
Department of Computer Science,
University of Otago

Technical Report OUCS-2002-02

Integer root finding, a functional perspective

Author:

Michael H. Albert

Status: submitted to the Journal of Functional Programming for a special issue

on "functional pearls"

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/trseries/

Under consideration for publication in J. Functional Programming 1

FUNCTIONAL PEARLS

Finding integer roots, a functional perspective.

MICHAEL H. ALBERT
Dept. of Computer Science, University of Otago, Dunedin, New Zealand

(e-mail: malbert@cs.otago.ac.nz)

Abstract

We consider the problem of finding integer parts of roots to equations in a functional con-
text. Standard techniques from numerical methods are extended to this case, providing
both good performance, and guarantees of correctness. From an educational standpoint,
the clear connection between the methods for finding roots and the functional code makes
it easier to understand how different methods work, and to compare their relative effec-
tiveness.

1 Introduction

This article had its genesis in the following question set as an exercise in a functional
programming course:

A triangle with sides a, b, and c has area A, given by Heron’s formula:

s =
a + b + c

2
A =

√
s(s− a)(s− b)(s− c)

=

√
(a + b + c)(a + b− c)(b + c− a)(c + a− b)

4
.

Given an integer n find all triangles whose sides all have integer length at most n

and whose area is also an integer.
Aside from some, deliberate, ambiguity as to whether (3, 4, 5) and (4, 5, 3) count

as different triangles (they don’t), the exercise was intended to be a basic test of
understanding list comprehension. A possible solution (in Haskell) is given in Figure
1. The only difference between it and the actual specification of the relations above
is the observation that in order for A to be an integer it is both necessary and
sufficient that a + b + c is even, and the numerator of the final expression is an
integer. The slight type awkwardness in iSqrt is foreshadowed in section 12.2 of
the Gentle Introduction to Haskell (Hudak, Peterson and Fasel, 1987).

Checking whether a number is a perfect square by taking a floating point square
root, truncating, squaring, and checking against the original is of course a standard
trick but it limits the applicability of this method. For example, isSquare will
report that 2101 is a perfect square. On the other hand, the problem of finding an

2 M.H. Albert

top a b c = (a + b + c)*(a + b - c)*(b + c - a)*(c + a - b)

isSquare x = x == (iSqrt x)^2

iSqrt x = truncate (sqrt (fromIntegral x)) :: Int

tris n = [(a, b, c) | a <- [1..n],

b <- [a..n],

c <- [b.. (min ((a+b)-1) n)],

(a + b + c) ‘mod‘ 2 == 0,

isSquare (top a b c)

]

Fig. 1. Triangles with integer areas.

integer square root, using only integer arithmetic has a long history and was used as
an example in Dijkstra (1976). A hint of the methods used in that algorithm (which
was tailored to fast binary arithmetic) will remain in our methods for producing
an initial approximation when searching for the integer part of a solution to more
general equations.

General problem: Given a function f on the real numbers, which is integer-
valued on the integers, and a (large) integer b, find the integer part of a solution to
f(x) = b.

We will develop a number of methods for attacking this general problem in a
context where we can guarantee that there is a unique solution, as of course in
complete generality it is insoluble. A not inconsiderable side effect of this develop-
ment will be to show how easy it is both to code, and to understand the code for,
basic numerical methods in the functional context. This should be contrasted with
the situation in imperative languages, as seen for example in Numerical Recipes in
C (Press, Flannery, Teukolsky, Vetterling 1993), which will be our standard source
throughout for numerical methods, specifically Chapter 9 which deals with root
finding. The novelty of our discussion lies in the fact that all the computations are
restricted to dealing with integer values. In fact, except for the computation of f

itself, we make use only of basic arithmetic operations.

2 Generalities

Most root finding methods operate according to the following general scheme:

• Produce an initial approximation, or approximations, to a root (often a pair
of values bracketing a root).

• Update the approximation according to a specified method,
• until some termination check (generally a tolerance, assumed or guaranteed)

is satisfied.
• Report the final result.

It is clear that each of these steps corresponds to a natural functional operation, the
combination of the second and the third being captured in the higher order until

Functional pearls 3

function. The entire scheme can be captured in a “one-liner” assuming suitable
definitions for the individual parts:

findRoot f = report (until termCheck (iterMethod f) (initApprox f))

The importance of the initial step is often overlooked. Many effective root finding
algorithms consist of a method which produces a reasonable initial approximation
(generally with linear convergence), followed by a few steps of some superlinear
method to polish the solution. Recall that, an approximation method is linear if it
adds a constant number of bits of accuracy at each iteration. Equivalently, the error
guarantee in the approximation is divided by a constant factor. More generally, a
method has order of convergence, c, if each step reduces the error from ε to (a
constant times) εc. For superlinear methods, c > 1.

In order to keep our discussion concrete, and to allow it to fit into the scope of
this article, we are now going to make a major technical assumption about the form
of the function f in the equations which we are trying to solve. Namely, in looking
for (the integer part of) a solution to f(x) = b we require that: the equation has
a unique positive solution α, and for some β < [α], f is increasing and convex on
[β,∞]. Our aim is to determine [α], the integer part of α. Although we would like
to emphasise the role played by b in ensuring that the conditions are met, it will
simplify the code if we express the methods as “root-finders”, where the function
for which we are seeking a root is f(x)− b. Of course, given a findRoot function,
it is trivial to define a corresponding solve function, so this is really no restriction
in generality.

The assumptions we make on the form of f may seem to be, and indeed are,
quite restrictive. However, they also fit well into the context where methods of this
sort would be appropriate as opposed to making use of standard numerical methods
packages. Specifically, while the coefficients of f (were it say, a polynomial) would
ordinarily be machine size integers, we have in mind that b (and hence α) might
well be much larger than that. A typical problem, which we shall use as an example
later, would be to find the integer part of the solution to:

x3 = 22003.

In such an instance the assumption concerning the growth rate of f near α is easily
justified. In particular, the problem of finding the integer part of the nth root of
a large integer, or for that matter any positive integer, satisfies the assumptions,
and the reader may, if he or she wishes, consider the subsequent discussion as
applicable only to that case. In our general scheme of root-finding methods, both
the termination check and the initial approximation may depend on the iterative
method used. For floating point computations, the termination check generally
reduces to seeing that the approximations to a root have “settled down”. As we
will be demanding exact computation of the integer part of the root, ours will in
some sense be more stringent. In fact the termination checks are quite closely bound
with the iterative method itself, while the initial approximation generally depends
on it in a more technical fashion. So we will begin with a discussion of the iterators

4 M.H. Albert

stepB f (low, high)

| (f mid) <= 0 = (mid, high)

| otherwise = (low, mid)

where mid = (low + high) ‘div‘ 2

findRootB f (l0,h0) = fst (until termCheckB(stepB f) (l0,h0))

where termCheckB (l,h) = (h - l) <= 1

Fig. 2. Bisection method with a fixed initial interval.

and their termination, and then move to a method for generating suitable initial
approximations.

3 Iterators and termination

We will confine our detailed consideration of iteration methods to bisection, New-
ton’s method and the secant method. Any of the other methods considered in
Chapter 9 of (Press, Flannery, Teukolsky, Vetterling 1993) could be used as well,
and some would be more appropriate in other contexts, but the basic ideas are the
same. Some care must be used in choosing a method, as it should be remembered
that in computations with large integers, the cost of various operations may be
quite different from one another.

Bisection is the most fundamental of the root finding methods, and one of the
only ones which, for continuous functions in general, is guaranteed to succeed. Our
main use for bisection will be in constructing decent initial approximations. The
idea of bisection is of course very simple. At each stage we have an interval [l, h]
with f(l) ≤ 0 < f(h). We insist on the strict upper inequality because we know
that there is a unique root in the interval we are searching, and we wish to find its
integer part. We then evaluate f at the midpoint of the interval, and construct a
new interval with the same bracketing property depending on the value of f at the
midpoint. Generally, the termination condition is taken to be that the length of the
interval [l, h] is suitably small. If we seek to find the integer part of a solution, that
amounts to insisting that h− l ≤ 1. The complete code for bisection (assuming an
initial interval [l0, h0]) is given in Figure 2.

In the real-valued setting, Newton’s method constructs a sequence of approxi-
mations xn to a solution of f(x) = b. After choosing some initial approximation
(read, guess) x0, each new approximation xn+1 is taken to be the x-intercept of the
intersection of the tangent line to f through (xn, f(xn)). That is:

xn+1 = xn −
f(xn)
f ′(xn)

.

We have assumed that f is convex to the right of α. Therefore, if xn > α it will
also be the case that xn+1 > α. Since we wish to carry out all our computations
in integer arithmetic we must assume that f ′ is also integer-valued on the integers,

Functional pearls 5

stepN f fp x = x - (f x ‘cdiv‘ (fp x))

iterN f fp (x,_) = (stepN f fp x, x)

termN (x,y) = (x >= y)

n ‘cdiv‘ q = 1 + (n-1) ‘div‘ q

Fig. 3. Newton iteration and termination.

and we set:

xn+1 = xn −
⌈

f(xn)
f ′(xn)

⌉
.

It follows that if α < xn then [α] ≤ xn+1 < xn. On the other hand if xn = [α]
then xn+1 ≥ xn (since f(xn) ≤ 0, while f ′(xn) > 0) so our termination condition is
simply that xn+1 ≥ xn. Since the termination condition requires us to compare two
approximations, we must build this into our iterator. This leads to the code shown
in Figure 3. That the function cdiv computes the ceiling we require follows as the
dividend is an integer. This code assumes that the function f and its derivative fp

are given. In practice (for example for computing nth roots) it might well be efficient
to compute these two values together, modifying the stepN method appropriately.
When the initial approximation is sufficiently good, Newton’s method converges
quadratically, that is, it roughly doubles the number of digits of accuracy with each
iteration. It can be checked that for polynomial functions of degree n it is sufficient
that the initial error must be at most α/n to ensure quadratic convergence. This
is easily achieved by at most dlog2 ne bisection steps, beginning from a bracketing
pair 2k−1 < α ≤ 2k. Therefore our goal for finding an initial approximation will
be to determine this value of k. In practice, the refinement of further bisection is
generally unnecessary, as the quadratic regime is entered after a few steps, even
from an initial approximation of 2k.

Although Newton’s method guarantees quadratic approximation, each step re-
quires an evaluation of both the function and its derivative. For polynomials, we can
combine the evaluation in such a way that the total cost will not be much greater
than a single function evaluation, but for other functions this may not be possible.
In that case the secant method may be more appropriate. In this method, a secant
is drawn connecting two points on the curve (representing the two most recent ap-
proximations) and its x-intercept is taken as the next approximation. Again, since
we are assuming that the function is convex and increasing to the right of α this
intercept will also lie to the right of α. So, if α < xn < xn−1 then we may take:

xn+1 = xn −
⌈

f(xn)(xn−1 − xn)
f(xn−1)− f(xn)

⌉
.

and we can guarantee that [α] ≤ xn+1 < xn. On the other hand if xn = [α] then
xn+1 ≥ xn, so our termination condition is again simply that xn+1 ≥ xn. Since the
values of f at both xn and xn−1 are required to compute xn+1, it makes sense to

6 M.H. Albert

stepS (x1, f1, x0, f0) = x1 - (f1*(x0 - x1) ‘cdiv‘ (f0 - f1)) - 1

iterS f old@(x1, f1, x0, f0) = (x2, f2, x1, f1)

where x2 = stepS old

f2 = f x2

termS (x,_,y,_) = (x >= y)

Fig. 4. Secant iteration and termination.

include them as part of the iterator, and this is done in Figure 4 (the definition of
cdiv is the same as in Newton’s method).

Under our standing conditions, the secant method is often more effective than
Newton’s method. The theoretical order of convergence is equal to the golden ratio
(1.618 . . .), which is less than the quadratic convergence given by Newton’s method
but, as noted above, if the evaluation of f ′(x) cannot be carried out with little
additional computation over the evaluation of f(x), then this assessment of the
Newton method’s convergence is overly generous. In the case where evaluating f

and f ′ are separate operations of equal complexity, the actual order of convergence
for Newton’s method is

√
2 which is dominated by that of the secant method.

A third method called Ridder’s method is discussed in Numerical Recipes and
would be particularly appropriate for handling functions of exponential growth.
However, for such functions, the solution is likely to be small, for example:

What is the largest value of n for which

n22n + 3n < 101000?

So, for such equations, when searching for integer solutions, more straightforward
methods such as bisection are probably preferable. Obviously exceptions could arise
if the evaluation of the function were particularly complex.

4 The initial approximation

In all cases, we will want to initially generate an approximation to the root which
is larger than the root and has, within one, the correct number of binary digits.
Our assumptions ensure that for 0 < x < α, f(x) < 0, so it is a simple matter
of checking powers of two until we find the least k with f(2k) > 0. Under most
circumstances:

initApprox f = head [x | x <- map (2^) [1..], f x > 0]}

will be a perfectly satisfactory solution to this problem. We can, however, easily add
a little finesse to this method. Instead of constructing the powers of two iteratively,
we can square each previous approximation, until we obtain a positive value for f .
That is, we have found the least m with

f(22m

) > 0.

Functional pearls 7

initApprox f = 2^(1 + solveB g (initInterval g (1, 2)))

where g k = f (2^k)

initInterval g i@(_, m)

| g m > 0 = i

| otherwise = initInterval g (m, 2*m)

Fig. 5. Generating an initial approximation.

Now we can proceed with bisection in the exponent on the range [2m−1, 2m] to
zoom in on the proper value of k. This is illustrated in Figure 5. We temporarily
introduce a function g(t) = f(2t) and then successively double the value of t until we
overshoot 0. Then solveB finds the exact value of k for which f(2k−1) < 0 ≤ f(2k).
In very simple examples, such as f(x) = xn, we could make use of extra properties
of the function (namely that f(x2) = f(x)2) to reduce the cost of setting up the
initial approximation.

For the secant method this is more or less all we need – we can use the pair 2k

and 2k − 1 as our two initial ordinates for beginning the secant method. As noted
above, for Newton’s method we may, for polynomials of degree n wish to carry
out a further log2 n steps of the bisection method in order to guarantee subsequent
quadratic convergence.

We note, as a matter of purely academic interest, the possibility of bootstrapping
our methods for producing an initial approximation. That is, the initial approxi-
mation 2k which we seek for the root of f is just the ceiling of the solution to
f(2x) = b, or as noted above, to g(x) = b where g(x) = f(2x). So, we could produce
an initial approximation for the root of g in the same way, then solve for the root
of g by any of our chosen methods. Or, we could take this as many levels deeper as
we might wish, though we suspect that a search for solutions larger than 22216

is
not likely to be practical!

5 Example

It is easy enough to add a counter to any of the methods in order to keep track
of the number of function evaluations required. Consider, for the sake of example,
the problem of finding the integer part of 2667 3

√
4, that is the integer part of the

solution of:

x3 = 22003.

Eleven function evaluations will establish that the solution lies between 2512 and
21024. Ten more will find the upper bound of 2668. Now the three methods diverge.
Ordinary bisection is working on an interval of length 2667 and will require a further
668 evaluations. Newton’s method, beginning directly from this point requires a
further nine evaluations (but of both the function and its derivative). The secant
method requires 13 steps, but each of these requires only one function evaluation.

8 M.H. Albert

For the benefit of the terminally curious, this 204 digit number is:

972061565100865141690781838978080125525411626701161710401035788433830
251394681633102150767128320588736157422235015786108758620488247863266
981860930696030109975118510658777936124630077529803189683655775

If the exponent on the right hand side is changed from 2003 to 20003, then the
initial phase requires 27 steps (instead of 21) but Newton’s method still requires
only a further 12 evaluations after constructing the initial guess. The secant method
requires 18 further evaluations after the initial phase, while of course bisection lags
in the rear, now requiring 6668 further evaluations. The three extra evaluations
required by Newton’s method when the number of digits in the solution has been
multiplied by 10 is in surprisingly direct accord with the quadratic convergence of
this method.

6 Conclusions

Although this presentation is geared towards the one variable setting, the general
ideas apply equally well in higher dimensions, given suitable assumptions about
the behaviour of the functions involved. Likewise, the methods of chapter 10 in
Numerical Recipes, for finding maximum or minimum function values can also be
attacked in the same fashion.

The discussion above illustrates once again how functional programming tech-
niques provide the glue that allow one to put together different parts of a problem
solution. In particular, different iteration methods, termination checks, or gener-
ators for initial approximations can be plugged into the method as a whole to
illustrate or refine its effectiveness. It would be nice to be able to claim that poly-
morphism also allows us to use the same methods for floating point solutions as for
integer solutions, but as it stands this is not the case owing to our use of cdiv. On
the other hand, to produce floating point code, only requires changing the declara-
tion of that operation to cdiv = /.

We hasten to admit that we have not provided general purpose equation solving
routines. Much of the difficulty in providing such methods is in dealing with func-
tions which behave poorly for one method or another. For example, one practical
method involves choosing either a secant step, or a bisection step if the secant step
is not more effective. Such behaviour could easily be built in through a construct
such as better stepB stepS requiring only a suitable definition of better and a
matching of the input type for the two methods.

References

Dijkstra, E. W. (1976) A Discipline of Programming. Prentice-Hall.

Hudak, P., Peterson, J. and Fasel, J. (1999) A gentle introduction to Haskell (Version 98),
http://haskell.org/tutorial.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1993) Numerical
Recipes in C The Art of Scientific Computing (2nd edition). Cambridge University Press,
Cambridge.

