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Abstract

Although there are known algorithms for predicting observation and state sequences from HMM models

there is little discussion on how to determine the contributions of the different types of HMM parameters to

such predictions and consequently, temporal pattern recognition. In this note we discuss and compare a number

of objective measures that provide insight into HMM performance in these terms.

Keywords: HMM, evaluation.

1 Introduction

Over the past20 years hidden Markov models (HMMs) have become a popular method for encoding, recognizing

and predicting sequential patterns of univariate and multivariate observation data. The Viterbi algorithm has been

∗corresponding author
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the most popular method for predicting optimal state sequences and it’s associated maximum posterior probability

(MAP) score is typically used for temporal pattern recognition and classification. For predicting observation

sequences, Monte Carlo sampling is typically used [4, 2]. However, such methods and measures have not been

analyzed in relation to the specific model parameters and, in particular, as to how each parameter set actually

contributes to performance. Accordingly, here we have investigate three discrete HMM diagnostic tools to answer

this question: the HMM Condition Number, Residual Sum Vector, and Conditional Information content.

We follow the HMM nomenclature of Rabiner [4] where there exists a model, a sequence of state symbols,

Si, and a sequence of observation symbols,Oj . In most cases we need to estimate the state sequences from one

sequence of observation symbols, given a model. The model, a discrete HMM,λ, consists of three components

λ = {A,B, π} havingN states andM distinct observation symbols; whereA = {aij} is anN×N state transition

probability matrix and

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N. (1)

B = {bj(k)} is anN × M matrix which is the probability distribution of observation symbol,o, given statej,

where

bj(k) = P [o = k|q = Sj], 1 ≤ j ≤ N, 1 ≤ k ≤ M, (2)

andπ = {πi} is the initial state distribution where

πi = P [q1 = Si], 1 ≤ i ≤ N. (3)

In this note we investigate how to assess the contributions of the individual HMM components to the prediction

of observations or optimal state sequences. This issue bears upon how we interpret HMMs and how they can or

cannot informatively versus predictably represent what is observed. For example, imagine a system that consists

of two coins. One coin has a head on both sides, and the other coin has a tail on both sides. At any trial, one of

the coins is chosen randomly and flipped. The result of the flip is then recorded - either heads or tails. We can
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construct a HMM that models this system as:

A =


0.5 0.5

0.5 0.5


 B =


1.0 0.0

0.0 1.0


 (4)

Although this HMM is an informative statistic of what is observed (over large sample sizes) theA matrix has no

predictive power. On the other hand, given an observation it is clear that the state-dependent observation matrix

(B) can fully predict the state at any time - in this case, demonstrating the importance of the non-Markovian model

component. In this vein, then, we discuss three simple, but useful, diagnostic tools for determining just how these

HMMs components contribute to the prediction of observations and state sequences.

1.1 Condition Number of a HMM

Experienced users of HMMs probably already know that the best performing HMMs are those for which the rows

of theA andB matrices are linearly independent for maximum discrimination of state and observation symbols.

However, sinceA andB are inextricably linked in the model execution, it makes sense to define the following row

augmented matrix:

C = A|B. (5)

Accordingly, we would like the rows ofC to be as linearly independent as possible. The more independent, the

less “ambiguous” the HMM. Such a condition is nicely encapsulated by the inverse condition number of a matrix,

which can be calculated via the singular value decomposition (SVD) [3]:

γ−1 = σmin/σmax (6)

whereσmax is the largest singular value ofC andσmin is the smallest, so that a well conditioned matrix scores

1.0 and an ill-conditioned matrix scores close to0.0.
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1.2 HMM Residuals

The condition number ofC indicates how well the HMM is likely to cover the dimensionality of the model

parameter space, excluding the initial state distribution vector,π. However, it does not measure where rank

deficiencies may reside. To measure this, we letCi be the matrixC with row i (ri), removed. DefinePCi(ri) as

the projection ofri onto the span of the vectors defined by the row space ofCi. Now define the residual vector:

ei = ri − PCi(ri), (7)

and the residual matrix:

E = [~e1~e2...~eN ]T (8)

The residual matrix can now be used to identify exactly which states (and symbols) are problematic. If a particular

element is close to0, then the corresponding HMM element is linearly dependent on other rows in the matrix.

If the element is close to the original element, then it is linearly independent of the other rows and therefore an

important element. If a whole row is close to 0, then it indicates that the corresponding state is redundant and

could be removed from the HMM.

Despite the usefulness of the residual matrix, it can be demanding to interpret. Therefore we use a simpler

measure based on the residual matrix:

sj =
√∑

i

e2
ij , (9)

for each column ofE, whereeij denotes the element in rowi and columnj. The maximum value of any element

eij is 1.0. Now, if the row space of each of theCi’s is orthogonal, then the maximum value ofsj would also be

1.0. However, since the row space is typically not orthogonal,sj can be larger than1.0. Nevertheless, a value

of sj near1.0 indicates that symbolj is quite independent of other symbols and is therefore important for the

HMM. On the other hand, ifsj is close to0, there are two possibilities. Either symbolj is highly dependent on the
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other symbols and is therefore not particularly useful to the HMM, or symbolj is an unlikely state or observation

symbol. In the former case, symbolj can be safely removed from the HMM. In the latter case, the practitioner

must decide if symbolj warrants inclusion. It may, for example, indicate a very unlikely but extremely important

event. Note that symbolj refers to either a state of the HMM (the firstN columns ofC) or an observation symbol

(the nextM columns ofC).

1.3 The Conditional Information of a HMM

So far we have only considered issues of dimensionality of the HMM model parameter space and, in Section 2 we

will explore the effects of this on HMM performance. We now consider how theA andB parameters contribute to

the prediction of state sequences given a model and observations. The diagnostic tool is based on the conditional

information measure from Information Theory[1] in the following way. A HMM consists of two components

which work in tandem: a classifier or clusterer which uses the input observation sequence to evidence the state

of the HMM (the B matrix); and a Markovian component which uses the previous state to evidence the next state

(the A matrix) [4].

If the B matrix is unambiguous (for example, orthogonal with an inverse condition Number of 1.0) then a

direct use of either Maximum Likelihood (ML:maxS{p(O(t)|S)}) or maximum posterior probability (MAP:

maxS{p(S|O(t) = p(O(t)|S)p(S)} would suffice to best predict the most likely state at time,t. This condition

would eliminate the need for the Markovian component (A matrix) by use of a simple Bayesian (ML or MAP)

classifier. Conversely, if the modelB matrix is quite ambiguous, we may as well dispense with this “classification”

part and just use the Markovian component of the HMM - and its associated Viterbi algorithm. We propose the

use of conditional information as a means of teasing out the contributions of each component to the solutions for

optimal state sequences.

We have investigated this measure using the following procedure. Given a model and an input observation

sequence we generate two state sequences, one using the Viterbi algorithm with the entire HMM,~Sv , and the
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other with a Bayesian classifier using only the B matrix (ML classifier),~Sb. This latter condition assumes that the

predictions at each time period are independent of all others. Given the resultant two state sequences,~Sv and~Sb,

respectively, we can calculate the following quantity:

H(v|b) = H(v, b) − H(b) (10)

where

H(v, b) = −
∑
i,j

(P (Sv = i, Sb = j)logP (Sv = i, Sb = j)) (11)

and

H(b) = −
∑

j

(P (Sb = j)logP (Sb = j)). (12)

whereH(v|b) is the conditional entropy, andP (Sv = i, Sb = j) is computed from the joint frequencies of the two

state sequences. This measures the amount of information about the Viterbi solution given the Bayesian classifier

solution. The residual information

R(v|b) = H(v) − H(v|b) (13)

provides a measure of how much information theA matrix and the associated Viterbi algorithm, add to the com-

plete optimal state sequence prediction.

In all, then, these measures, hopefully, throw new light on the interpretations of past published papers using

HMMs as without the type of analysis discussed above, it is unclear as to whether past reported HMMs were

ill-conditioned, unnecessary or optimal for a given task. In the following we illustrate how these measures can be

used to diagnose and even improve the behaviour of HMMs.
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2 Synthetic and Real Examples

2.1 Synthetic Case: Experimental Setup

To demonstrate the usefulness of the above diagnostic tools, we have analyzed a very simple class of HMMs

having two states and two observation symbols with systematically varying probabilities. From these HMMs

we generated test sequences using Monte Carlo model sampling from which we could perform the proposed

measurements. We generated the HMMs by varying both theA andB matrices from deterministic to random,

independently. We used 10 steps between deterministic and random for each ofA andB, as:


0 1

1 0





0.1 0.9

0.9 0.1


 · · ·


0.5 0.5

0.5 0.5


 (14)

resulting in a total of100 HMMs.

2.2 Results

In the first experiment we tested how well we can consistently estimate state sequences generated from each of

the above underlying HMMs in the presence of noisy observation sequences. We expected that it would be more

difficult to do so for random HMMs than for more deterministic ones. To enable such analyses, for each HMM we

generated two example observation sequences of length1000 using Monte Carlo sampling of the model parame-

ters, and in accord with the model definition. Both observation sequences were then perturbed with varying levels

of random noise by randomly selectingx% of the observations of a given sequence, and randomly re-assigning

that observation symbol. Given these two noisy observation sequences, we estimate a new HMM model using a

moving window (partial fractions) co-occurrence method and the Baum-Welch algorithm on one of the sequences

[4]. We estimate a new HMM to simulate the (normal) situation where we don’t know the true underlying model.

We then ran the Viterbi algorithm on the second sequence to produce the most likely state sequence.
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(c) Noise=25%

Figure 1: Results for estimating state sequences from examples of the noisy observation sequences. We have
varied each of the A matrix and B matrix from deterministic (axis value = 1) to random (axis value = 10).

This state sequence was compared with a state sequence generated using the Viterbi algorithm and an observa-

tion sequence generated (without noise) from the original model using a percentage correct (PC) measure. This

method provides a way of determining both the robustness of the model and the degree to which this robustness can

be indexed by the proposed measures. The choice of two observation sequences, one for re-estimation and one for

prediction was to keep estimation and prediction as two different processes and determined from two independent

samples from the same model.

The results are shown in Figure 1 where both axes vary from deterministic (=1) to random (=10). As can be

seen from the figure, and perhaps unsurprisingly, as both theA andB matrices become more random, the ability

to estimate the optimal state sequence of the original HMM degrades. In fact, a PC of50% indicates that the

HMM performs no better than a random guess. Although the occurrence of noise degrades the performance of the

HMM, it degrades gracefully.

Figure 2 shows how the inverse condition number correlates with performance (Pearson’sr = .8) and the

figure shows the least squares regression line with the95% confidence interval. This demonstrates how the inverse

condition number is a reasonable estimator of HMM performance when dealing with the normal uses of HMMs

when there is a need to accommodate generalizations of the model: to apply when data is not exactly consistent

with it in varying degrees.
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Figure 2: Shows the relationship between inverse condition number (γ−1) and percentage correct (PC) prediction
of observations. The raw data is plotted along with the least squares regression line and the upper and lower95%
confidence interval lines.
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Figure 3: Results for estimating state sequences with a threshold of 80%. We have varied each of the A matrix
and B matrix from deterministic (axis value = 1) to random (axis value = 10).

From Figure 1 it is difficult to determine if theA orB matrix is the most important factor in the HMM. However,

if we assume that we need at least an80% PC rate for the HMM to be useful, we can threshold the results in Figure

1(a) to observe what range of parameters satisfies this criterion. The result is shown in Figure 3. This figure clearly

highlights that the B matrix is the most important factor in the success of a HMM. That is,A is required to be

near deterministic to affect the performance over theB matrix - an interesting result given the simple Bayesian

classifier interpretation of theB matrix.

We have performed a similar experiment to those discussed using theH(v) andH(v|b) conditional information

values as the dependent variables. These results are shown in Figure 4. As can be seen the entropy of the Viterbi
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Figure 4: Shows, as a function the different model parameters:H(v): information in the Viterbi solution;H(v|b):
the information contained in the the Viterbi solution not contained in the Bayes classifier.

sequence is approximately 1 everywhere which is as expected since we expect the occurrence of both states to be

approximately equal in this hypothetical example. Figure 4(b) clearly indicates that a HMM does no better than

a Bayesian classifier when either the observation evidence is very good or the Markovian component approaches

the random case. The interesting observation is that this is not a gracefully degrading function. There is a very

clear delineation between the areas where the Markovian component is having an effect and those where it has no

effect.

Consistent with Figure 3 theH(v|b) results demonstrate the redundancy of the Markov condition when the

rank of theB matrix is high: the evidence from observations is unambiguous. In the following we consider a

more realistic application of these measures to assessing just how the components of a HMM-based method for

recognizing hand movements contribute to the performance prediction.

3 An Illustrative Real Example

We consider a difficult estimation problem to demonstrate the usefulness of the measures - one not uncommon in

vision-based gesture recognition. The problem is one of estimating the pose (roll, pitch and yaw) of a hand ( in

this case, the graphical model of a hand) from it’s image. Figure 5 shows an example sequence of the hand. The

motion of the model is rigid about the wrist joint. The poses of the hand are quantized so that there are 5 possible
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Figure 5: Nine sequential frames of a video sequence used in the deterministic movement condition.

positions of pitch (θp = {−30◦, 0◦, 20◦, 50◦, 80◦}), 5 possible for roll (θr = {−90◦,−45◦, 0◦, 45◦, 90◦}) and 4

possible for yaw (θy = {−20◦,−10◦, 0◦, 10◦}) giving a total of 100 possible poses.

For this example we concentrated on estimating the pitch of the hand only (although roll and yaw also change).

To estimate pitch, we have used the aspect ratio of the silhouette as our observation and calculated as the ratio of

the smallest to largest eigenvalue of the 2D distribution of the pixels inside the silhouette. In this case we have

explored performance with5 states: the need to recover5 3D poses purely from the image under a number of

movement conditions corresponding to a deterministic walk, a random walk, and a set of purely randomly selected

poses.

3.1 Deterministic Walk

In the deterministic walk, the sequence of hand poses was completely predictable. Starting from the neutral pose of

the hand, each position of the roll, pitch and yaw is moved to it’s next position until the maximum range of motion

was reached. The motion then reversed in a backwards fashion. Figure 5 shows nine frames of the sequence.

We generated two 1000 length sequences and store both the ground truth data (i.e. the actual pitch) as well

as the observations (the aspect ratio of the silhouette) for each frame of the sequence: one sequence for training

and one for testing. Initial estimates of the HMM were then obtained using the moving window method. We then

used the Baum-Welch procedure. Initially, we arbitrarily partitioned the observation range into 5 equal bins. This
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produced the following HMM:

A =




0.0 1.0 0.0 0.0 0.0

0.5 0.0 0.5 0.0 0.0

0.0 0.5 0.0 0.5 0.0

0.0 0.0 0.5 0.0 0.5

0.0 0.0 0.0 1.0 0.0




B =




1.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0




(15)

π = [0.06 0.13 0.62 0.13 0.06] (16)

If we calculate the inverse condition number of the augmented matrixA|B, we obtain0.23 indicating that the

HMM is not ideal. The residual sum of the matrix is:

R1 = [0.5 0.6 0.4 0.6 0.5 0.3 0.9 0.0 0.0 0.0]. (17)

This indicates that only the first 2 observation symbols are useful (recall that the first 5 elements ofR1 refer to the

HMM states), and that the rest could be discarded. ClearlyR1
7 (first symbol isR1

1) performs better thanR1
6 and

the overall prediction accuracy is63%. In turn, the HMM could be improved by refining symbolR1
6 and removing

symbolsR1
8, R

1
9, R

1
10. We could possibly also improve the states somewhat by adding new states; however, this

is difficult to do meaningfully in a supervised learning situation such as this one. Consequently, we splitR1
6 into

three distinct symbols and removedR1
8, R1

9 andR1
10 resulting in 4 observation symbols. Re-estimating a new

HMM results in:

B =




1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 1.0

1.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0




. (18)
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This gives an inverse condition number of0.34 and a residual sum vector of:

R2 = [0.4 0.7 0.5 0.7 0.6 0.4 0.0 0.8 0.9]. (19)

This HMM results in a perfect prediction accuracy of100% on the test sequence. The role of the Markov

component of the HMM is measured by the residual information. In this case we found thatH(v) = 2.25,

H(v|b) = 0.75 and soR(v|b) = 1.5 or 33% of the information was contained within theA matrix (and the

associated Viterbi algorithm) in predicting the optimal state sequence. This result is consistent with the results of

the Bayes classifier, alone, which is only75% correct compared to the complete Viterbi solution of100% correct.

3.2 Random Walk

In the second example we have performed a random walk over each of the degrees of freedom of the hand: given

the current pose there is an equal probability of stepping one step forward or one step backwards on each degree of

freedom (roll, pitch or yaw). This is a much more difficult problem than the previous one as each pitch pose may

occur with any combination of roll or yaw poses. Again estimating a HMM using the moving window technique

and then applying the Baum-Welch algorithm to produce a final estimate, produces the following HMM with five

equally distributed observation symbols:

A =




0.46 0.54 0.00 0.00 0.00

0.45 0.00 0.55 0.00 0.00

0.00 0.53 0.00 0.47 0.00

0.00 0.00 0.46 0.00 0.54

0.00 0.00 0.00 0.55 0.45




B =




0.74 0.26 0.0 0.0 0.0

0.90 0.10 0.0 0.0 0.0

0.67 0.33 0.0 0.0 0.0

0.89 0.05 0.04 0.03 0.0

0.86 0.14 0.0 0.0 0.0




(20)

π = [0.20 0.16 0.30 0.14 0.20]. (21)

The inverse condition number for this HMM is0.13 which indicates correlations and redundancies within the
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model with a characteristic low prediction performance of29% correct on the test data. The residual sum is:

R1 = [0.4 0.4 0.5 0.4 0.4 0.1 0.1 0.0 0.0 0.0]. (22)

Given the relatively better discriminatory power of the symbols (last5 components ofR1) we split the first and

second symbols into three new symbols each, leaving the third and fourth symbols and deleting the fifth symbol.

The fifth symbol does not appear in the training data and it can be trivially deleted, the third and fourth symbols do

appear in the data but very rarely, and we have maintained them for completeness. After rerunning the estimation

mode, we obtained an inverse condition number of0.19, and a residual sum vector of:

R2 = [0.5 0.5 0.5 0.5 0.4 0.2 0.2 0.1 0.2 0.1 0.0 0.1 0.1] (23)

and prediction performance of40% correct.

Continuing this process for three more iterations, resulted in an inverse condition number of0.28 and a pre-

diction performance of75% correct with 34 observation symbols. The actual matrix is not included for the sake

of brevity. In this final case,H(v) = 2.32, H(v|b) = 1.59 andR(v|b) = 0.73 or 69% of the information was

contained in theA matrix in predicting the optimal state sequence. This is confirmed since the ML classifier

performed at50% correct prediction, significantly less than the complete HMM (75%).

3.3 Random Poses

For the random poses case, at each frame a random pose for the hand is chosen. Unlike the previous examples, one

would expect no contribution from the Markovian element of the HMM. Using a similar approach to that followed

in the above examples (starting with five initial symbols and progressively refining the appropriate ones), after

four iterations we arrive at a HMM with an inverse condition number of0.11 and a residual sum of:

R4 = [0.1 0.1 0.1 0.0 0.1 0.3 0.2 0.3 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.30.2 0.1 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.0 0.0 0.2 0.0 0.1]

(24)
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So clearly, we have an extremely difficult problem on which the HMM doesn’t appear to be doing very well.

In fact, the prediction performance is49% correct. In this case we found thatH(v) = 2.06, H(v|b) = 0.56

and soR(v|b) = 1.5 or 27% of the information was contained within theA matrix in predicting the optimal

state sequence. Indicating that the Markov component of the HMM is not helping and this is confirmed by the

performance of the Bayes classifier at44% correct - quite close to the performance of the full HMM.

4 Discussion

In this note, we have explored three tools for the diagnosis of HMMs. The condition number identifies from the A

and B matrices how successful a given HMM is likely to be at generating correct state sequences. The residual sum

matrix identifies which states or observation sequences need to be refined or removed from the model to improve

it. The last measure based on Mutual Information identifies if the HMM is likely to do any better than a simple

Bayesian classifier (ML) using the B matrix, alone. The first and last measures are somewhat independent and

identify different (but overlapping) areas of HMM usefulness. The tools are also powerful - they not only identify

if a given HMM is useful or not, but also identify exactly what the problem is.

Furthermore, as demonstrated in Section 3, the practitioner can follow a methodical routine to improve a HMM.

It seems quite likely that this pruning and splitting routine could be automated and we intend to pursue this in

future. Other avenues to pursue is to extend the analysis to be able to cope with continuous observation densities

explicitly (rather than by quantisation as in the examples above), and to extend the analysis to coupled HMMs.

What is concluded about the prediction or estimation of sequences also holds for the uses of HMMs for temporal

pattern recognition and the current measures inform the user as to the degree to which the HMM recognition

performance is predictable from the ML classifier, the Markov component or both.

15



References

[1] R. Ash. Information Theory. Interscience Publishers, 1995.

[2] H. Bunke and T. Caelli (Eds). Special edition on on hidden markov models in vision.International Journal

of Pattern Recognition and Artificial Intelligence, 15(1), 2001.

[3] Gene H. Golub and Charles F. Van Loan.Matrix Computations, chapter 2.7, pages 79–81. The Johns Hopkins

University Press, 2nd edition, 1989.

[4] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.

Proceedings of the IEEE, 77(2):257–285, 1989.

16


