Thus the facts that my dog Fido is brown, or that both
my cats are grey, or that dogs typically have tails, are assumed to be stored in semantic LTM,
while the fact that my dog chased my cat this morning is stored in episodic LTM.

Our WM model comprises a system for representing individuals (and token objects or groups)
and a system for representing episodes. Our first proposal is that the WM individuals system
interfaces primarily with semantic memory (which separately holds long-term memories of object
properties and object locations), while the WM episodes system interfaces primarily with episodic
memory. These interfaces are sketched in Figure 10.

On the semantic memory side, the key medium is a set of LTM individuals: sparse represen-
tations of particular objects, probably stored in hippocampal or parahippocampal regions (see e.g.
Quiroga et al., 2005; Eichenbaum et al., 2007; Diana et al., 2007). Each of these is a convergence
zone that is linked to representations of its properties in the WM individual medium, so that acti-
vating a LTM individual activates a set of associated properties, and activating a set of properties
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Figure 10: Interfaces between the semantic WM system and LTM systems

can activate an LTM individual (if there is one whose properties match well enough). An asso-
ciated system stores links between LTM individuals and allocentric locations in the hippocampal
cognitive map (see e.g. Manns and Eichenbaum, 2009). Importantly, these links are modulated
by representations of both spatial and temporal context (see Ranganath, 2010). Spatial context is
important, because locations in the cognitive map are only defined relative to a currently active
spatial context representation (Muller and Kubie, 1987). Temporal context is important because
objects can have different locations at different times.8 In fact, the associations between LTM
individuals and properties should also be modulated by temporal context, since properties can
change over time, but for simplicity’s sake this link is left out of Figure 10.

LTM individuals have their own interface to surface phonology, though again this is not shown
in the figure. This interface represents the system of proper nouns, which is distinct from the
system linking common nouns to representations of object types. The distinction is shown most
clearly by lesion studies (see e.g. Semenza, 2006). The neural basis for the proper noun circuit
is not yet well understood, though there are indications the uncinate fasciculus and left temporal
pole play an important role (Papagno, 2011; Semenza, 2011). When a WM individual and an
associated LTM individual are both active, the agent has a choice about how to express this
linguistically. One method involves rehearsing the WM individual, and producing a full noun
phrase, as discussed in Section 6.2. Another method is to generate a proper noun directly from
the active LTM individual (if an associated proper noun is known).

We turn now to how WM episodes interface with LTM: a central concern in the current paper.
Our first proposal is that the WM episode medium holds copies of LTM individuals as well as
of WM individuals, as shown by the red lines in Figure 10. (A replayed WM episode therefore
activates WM individuals coupled with associated LTM individuals.) This can be motivated both
conceptually and empirically. Conceptually, it allows the WM episodes network to represent
expected or planned episodes that involve specific individuals, rather than just individuals with
certain properties. Agents often have such expectations, so there must be a provision for them in
the model. Empirically, it sits well with Poch et al.’s (2011) finding that the periodic reactivation
of object properties in sensory areas during WM maintenance is coupled with activity in the
hippocampus, as discussed in Section 2.1.

More far-reachingly, this proposal allows the circuit that generates expectations about forth-
coming episodes to be extended to hold memories of specific past episodes—that is, episodic
memories. The key new elements we envisage in the episodic memory circuit are LTM media
that hold representations of token times in the past, and of token spatial contexts. As with LTM

8There are several ways these associations might be stored—for instance, the object location memory system
could be a SOM that takes inputs from locations, LTM individuals, and also temporal and spatial contexts.
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individuals, we assume these are relatively sparse, localist representations of particular times in
the agent’s past, and particular places he has experienced. New temporal contexts are constantly
being created, while new spatial contexts are only created when the agent is in a place he fails
to recognise.9 As illustrated in Figure 10, we envisage the current WM situation SOM taking
input from these representations, as well as from the current WM episode and from a copy of its
previous state. The WM situation SOM will learn to generalise over token times and places, where
appropriate, just as it generalises over token individuals, and so should still be able to generate
sensible expectations about forthcoming episodes at the present moment. However, it should also
be able to store memories of situations the agent encountered in the past. These can be retrieved
by presenting partial inputs to the current WM situation SOM: for instance, a WM episode rep-
resentation by itself, or a place repesentation by itself. These function as cues, to re-activate
situation representations encoded in the past, as we will briefly discuss in Section 8.1.2. When a
situation is retrieved from the past, the situation SOM allows retrieval of ‘the episode that hap-
pened next’, via exactly the same mechanism that predicts a distribution of likely episodes during
online experience. This offers a possible account of the well-known role of constructive processes
during LTM retrieval (see e.g. Schacter et al., 1998): the distribution over likely next episodes
will be informed by the currently active token time and place representations, but also by a more
generic representation of the retrieved situation, of the kind that would inform expectations about
what would happen next if there were token memory. It also supports an interesting potential
model of counterfactuals: if the the most active unit in the cWM-ep SOM represents the episode
that actually occurred next, then the other active units can be taken to represent episodes that
could have occurred next.

In this extended model, the cWM-ep and current situation SOMs play a role in episodic LTM
as well as in WM, in line with Burgess and Hitch’s (2005) proposal that representations of ‘context’
provide a link between LTM and WM systems. In fact, even in the basic WM model we presented
in this paper, the cWM-ep and current situation SOMs quite clearly hold long-term memories: the
representations they learn are acquired gradually, and implemented in long-term synaptic weights.
Their role in the WM system relates to the units which are currently active at any given time
within these media. In this sense, our model conforms to the proposal that items ‘in WM’ are
simply elements within a LTM storage medium that are currently active—a proposal that has
been voiced many times (see e.g. Cowan, 1999; D’Esposito, 2007). At the same time, our model
also contains several media that are specialised WM areas (the WM individual and cWM-ind
media and the WM episode medium), in line with the proposal that there are dedicated neural
areas for WM representations, as in Baddeley’s conception of WM. Our main point is that these
two proposals need not be seen as incompatible: in our model, some WM representations are
re-activated LTM representations, while others are patterns of activity in dedicated WM areas.

In the light of this model, we will associate the current situation SOM with the hippocampus.
As discussed in Section 1, a key role of the WM episodes medium is to buffer experienced episodes
as they occur in real time, so they can be transferred fast to the hippocampus, within the timeframe
of hippocampal learning mechanisms. We now associate this fast storage process with the process
of communicating a completed WM episode representation to the current situation SOM. Since
this operation also serves to update the current situation representation, this proposal also gels
with the known role of the hippocampus in encoding temporally discontiguous events (see e.g.
Wallenstein et al., 1998). (Note that we still consider the representation that is active in the
current situation SOM as part of WM, in accordance with the conception of Cowan, 1999 and
D’Esposito, 2007.)

7.2. Episode-based properties of LTM individuals

In many models of semantic memory, the properties of an object can be facts about episodes
it has participated in, or typically participates in. These properties include so-called ‘functional’

9We assume there will also be representations of types of time and place; however, these do not feature in the
current sketch.
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properties of classes of individuals: for instance, the property of knives that they cut things, or of
animals that they move and breathe (see e.g. Tyler and Moss, 2001). But they can also include
facts about the participation of token objects in episodes, if this participation is memorable in
some way. For instance, if John goes on a date with Mary, this can be an interesting fact about
John, as well as just an event to be recorded in episodic memory. We will refer to both kinds
of property as episode-based properties. While there has been much debate about functional
properties in psychological models of object classes (see Yee et al., 2013 for a review), the question
of how such properties incorporate reference to episode representations has been far less studied in
neuroscience. There must be something that distinguishes an episode-level property from an actual
epsiode, because they are stative facts, rather than episodes—and yet episode-level properties must
ultimately be identified by experiencing actual episodes. Our model of WM suggests an interesting
model of episode-level properties in semantic LTM, which we will briefly outline.

While the representation of episode-level properties is seldom considered by neuroscientists,
it has been the focus of considerable scrutiny in linguistics, where such properties play a central
role in models of relative clauses and quantification (see e.g. Heim and Kratzer, 1998). Linguists
represent episode-level properties using a semantic operation called lambda abstraction that
turns an episode into a property. For instance, the fact go out with(John,Mary) can be turned
through lambda abstraction into the property λx[go out with(x,Mary)], which is of the same
semantic type as a simple property like ‘happy’ (λx[happy(x)]): either of these can be directly
predicated of the individual John to create a stative proposition.

There must be some analogue of lambda abstraction in a neural model of semantic representa-
tions. In our model there is a very natural analogue. A full WM episode includes representations of
all its participant individuals, which are copied from the WM/LTM individuals media. To create
a WM episode that abstracts over one participant, we can erase one of these copies, and replace
it with a representation that conventionally denotes a lambda-variable. For instance, to abstract
away from the individual ‘John’ in the WM episode representing ‘John goes out with Mary’, we
can erase the pattern in the ‘agent’ field of the WM episode, and activate a new pattern in this field
denoting ‘lambda-variable’. We can then create a unit in the candidate WM episodes SOM that
encodes this abstracted episode, in the normal way. However, this SOM unit represents a property,
rather than an episode. Finally—and this is the important step—we can associate this property
with the LTM individual whose representation was abstracted over: in this case, the one repre-
senting John. This can be done simply by creating an association between this LTM individual
and the SOM unit encoding the abstracted episode. This kind of direct association is very similar
to the direct associations that link LTM individuals to ‘regular’ properties in the WM individual
medium. It is illustrated in Figure 10 by the dashed diagonal line between LTM individuals and
the candidate WM episodes buffer. The new type of link allows the semantic memory system to
record episode-level properties of LTM individuals, as well as simple properties. Now, when we
activate a LTM individual, we can activate not only a distribution over a set of simple properties in
the WM individuals medium, but also a distribution over a set of episode-based properties in the
candidate WM episodes buffer. (Note that this proposed account of episode-based properties rests
critically on the capacity of the candidate WM episodes buffer to hold a distribution of episodes.)
We will refer to this model of episode-based properties in Section 7.3, which discusses quantified
sentences, and in Section 8.1.3, which discusses relative clauses.

7.3. Quantified sentences

Our model of the syntactic relationship between DPs and clauses rests on a model of the
relationship between WM individuals and WM episodes. However, the model introduced in Sec-
tion 6.2 only considers referential DPs, such as a dog or the cats. It is important to show that the
model also accounts for quantifying DPs, such as most students or no students, in sentences such
as Prof. Smith likes most students, or No students like Prof. Smith. These DPs do not directly
report on attentional processes that identify an object or group: they have a more complex se-
mantic denotation. If we want to make a general claim linking DP structures to WM individuals,
we need to set out a model of how quantified propositions are cognitively represented, and we
need to give WM individuals a role in this process that squares with the role that quantified DPs
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play in quantified sentences. We cannot consider this in any detail in the current paper, but we
will sketch an account along the required lines.

In the standard linguistic model of quantification (see e.g. Barwise and Cooper, 1981), a
quantified sentence introduces two sets of individuals, and reports the cardinality of their inter-
section. For instance, Prof. Smith likes most students introduces a set of students, and a set of
individuals who Prof. Smith likes, and asserts that the intersection of these sets contains some
large proportion of the set of students. The quantifying DP most students introduces one of these
sets through its noun students, and supplies the assertion about cardinality through its determiner
most. The other set (of individuals liked by Prof. Smith) is introduced by a clause representing
an abstracted episode of the kind discussed in Section 7.2: λx[likes(Smith, x)]. At PF, the quan-
tifying DP appears within this clause, at the position of the abstracted element: Prof. Smith likes
most students. However, at LF it is assumed to appear at a high structural position outside the
clause, and dominating it (again see Heim and Kratzer, 1998). This high position can be seen
as reflecting the semantic structure of a quantified proposition, where the quantifier is always the
highest operator: in the current case, most(x)[student(x), likes(Smith, x)]. Our general hypoth-
esis that DPs convey material from a (replayed) WM individual suggests that WM individuals
have a special role in representing quantified propositions, and that something about this role is
captured by the raised position of a quantified DP in the LF of a quantified sentence. We argue
that this is indeed the case.

Our proposal begins from the assumption that quantified sentences do not report SM expe-
riences directly, but rather report operations that query an agent’s LTM for SM experiences—
specifically, an agent’s semantic LTM system. Our main proposal is that queries to the semantic
LTM system are presented within the WM individuals medium, just as queries to the episodic LTM
system are presented within the WM episodes medium (as discussed in Section 7.1).

Recall that semantic LTM is LTM for the types and properties of individuals. For instance,
we suggest that the open-class object type ‘student’, placed in the ‘type’ field of a WM individual,
can be used to retrieve a set of LTM individuals that are associated (through semantic memory)
with this type: that is a set of token students. These individuals may have been encountered
at different times or places—but since semantic memory is implemented as enduring associations
between LTM individuals and types/properties in the WM individual medium, types can function
as queries, to retrieve sets of LTM individuals encountered in a range of different contexts. A
second, separate suggestion is that the size (or rather, numerosity) of the activated set of LTM
individuals can also be stored in the WM individual medium, in its ‘location’ field. There is
good evidence that the numerosity of a perceived group is stored in the spatial attention system,
and in prefrontal spatial WM; see in particular Nieder and Miller (2004). Our proposal is that in
operations querying semantic LTM, the prefrontal numerosity system, which is part of the location
field of a WM individual, can represent the number (or rather numerosity) of LTM individuals
retrieved by a query to semantic memory.

Through semantic memory, the LTM individuals in the set activated by a type query will
each be associated with an idiosyncratic distribution of properties in the WM media that hold
the properties of perceived individuals. Through these associative connections, we can activate
an ensemble of properties in these WM media. Some of these might be activated by single LTM
individuals, while others might be activated by more than one individual—or, in the right situa-
tions, by arbitrarily large subsets of the active LTM individuals. We propose there is a mechanism
in the WM system that selects a single property in this WM medium: perhaps one of those in
the activated ensemble, or perhaps a property the agent is interested in for independent reasons.
The selected property can be used as a second query to semantic memory, that reduces the set
of active LTM individuals to those that possess this property. (Possibly the empty set, if none
of them have the property.) Importantly, this second query must be expressed within the same
WM individual that was used to express the first query and hold its results: the property selected
for the second query can be selected from amongst the results returned by the first query, so a
single WM individual functions as an evolving ‘workspace’ for the two queries. A key aspect of its
evolution relates to the location representation encoding the number of active LTM individuals.
After the second query, only those LTM individuals that have both queried properties will remain
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active, so the represented numerosity might diminish: either to zero, or to some proportion of its
original size. We propose that the location field can record both absolute numerosities (including
zero) and relative drops in numerosity—and that quantifying determiners like most and no are
read from these recorded values in the location field of a WM individual.

Finally, note that some properties associated with LTM individuals can be encoded in the
WM episodes medium: namely the episode-level properties discussed in Section 7.2. Say that the
episode-level property ‘Prof. Smith likes x’ was recorded for several of the students retrieved by
the first query ‘student’. This property might be identified as interesting, and selected as the
second query, reducing the set of active LTM individuals to those students liked by Prof. Smith,
and recording the relative drop in numerosity within the ‘location’ field of the controlling WM
individual. This WM individual can now function as the semantic representation from which the
quantified DP most students is read.

It remains to explain how this DP ends up at a position inside the clause expressing the
episode-level property in a surface sentence. Our proposal here begins with the observation that
if the episode-level property in the candidate WM episodes SOM is recreated in the WM episode
medium, we have a structure which can potentially be rehearsed to produce a sentence. There will
be a ‘gap’ in the recreated structure, representing a lambda variable rather than a participant.
However, the WM individual used to formulate the queries is a natural filler for this gap. If this
WM individual is copied into the gap position, using the normal mechanisms for copying WM
individuals into participant slots, we have a WM episode which, if rehearsed in the ‘language
mode’ discussed in Section 6.2, will produce a quantified sentence with the quantified DP in an
argument position. Crucially, while this DP is produced at a specific transient moment during
replay of the WM episode, the WM individual it encodes conveys high-level information about
the complete query process, encompassing both queries to semantic LTM and their results. This
account of quantified sentences explains both why the quantifying DP has a position above the
clause at LF, and why it appears within the clause at PF.

8. Discussion

In this paper we have presented a model of semantic WM representations. Our emphasis has
been on semantic WM as an interface medium, that links separately to primary SM media, to
surface language representations, and to LTM. These separate interfaces are shown graphically
in Figures 2, 9 and 10. The model is supported in a variety of ways. The model of WM indi-
viduals is supported by empirical experiments identifying a mixture of transient and persistent
representations of objects in WM, and suggesting that these representations have the capacity to
actively recreate the sequences of SM stimuli they encode (see Section 2.1). The model of WM
episodes, which uses place-coding to represent episode participants, is supported by experimental
evidence for a ‘slot-based’ storage medium for object representations in WM, and evidence that
episodes are experienced through sequentially structured SM routines, along with evidence about
the nature of the planning representations in PFC that store prepared sequences of SM operations
(see Section 2.2). The place-coding model of WM episodes is also supported by its computational
properties: it provides an attractive model of how representations of individuals are bound to
semantic roles such as agent and patient (see Section 3.1), which in turn supports an attrac-
tive account of how distributions over episodes are represented (see Section 3.2). The model of
probability distributions over episodes then provides the basis for a WM representation of ‘the
current situation’, or in experimental terminology the current ‘cognitive set’, which biases the SM
experience of episodes towards expected or desired outcomes, and which supports the performance
of relatively complex tasks by amnesic patients (see Section 2.3). The WM model is also inde-
pendently supported by a different set of data, relating to the role it can play in an account of
linguistic representations. It contributes directly to an account of how syntactic structures can be
interpreted in neural terms: in particular, it gives a very straightforward account of the domains
of syntactic head features, and of how head features are transmitted between DPs and their host
clauses (see Section 6). It also supplies a natural representation of the ‘current discourse con-
text’, along with operations for updating this context, and for introducing new discourse referents
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and reactivating existing referents (see Sections 2.3 and 6). Finally, the WM model makes some
proposals about how semantic WM representations interface with LTM, which was a key concern
for Baddeley (2000) in his original arguments for an episodic buffer. We can envisage separate
WM interfaces for semantic and episodic LTM systems (see Section 7.1). These two interfaces
jointly allow an interesting model of episode-level properties and of quantified propositions (see
Sections 7.2 and 7.3): these both contribute to a model of linguistic representations as well as to
a model of LTM.

The model we propose makes several novel experimental predictions. One set of predictions
relate to our place-coded model of WM episode representations. We posit there are several dis-
tinct media for holding WM representations of individuals as these participate in episodes, which
are specialised for different semantic roles—for instance for agent and patient participants of an
episode. On this basis we predict there will be more activity in brain areas involved in WM for in-
dividuals when subjects retain a transitive episode in WM, compared to an intransitive episode.10

More specifically, since in our model WM individual representations are copied to the agent and
patient media at different times during experience of an episode, we predict that there will be
changes in the functional connectivity of the agent and patient WM media during the timecourse
of episode perception. (These changes might not be identifiable at the coarse temporal resolution
of fMRI, but may be revealsed in EEG or MEG analyses.) Another set of predictions relate to
our claim that the structure of semantic WM representations is reflected in certain syntactic phe-
nomena: specifically, that the extended syntactic domain of heads results from the tonic activity
within WM individual and WM episode representations. This claim leads to the prediction that
patients with impaired ability to hold individuals and episodes in WM will also show impairments
relating to the use of syntactic heads: for instance in the processing of agreement morphology on
verbs and nouns.

Of course the model presented here is very preliminary, and leaves many open questions. There
are two obvious questions to be addressed, relating to the model’s storage requirements, and to
whether it can give an account of nested propositional structures. We will conclude by addressing
these questions.

8.1. Semantic representations containing nested propositions

Our model already accounts for some types of hierarchical structure in syntactic representa-
tions. Through its account of the interface between WM individuals and WM episodes, it accounts
for how DPs, with their own internal structure, can appear at positions within clauses. It also
accounts for the hierarchical relationships between the chain of right-branching XPs in a single
clause: higher XPs denote SM operations that occur earlier in SM routines, and thus create
the context within which the SM operations denoted by lower XPs are interpreted. However,
the model must also be able to represent semantic structures containing multiple propositions,
or multiple episodes. In grammatical frameworks, these structures are described with recursive
syntactic rules, allowing clauses to be embedded inside other clauses. We will consider three
examples. The first is a complement clause, introduced by a modal verb: for instance John
says/believes/hopes/fears [that the sky is blue]. The second is a subordinate clause, introduced
by a subordinating conjunction: for instance, [When/if John attacks], run away. The third is a
relative clause, introduced within a DP: for instance The dog [that chased me] barked. In each
case, we will argue that our model can represent aspects of these structures that other network
models of nested semantic representations cannot.

In each case, our account turns on a single key assumption, which is already built into the
model: namely that activating a semantic representation in WM triggers the execution of a tem-
porally extended sequence of signals, in which different signals are active at different times. In our
model, activating a WM representation of an individual involves simulating a SM experience: a

10In fact there is already some evidence for this: for instance Shetreet et al. (2011) found activity in areas of
cingulate cortex and precuneus increased as a function of the number of thematic roles to be retained. These areas
are implicated in WM for objects, as detailed in the paper.

31



process that is extended in time, during which first-order SM representations of location, number
and type are active at different times. Activating a WM representation of an episode involves
simulating a higher-level SM routine, during which the WM individuals medium holds different
individuals at different transient moments (while at other moments, first-order representations
of motor actions become active). There is a natural extension of this model to representations
involving multiple episodes: we propose that activating such a representation involves a tempo-
rally extended routine, in which different episode representations occupy the WM episode medium
at different times. In this model, the WM medium that holds episode representations only need
represent one episode at a time. This avoids some of the technical problems faced by existing mod-
els of nested propositional structures, in that it eliminates the possibility of cross-talk between
episodes. At the same time, the temporal separation of episodes has specific advantages, for each
distinct type of nested episode, which we will discuss below.

8.1.1. Complement clauses

We have already presented a model of sentences containing complement clauses as sequences
of episode representations, as part of a larger network model of vocabulary development (Caza
and Knott, 2012; Knott, 2014a). Our model is an implementation of Tomasello’s (2003) social-
pragmatic theory of word learning. In this theory, before infants can learn word meanings effi-
ciently, they must first do some meta-level learning about the social institution of communication:
they must learn that certain physical actions (e.g. talking) are special, in that they convey mean-
ing; and they must learn to represent these actions in a special way, that identifies the conveyed
meaning. The special semantic representations are effectively the semantics of clauses with senten-
tial complements: for instance, Mother says (to me, or some other interlocutor) that P, where P
is a whole clause. In our model of word learning, infants learn that physical actions of talking are
special because they predict good opportunities to learn word meanings. (When the infant per-
ceives a speaker talking, and establishes joint attention with this speaker, the relationship between
incoming words and incoming SM concepts is temporarily less noisy than normal.) The infant uses
this meta-level learning to focus her regular word-learning processes on talk actions, in line with
evidence reported by Tomasello (2003). In our model, infants operate in two distinct cognitive
modes, with different patterns of connectivity: in ‘experience mode’, semantic representations in
WM are activated through the SM system, and in ‘language mode’ they are activated by phonolog-
ical representations. (In relation to the current paper, these two modes are activated by selectively
enabling the interfaces shown in Figures 2 and 9.) Engaging language mode is under operant con-
trol: infants learn to engage language mode as a conditioned response to identifying a physical
‘talk’ action. Crucially, after this learning, when an infant monitors a talk action, she evokes two
WM representations in succession: first, a representation of the physical action of talking, ‘Mother
executes a speaking action (directed to interlocutor X)’, and then, after language mode is engaged,
a representation of the content of the speech action just identified, activated by its phonological
words. If these words form a sentence that denotes an episode, the infant’s representation of the
complete communicative action will comprise a sequence of two WM episodes, separated by an
intervening operation that changes the cognitive mode. This representation conforms to the gen-
eral proposal advanced in the current paper: semantic WM representations represent sequentially
structured SM routines. In this case the routine involves activation of two successive episodes in
the WM episode medium.

This model of clausal complements has an advantage over many other models of nested clauses:
it represents not only the content of the clausal complement, but also the special modal context
within which this content must be interpreted. The propositional content of a speech action is
special in two ways. Firstly, a hearer interpreting a spoken utterance is not committed to believing
this content, but instead records it in a special context associated with the speaker’s beliefs. (If
Mary tells us that P , we are not committed to believing that P , only to the fact that Mary believes
P .) Secondly, the content of an assertion is ‘intensional’, meaning that the actual words used to
report it are important. (Say that Mary and John are both axe murderers: if Mary tells us she
loves John, it is true that an axe murderer told us something, but it is certainly not true that
Mary told us she loves an axe murderer.) If a physical utterance and its content are represented as
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successive WM episodes, then our model naturally creates a special context for the content of an
utterance, since a situation update intervenes between them. The new situation is a function of the
speaker’s physical utterance, so it plausibly establishes a context representing this speaker’s beliefs.
Since this situation update also coincides with a transition into ‘language mode’, that is a mode
where WM representations are activated by words rather than SM experiences, our model also
naturally implements the fact that the content of an utterance must be interpreted intensionally.
Models of nested clauses in which matrix and complement clauses are active simultaneously, in a
single pattern of activity, do not permit such a straightforward implementation of modal contexts.

It is also worth noting that in a syntactic model, the syntactic projection (CP) that introduces
the complement clause is a ‘barrier’ to head movement, preventing heads in the complement clause
moving to the main clause and vice versa (see classically Chomsky, 1986). This is something that
has to be stipulated in a stand-alone syntactic model. But in our account it is just a corollary of
our proposal that head movement is a consequence of tonically active WM representations: the
main clause and complement clause are read out from the WM episode medium at two different
times, when the medium holds different tonically representations, so there is no opportunity for
heads from one clause to be read out in the other one.

8.1.2. Subordinate clauses

There are many kinds of subordinate clause, but we will focus on the temporal subordinator
when and the conditional subordinator if, in sentences of the form [If/when episode1] episode2.
Again, we propose that the WM representation that encodes such sentences is a sequence of two
WM episodes, active consecutively in the WM episode medium. And again, we propose that
the special semantic contribution of the subordinate clause structure can be well conveyed by an
account of the cognitive operations that intervene between the two WM episode representations.

In a standard account of sentence semantics, the meaning of a sentence is modelled as a function
that updates the ‘current discourse context’ (see again Kamp, 1981; Heim, 1982). For instance a
sentence reporting the episode John kissed Mary asserts that this episode occurs at the currently
active temporal context (whatever that is), and also resets this temporal context to be the state
that obtains after the asserted episode is completed. Subordinate clauses introduced by if and
when are modelled as operations that set the current discourse context to a new value, so that their
matrix clause updates a specified discourse context, rather than the default one. If the subordinate
clause is introduced by when, it is presupposed that the episode it expresses has already happened,
or will happen in the future; if it is introduced by if, there is no such presupposition.

In our model, there is a natural analogue of both kinds of context-resetting operation. As
discussed in Section 2.3, we interpret references to ‘the current discourse context’ in language
models as references to the currently active WM situation: so in our terms, subordinate clauses
introduced by if and when signal an operation that sets the WM situation to some arbitrary new
value. We propose that alongside the mechanism that updates the WM situation as a function
of the episode just experienced, there is a competing mechanism which reactivates an arbitrarily
distant situation from LTM, based on its resemblance to the current situation,11 and establishes a
special mode where WM episodes are retrieved from memory, rather than through SM experience.
This proposal is supported by two recent strands of empirical work. There is good evidence that
the brain can switch between alternative modes of connectivity, implemented in large-scale brain
networks, and that one of these modes relates to retrieval of material from episodic memory (see
Buckner et al., 2008 for a review). There is also evidence for a network whose role is to interrupt an
ongoing stream of SM experiences, that operates at the boundaries between experienced episodes
(Corbetta and Shulman, 2008). We suggest this proposal offers a natural account of the semantics
of subordinators like if and when. Specifically, we suggest that the subordinator signals the

11This resemblance could be determined by having the current WM situation produce a distribution of activity in
the set of LTM times and/or LTM environments. If an LTM time or place becomes sufficiently active, this indicates
that a situation similar to the current one occurred at that time/place, and this situation, along with its associated
time/place, could be reactivated.
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operation that interrupts processing and establishes a remote situation, and the subordinate clause
identifies the newly established situation. (Since the new situation is a SOM unit, the episode
associated with it can be reconstructed top-down, after which it can be rehearsed like a normal
episode.) Following this, the episode that happened ‘in’ the restored situation can be recalled, via
the next-episode prediction network.

In relation to the current discussion of multi-clause structures, the key point about this model
is that a sentence with a subordinate clause reports a temporally extended sequence of operations,
within which the semantics of the subordinate and main clauses are active at different times. The
operation establishing a new WM situation and its associated circumstances strictly precedes the
operation retrieving the episode that happened in this recalled situation. We propose that an agent
communicates the sequentially structured experience of being reminded of a past situation simply
by rehearsing this experience, including its sequential structure, in the language mode discussed in
Sections 6.2. The rehearsal operation is a slightly higher level one, in that a pair of WM episodes
are rehearsed, but there is still a single WM representation that supports the complete process,
namely the retrieved situation, which links both to the antecedent and consequent WM episodes.
In summary, the idea that semantic representations are rehearsed sequences extends naturally to
an account of subordinate clauses that reset the current discourse context.

It is also worth noting that our model provides a good means for distinguishing the semantics
of if and when. As already noted, when presupposes the episode denoted by the subordinate
clause has occurred in the past, or will occur in the future: in our model, this means it will be
associated with a specific time period. There is no such presupposition about the antecedent
episode introduced by if ; in this case, in our model, the retrieved situation should be a generic
one, not associated with any particular time. On this model, the rule If X, then Y describes
the operation of the agent’s situation-update mechanism, without making any reference to the
contents of episodic LTM. If, as we discussed in Section 2.3, this update mechanism resides in
prefrontal cortex, our account of the semantics of this rule is consistent with Wallis et al.’s (2001)
proposal that assemblies in prefrontal cortex encode general rules.

8.1.3. Relative clauses

As discussed in Section 6.2, our model is explicitly designed to represent the hierarchical
relationship between a DP and its host clause. However, a clause can also be embedded in a DP,
most obviously in a relative clause: it is important to make sure the model can be extended to
account for nested structures of this sort. Again we suggest that it can—and furthermore, that
the resulting model offers interesting advantages over existing models.

A speaker only produces a referential relative clause when this identifies some property of the
intended referent that distinguishes it from distractors. We begin by situating this operation in a
broader framework for DP planning, and then consider the relative clause mechanism specifically.

A sketched model of DP planning for referential DPs. Recall from Section 7.1 that the speaker can
choose to report a referent using the WM individuals system, or alternatively by identifying an
LTM individual the hearer knows about. In the former case, the generated DP must report either
the introduction of a new WM individual or the reactivation of an existing one (which must then
be identified uniquely). In the latter case, it can identify a known LTM individual by name, or by
specifying properties unique to this LTM individual. In either case, our current model provides a
good framework for planning a DP.

When the DP references the WM individuals system, if the WM individual is flagged as ‘new’,
it is rehearsed as-is, to generate an indefinite DP. If it is flagged as ‘old’, we envisage generation
happens in two passes. In the first pass, the speaker activates a minimal WM individual featuring
only the individual’s number and gender, and uses this to retrieve all matching referents in the
candidate WM individuals medium. If there is only one, a pronoun can be used. If not, the speaker
activates a slightly richer WM individual featuring the individual’s number and basic-level type,
and again retrieves all the matching referents in the candidate WM individuals medium. If there
is only one, there is no ambiguity, and this minimal WM individual can be rehearsed to create
a definite DP. If there is more than one, then a property should be sought that distinguishes
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the intended referent from other WM individuals. This can be done straightforwardly in our
architecture, by activating the properties of the intended referent while collectively inhibiting
those of the distractors, and then picking the most active property.12

When the DP references the LTM individuals system, if the LTM individual has a name, it is
used in place of a full DP. Otherwise, the speaker again creates a minimal WM individual featuring
number and a basic-level type, and then identifies properties of the referent which make it unique
amongst all LTM individuals of this selected type. Again this can be done straightforwardly in
our system, by treating the WM individual as a query to semantic memory, to activate a set of
distractor LTM individuals of the specified type, and then inhibiting the collective properties of
these individuals, while positively activating the properties of the referent, and then selecting the
most active property to include as a modifier in the DP.

Note that in this account of referring expression planning, the WM individual medium plays a
central role. It is well positioned to determine the content of a DP, since it can hold queries both
to WM and to LTM representations of individuals. At the same time, it underpins an account of
the syntax of DPs (in particular of syntactic heads in the DP), as discussed in Section 6.

Generation of a relative clause. In some network models (e.g. Stewart and Eliasmith, 2012),
the semantics of a sentence containing a relative clause is a single pattern of neural activity,
in which representations of matrix and nested clauses are active simultaneously. In the model
we envisage, the semantics of the matrix and embedded clauses are active in the WM episode
medium at different times. Specifically, we propose that rehearsal of the matrix episode is briefly
interrupted by rehearsal of the relative clause episode. Our motivation for this model is that the
relative clause serves a very different purpose from the matrix clause. The matrix clause conveys
an episode the speaker has experienced, involving various participants, whose properties and/or
identity the speaker apprehended directly. A relative clause functions to identify one of these
participants to the hearer: its content need have nothing to do with the experience the speaker
wants to report. We argue there is no cognitive representation in which the semantics of the
matrix clause is combined with that of a relative clause, and that by activating them at separate
times, the distinct functions of these clauses can be better modelled.

To illustrate, consider The dog [that chased Mary] bit John. The purpose of the main clause
here is to convey an experience the speaker has just had, in which a certain dog bit John. The
purpose of the relative clause is to identify the dog in question to the hearer, in a case where there
are several candidate dogs. We propose that the speaker begins by rehearsing the WM episode
conveyed by the matrix clause The dog bit John. This WM episode contains pointers to two WM
individuals: a token dog, and a token person (John), each associated with an LTM individual.
During rehearsal, the speaker loads each WM/LTM individual pair in turn, creating the context
for two separate DP planning scenarios of the kind just sketched above. During the first of these,
when producing a DP to refer to the specified token dog, a property of this dog is sought that
distinguishes it from a set of distractor dogs. In the current scenario, the selected property is an
episode-based property retrieved from semantic LTM, of the kind discussed in Section 7.2, namely
‘x chased Mary’. The question now is how this episode is expressed verbally, given that the WM
episode medium already holds ‘the dog bit John’, and is halfway through rehearsing this episode.

The basic scheme we have in mind is a very traditional one, originally proposed by Miikku-
lainen (1996), which recruits a network implementing a general-purpose stack, with push and pop
operations (Pollack, 1990).13 At the point when the relative clause is to be expressed, the matrix
episode ‘the dog bit John’ is pushed onto this stack, along with a pointer to the position at which
rehearsal should be resumed, and the episode-level property ‘x chased Mary’ in the candidate WM

12We envisage that the distractor individuals are activated in the candidate WM individuals medium; then their
properties are collectively activated in the properties medium; then the active properties are inhibited; finally, the
properties of the intended referent are positively activated on top of this pattern. The properties that are active
after this will be those only possessed by the referent.

13Miikkulainen models sentence interpretation rather than sentence generation, but the stack has a similar role
in both cases.
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episodes SOM is reconstructed in its place in the WM episode medium. This is then rehearsed,
generating the relative clause. When rehearsal is complete, ‘the dog bit John’ is popped from the
stack back into the WM episode medium, and its rehearsal is resumed. The crucial point in this
model is that the two clauses are generated by distinct semantic representations, activated by dis-
tinct mechanisms, and active at different times, in accordance with their very different pragmatic
roles in the sentence.

8.2. Space and capacity analysis of the model

We conclude by discussing the storage requirements of our proposed network. (We will not
include the network that implements LTM for object locations in our calculations, since this is
not the focus of the current paper.)

We first make a rough estimate of the size of the media that represent object tokens and
properties, which in our model are copied to the WM episode medium. As our estimate for the
size of the ‘properties’ medium, we will use the size of the penultimate layer in a high-performing
convolutional neural network for visual object classification (Simonyan and Zisserman, 2014),
4000 units, scaled by a factor of 2.5 to account for other sensory modalities, yielding a total
of 10,000 units. As our estimate for the number of LTM individuals that can be individually
distinguished, we will use a figure of 20,000, which encompasses a relatively small number of
well-known individuals in a personal network (on the order of 2000, according to Killworth et al.,
1990), plus 18,000 miscellaneous token objects (roughly 20 instances of each of the roughly 900
basic-level nouns identified in WordNet by Izquierdo et al., 2007 Table 2).

Based on these estimates, the ‘agent’ and ‘patient’ media in the WM episode must each hold
30,000 units. In addition, the ‘action’ medium must hold a repertoire of actions. We estimate that
2000 action categories that are represented, based on a cross-linguistic measure of verb vocabulary
size (Tang and Nevins, 2013).14 There are therefore 62,000 units in a realistically sized WM episode
medium.

We now consider the appropriate size of the candidate WM episodes SOM. Recall that this
medium does not need to represent all possible episodes: only recalled and expected episodes (and
these can in some cases be represented as generic episodes rather than token episodes). Neither
does this medium need to represent episodes with ‘nested’ episodes: as discussed in Section 8.1, the
relations between these episodes are stored in the situation SOM for complement and subordinate
clauses, and retrieved from episode-based properties for relative clauses. We estimate the candidate
WM episodes SOM must hold around 106 episodes, based on the 106 ‘common-sense axioms’ in
Cyc’s knowledge base (Lenat, 1995). We cannot expect perfect efficiency in the candidate WM
episodes SOM: in our experiments, 25% of its units never ‘won’ the competition to represent a WM
episode. Erring on the side of caution, we estimate that the scaled-up candidate WM episodes
SOM must contain 107 units.

We now turn to the number of connections implied by these estimates. The WM episode
and candidate WM episodes media are fully connected, so there are 62, 000×107 = 62×1010

connections between these media. Also, recall from Section 7.2 that episode-based properties are
stored in links between the LTM individuals layer and the candidate WM episodes SOM, resulting
in an additional 20, 000×107 = 20×1010 connections.

We now consider the size of the current situation SOM. This network holds localist represen-
tations of all situations the agent encounters, which as before can be generic types of situation
or specific token situations in episodic LTM. The main purpose of a situation representation is
to hold information about the episode that occurred (or will occur) ‘in’ this situation. On the
assumption that situations encode ‘discourse contexts’, which are updated after each eventive
sentence in a narrative (see Section 2.3), we will use a textual method to estimate the number
of distinct situations that must be stored. A typical novel contains around 2,600 sentences.15 If

14While there may also be units encoding action types, we assume their number is small in comparison with the
number of units representing token actions.

15Source: the now-defunct Amazon ‘text stats’.
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Units Links

Properties 1× 104 → agent, patient 2× 104

LTM individuals 2× 104 → WM episode 4× 104

→ cWM-ep-SOM 20× 1010

→ properties 20× 107

WM episodes 6.2× 104 → cWM-ep SOM 62× 1010

cWM-ep SOM 1× 107

current situation SOM 2.6× 106 → WM-ep/prev-sit’n/LTM times/env’s 42.6× 1010

→ predicted next episode 2.6× 1013

previous situation 6.2× 104

LTM time periods 2× 104

LTM environments 2× 104

predicted next episode 1× 107 → cWM-ep SOM 1× 107

Total (approx) 2.28× 107 Total (approx) 2.72× 1013

Table 1: Estimated dimensions of a realistically sized network

we assume that a person’s inventory of situations equates to detailed knowledge of 100 novels,
excluding overlapping generic situations, the situations SOM must store 2.6×105 situations, and
allowing for the same degree of redundancy as the episodes SOM, should hold 2.6×106 units.16

The current situation MSOM takes input from four media: the WM episode, the layer rep-
resenting the previous situation, the set of LTM time periods and the set of LTM environments.
The previous situation layer is represented in the MSOM as the weights of the winning unit in
the previous situation, as discussed in Section 4, and thus holds 6.2 × 104 units. We estimate
that token LTM environments stand in a 1:1 relation with LTM individuals, because places can
be reconstrued as objects; on this basis there are 20,000 LTM environments. We estimate there
are a similar number of LTM time periods.17 The situation SOM therefore receives input from a
total of 6.2×104 + 6.2×104 + 2×104 + 2×104 = 16.4×104 units. The number of connections into
the situations SOM is 16.4×104×2.6×106 = 42.6×1010. The situations SOM provides output to
a medium the same size as the candidate WM episodes buffer (107 units), requiring an additional
2.6×106×107 = 2.6×1013 connections. This medium is mapped by 1:1 links to the candidate WM
episodes buffer itself, requiring an additional 107 connections.

As summarised in Table 1, we estimate our model when scaled up will require around 2.28×107

units and 2.72 × 1013 connections. Following Stewart and Eliasmith (2012) we assume each unit
in our model is implemented by a local assembly of 100 actual neurons: on this basis the network
would require 2.28 × 109 neurons.18 There are at least 8.6 × 1010 neurons in the human brain
(Azevedo et al., 2009), and at least 1.6× 1014 synapses (Tang et al., 2001); our projected network
uses less than 10% of available neurons, and less than 20% of available synapses. Even if we
assume each unit in the network corresponds to an assembly of 100 actual neurons, the network
can still be accommodated within the number that has reasonable complexity, given that it models
substantial parts of LTM as well as semantic WM.

16In this scheme, there are fewer possible situations than possible episodes, by a factor of 100. We consider this
reasonable, given that many situations are generic. (Note that a generic situation can still make specific predictions:
for instance, if the situation represents a circumstance in which there is a cat, it can predict episodes involving ‘this
cat’, which will apply in any particular case to a specific token cat).

17This estimate is based on a hierarchical model of time periods currently under development.
18We assume a small-world architecture (see e.g. Downes et al., 2012) in which these assemblies communicate as

wholes with the wider network, and accordingly we do not adjust the total number of synapses.
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HumanType=(THuman:3;Animate:2;Human:2)

DogType=(TDog:3;Animate:2)

CatType=(TCat:3;Animate:2)

BirdType=(TBird:3;Animate:2;Flies:2)

CupType=(TCup:3;Inanimate:2;Grabbable:2)

ChairType=(TChair:3;Inanimate:2)

BallType=(TBall:3;Inanimate:2;Grabbable:2)

Table A.1: Featural representation in the ‘type’ area of WM individual. Features starting with ‘T’ represent type-
specific properties, others represent general binary properties. The numbers represent ‘strength’ of the feature,
computationally equivalent to the number of identical units coding the same feature.
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Appendix A. Technical details of the model

Appendix A.1. Representation of objects/actions and episode generation

The following tables show the featural representation of object types in the WM individual
medium (Table A.1) and actions in the WM episode medium (Table A.2). Each feature is rep-
resented by a separate unit. Table A.3 shows the transcription rules for stochastic generation of
episodes.

Appendix A.2. Learning in the candidate WM episode system

During training, the SOM’s incoming weights ~wi are updated using the standard SOM learning
rule (Kohonen, 1982)

~wi(t+ 1) = ~wi(t) + γ ·G(I, i) · [~x(t)− ~wi(t)] (A.1)

where ~x(t) is the input in the current time step t (the content of WM episode medium), γ is the

learning rate, G is a Gaussian neighbourhood function G(I, i) = exp(−‖rI − ri‖2 /σ2) with the
width σ, I is the index of the winning neuron, and rI , ri are lattice coordinates of neurons I, i.

For the purposes of training, the winner is determined as the unit I with the minimal Euclidean
distance between its weight vector ~wI(t) and the current input ~x(t).

The activity Ai(t) of each unit is then computed as

ai(t) = pi(t) · exp(−c · d2(~wi(t), ~x(t))) (A.2)

Ai(t) =
ai(t)∑N
j=1 aj(t)

(A.3)

The Gaussian term exp(−c · d2(~wi(t), ~x(t))) reflects the likelihood that the current input ~x(t)
corresponds to an episode remembered in the weights ~wi(t) of the i-th unit (the parameter c
expresses the sensitivity of the Gaussian), pi(t) is its frequency-based prior. The activities are
then normalized to sum to 1, so the computation follows the Bayesian rule and the overall activity
in the candidate WM episode SOM can be interpreted as a probability distribution over possible
remembered episodes corresponding to the current WM episode input.19

19The activities can be (approximately) normalized in a biologically plausible way by receiving a global inhibitory
signal proportional to their cumulated activity coming from a special layer—see O’Reilly and Munakata (2000),
chapter 3.5. However, we normalize them by simple direct division.
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Grab=(TGrab:3;Manual:2)

Hit=(THit:3;Manual:2)

Push=(TPush:3;Manual:2)

Pat=(TPat:3;Manual:2)

Stroke=(TStroke:3;Manual:2)

Walk=(TWalk:3;Self-Movement:2)

Run=(TRun:3;Self-Movement:2)

Lie=(TLie:3;Self-Position:2)

Sit=(TSit:3;Self-Position:2)

Sing=(TSing:3;Mouth:2)

See=(TSee:3;Sensory:2)

Snore=(TSnore:3;Physiological:2)

Sneeze=(TSneeze:3;Physiological:2)

Sleep=(TSleep:3;Physiological:2)

Hold=(THold:3;Arms:2)

Hug=(THug:3;Arms:2)

Bite=(TBite:3;Mouth:2)

Kick=(TKick:3;Leg:2)

C+Break=(TBreak:3;Causative:2;Result:2)

C+Stop=(TStop:3;Causative:2;Result:2)

C+Hide=(THide:3;Causative:2;Result:2)

C+Go=(TGo:3;Causative:3;Self-Movement:2)

Table A.2: Featural representation of actions. Features starting with ‘T’ represent type-specific properties, others
represent general binary properties. The numbers represent ‘strength’ of the feature, computationally equivalent
to the number of identical localist units coding the same feature.

The SOM weights are initialized to random real numbers between 0 and 3. The learning rate
γ is linearly decreasing from 1 to 0.5 during the first 5000 episodes, then stays constant at 0.5.
The Gaussian neighbourhood size σ decreased linearly from 20 to 1 during the first 5000 episodes,
then to 0.1 during the next 15000 episodes. The sensitivity c of the Gaussian activation term is
set to 1. In order to smooth the priors, each scalar weight has an initial value of 1 (i.e., at the
beginning we assume a uniform prior pi = 1/400 for each unit).

Appendix A.3. Top-down reconstruction from the active SOM

If we interpret the current activity pattern in the SOM as a probability distribution of possible
episodes (as remembered in weights of the SOM’s units), we can compute expected values of the
episode representation by propagating the activities top-down via weights connecting the cWM-ep
medium with the WM episode.20 The resulting activity ~y in the WM episode is computed as

~y =

N∑
j=1

Aj(t) · ~wj(t) (A.4)

Appendix A.4. Determining a winner in the cWM-ind system

Let us first assume that the population of N neurons with activities ni elicited by an unknown
stimulus reside in the WM individual layer as a part of it that represents a single property e.g.
person, number, place, gender, or colour. Let us further assume that the cWM-ind layer contains
representations of K individuals, where the j-th unit remembers the actual value θj of the same

20Another option would be to combine the weight vectors of just K most active units with an extreme case K = 1,
i.e. reconstructing only the most probable candidate. However, in all our experiments we combine activities of all
400 units.
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Episode -> Transitive:86 | Intransitive:24 | Causative:40

Human -> Man | Woman

Dog -> WDog | BDog

Animal -> Dog | Cat

Animate -> Human | Dog | Cat | Bird

AnimateWODogCat -> Human | Bird

Agent -> Human | Dog | Cat

Thing -> Cup | Chair | Ball

Patient -> Human | Dog | Cat | Cup | Chair | Ball | REFL

Transitive -> TrHuman:38 | TrAnimal:48

TrHuman -> TrHumanAnim:14 | TrHumanThing:21 | TrPatM:1 |

TrPatF:1 | TrStroke:1

TrAnimal -> Animal Patient AnimalTrAction

TrHumanAnim -> Human AnimateWODogCat HumanTrAction

TrHumanThing -> Human Thing HumanTrAction

TrPatM -> Man BDog Pat

TrPatF -> Woman WDog Pat

TrStroke -> Human Cat Stroke

HumanTrAction -> Grab | Hit | Push | See | Hold | Kick | Hug

AnimalTrAction -> Hit | Push | See | Bite

Intransitive -> IntrWOBird:24 | IntrBird

IntrWOBird -> Agent IntrAction

IntrBird -> Bird Sing

IntrAction -> Walk | Lie | Sneeze | Sit | Sleep | Sing | Run |

Snore

Causative -> CausHumanOnAnimates:2 | CausAnimalOnAnimates:20 |

CausOnThings:18

CausHumanOnAnimates -> Human Human CausActionOnAnimates

CausAnimalOnAnimates -> Animal Animate CausActionOnAnimates

CausOnThings -> Agent Thing CausActionOnThings

CausActionOnThings -> C+Break | C+Hide

CausActionOnAnimates -> C+Stop | C+Go

Table A.3: Transcription rules for stochastic episode generation. ‘|’ character separates alternatives; each alternative
is generated with the probability proportional to the number after the colon (if omitted, a default value of 1 is
assumed). REFL means reflexive patient (i.e. identical with the agent individual).
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property for a particular individual in its weights ~w(j) =
(
w

(j)
i

)
= (fi(θj)) for i = 1..N . We can

then evaluate for each remembered individual how likely it is that it is currently perceived in WM
individual. If both ni and fi(θj) population codes are normalized (i.e. the sum of ni for i = 1..N
equals to 1, and the same holds for fi(θj)), they can be conceived as probability distributions and
the negative log likelihood of θj represents their cross-entropy, i.e.

NLL(θj)=−logL(θj)=−
N∑
i=1

ni log fi(θj)=−
N∑
i=1

ni logw
(j)
i =H(~n, ~w(j)) (A.5)

That means the most likely candidate J is the one with the smallest value of NLL(θJ) (which is
always non-negative). However, it is well possible that the currently perceived individual is novel,
i.e. none of the remembered ones. To be able to determine that, we need to set a threshold τ such
that an individual is considered novel, if NLL(θj) > τ . The problem is that even for a perfect
match ~n = ~w(j) their cross-entropy is not zero, but it is equal to the entropy H(~n). In order to
be able to use an absolute threshold τ , it is reasonable to substitute the measure NLL(θj) with

KL(~n, ~w(j)) = H(~n, ~w(j))−H(~n) (A.6)

which is their Kullback-Leibler (KL) divergence. This measure is zero if and only if ~n = ~w(j).
Because a WM individual does not consist of just a single property, but several population

codes—for person, place, number, type, and colour, the KL divergence is determined pairwise
between respective areas of WM individual and the weights of each candidate unit in cWM-ind
system for each property and then they are averaged to yield a single KL value, which is then
compared to the threshold21 τ to determine whether the currently perceived individual is novel.
For more details, see Takac and Knott (2015b).
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