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Abstract

Suppose we have a stack of cards that is divided over some players. It may be possible to

communicate your hand of cards to another player by public announcements, without yet an-

other player learning any of your cards. A solution to this problem consists of some sequence

of announcements and is called an exchange. It is called a direct exchange if it consists of (the

minimum of) two announcements only. The announcements in an exchange have a special

form: they are safe communications, an interesting new form of update. Certain unsafe com-

munications turn out to be unsuccessful updates. A communication is a public announcement

that is known to be true. Each communication may be about a set of alternative card deals

only, and even about a set of alternatives to the communicating player's own hand only. There

are 102 direct exchanges for a deal of seven cards where the two players holding three cards

communicate their hands to each other. Our work can be used to design cryptographic pro-

tocols for `perfect logicians' where secrets are not just computationally unfeasible to uncover

but cannot be uncovered at all.

1 Introduction

In public/private key cryptography, secret information is safeguarded because of the too high

complexity of factorizing a large product of primes. I.e., too high given the current state of the

art of algorithmic techniques aiding that search for prime factors. One therefore may prefer alter-

native cryptographic protocols where, even though just as in public/private key cryptography the

communication is public, secrets are guaranteed nevertheless. Such protocols have been studied

recently in the cryptography and information theory community [FW96, Mak01], and a successful

approach appears to be one where the communicating agents are card players, and the commu-

nicated secrets are (ownership of) cards. In our investigation we apply dynamic epistemic logic

[Ger99, vD02a, Bal02] to the description of such protocols for card deals, aiming to continue a

line of research where security and communication protocols have successfully been studied from

a logical viewpoint [BAN90, FHMV95, SV02, AHV02]. There are at least two advantages to this

approach: the logical analysis is particularly helpful in explaining why incorrect protocols do not

work. We will go into that in detail. Beyond that, and using that card games can be seen as

interpreted systems, standard logical techniques of �nite model description, model checking, and

theorem proving will be helpful in �nding actual solutions (protocols) within the bounds of ex-

isting information theoretical results. This will be outlined only. Far from giving a well-tailored

solution towards applications, we have chosen to thoroughly investigate a case-study, namely the

Russian cards problem:

From a pack of seven known cards two players each draw three cards and a third player

gets the remaining card. How can the players with three cards openly (publicly) inform

each other about their cards, without the third player learning from any of their cards

who holds it?
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It was originally presented at the Moscow Mathematics Olympiad in 2000. I therefore propose

to name it the `Russian cards' problem. Originally, the cards were named 0; :::; 6. Besides being

public, all announcements are assumed to be truthful. One solution (somewhat suggested by the

names of the cards) and a procedural requirement for solutions are presented in [MM01]. That

same solution and various others are found in [vD01a, vD02b].

To start with, we present one `bad' and one `good' solution. Call the players Anne, Bill and

Crow, and the cards 0; :::; 6, and suppose Anne holds f0; 1; 2g, Bill f3; 4; 5g, and Crow card 6. If

Anne says: \I or Bill have the cards 0,1, and 2," and Bill then says: \I or Anne have the cards

3,4, and 5," this may appear a solution. It appears that Anne and Bill learn each others' cards

this way, but that Crow cannot distinguish between Anne (and Bill) holding either f0; 1; 2g or

f3; 4; 5g. So Crow doesn't know any of Anne's cards. We will explain why this is not a solution,

and present even less trivial examples to the reader, where, unlike here, Anne knows that Crow

doesn't know any of her cards after the announcements.

Next, consider the following solution: Anne says \I'll rename the cards as follows: 0 becomes

7, 1 becomes 3, 2 remains the same, 3 becomes 1, and the rest remains the same. The sum of my

cards is now 12." This happens to enough for Bill to learn her cards, who therefore says: \Crow

holds card 6." We will explain why this is indeed a solution. It is now common knowledge that

Anne and Bill know each others' cards and that Crow doesn't know a single of theirs.

In the next section we introduce a logic to describe such problems and relevant structures to

interpret it in. In section 3 we describe in the de�ned logic the formal requirements for a solution.

In section 4 we present the solutions, called exchanges, for this speci�c seven cards problem. In

section 5 we summarily present some generalizations.

2 Logic and structure

We successively introduce card deals, epistemic logic with announcements and its interpretation,

and card game structures and their description in this logic.

2.1 Card deals

Given a stack of known cards and some players, the players blindly draw some cards from the

stack. In a state where cards are dealt in that way, but where no game actions of whatever kind

have been done, it is commonly known what the cards are, that they are all di�erent, how many

cards each player holds, and that players only know their own cards. From the last it follows

that two deals are the same for an agent, if he holds the same cards in both, and if all players

hold the same number of cards in both. This induces an equivalence relation on deals. See also

[vDvdHK02].

De�nition 1 A card deal d is a function from cards Q to players (agents) N . The size ]d

of a deal of cards d lists for each player how many cards he holds. Two deals d; e 2 (Q! N) are

indistinguishable (`the same') for a player n 2 N if ]d = ]e and d�1(n) = e
�1(n).

Example 1 (Russian cards) In the Russian cards problem, we (again) call the players Anne

(or a), Bill (or b) and Crow (or c). For a convenient reference, these players are assumed to be,

respectively, female, male, and neuter. Anne and Bill are the players holding three cards. Name

the cards 0; 1; 2; 3; 4; 5; 6. Assume that the actual card deal is: Anne holds 0; 1; 2, Bill holds 3; 4; 5,

and Crow holds 6.

We informally write 012j345j6 for that deal d (meaning that d(0) = a, d(1) = a, d(2) = a,

d(3) = b, ...), and for its size { in bold { 3j3j1. The hand of Anne is f0; 1; 2g (d�1(a) = f0; 1; 2g).
For Anne, deals 012j345j6 and 012j346j5 (= e) are the same, because they are both of size 3j3j1,
and d�1(a) = e

�1(a) = f0; 1; 2g.
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2.2 Epistemic logic with announcements

For the epistemic part of the language we follow standard notation as in, e.g., [FHMV95, MvdH95],

for the dynamic part of the language we follow notation as in [GG97, vBDvE+02].

De�nition 2 (Epistemic structures) Given a set of agents N and a set of (propositional)

atoms P , a (Kripke or modal or possible worlds) model M = hW;R; V i consists of a domain

W of worlds or factual states, accessibility R : N ! P(W �W ) which for each agent n 2 N
de�nes a binary accessibility relation Rn on W , and a valuation V : P ! P(W ) which for each

atom p 2 P de�nes a valuation Vp � W . If w 2 W , then (M;w) is a pointed (modal) model

or a modal state.

Instead of `w 2 W ', we also write `w 2 D(M)' (`w is in the domain of M ') or simply `w 2M '.

In an epistemic model or information model, commonly known as an S5 model, all ac-

cessibility relations are equivalence relations. We then write �n for the equivalence relation for

agent n. If w �n w
0, we also say that `w is the same as w0 for n'. If M is an epistemic model,

and w 2M , then (M;w) is an epistemic state or information state. World / factual state w

is the point of the information state, and M the model underlying the information state.

Write MN(P ) for the class of all models for agents N and atoms P . Similarly, write S5N (P )
for the class of all such information (S5) models.

De�nition 3 (Language of epistemic logic) Given is a set N of agents and a set P of atoms.

L�
N
(P ) is the smallest set such that, if p 2 P , ';  2 L�

N
(P ), n 2 N , then

p;:'; (' ^  );Kn';C'; [ ]' 2 L
�
N
(P )

Formula Kn' stands for `agent n knows that '', C' stands for `it is common knowledge (to

group N) that '', and [ ]' stands for `after (truthful and public) announcement of  it holds that

''. Other propositional connectives and modal operators are de�ned by abbreviations. Outermost

parentheses of formulas are deleted whenever convenient. As we may generally assume an arbitrary

P , we write L�
N

instead of L�
N
(P ). If jAj = m, we also write L�

m
(P ), and name the knowledge

operators K1;K2; � � � ;Km.

In [ ]', operator [ ] is called the update. Sequences of, and nondeterministic choice between,

announcements are de�ned by abbreviation as, respectively: [' ;  ]� := ['][ ]� and [' [  ]� :=

[']� ^ [ ]�.

De�nition 4 (Semantics of epistemic logic) Let M 2 S5N (P ), w 2 M , and ' 2 LN (P ),
where M = hW;�; V i. We de�ne M;w j= ' by induction on the structure of '.

M;w j= p :, w 2 Vp
M;w j= :' :, M;w 6j= '

M;w j= ' ^  :, M;w j= ' and M;w j=  

M;w j= Kn' :, 8w0 : w �n w
0 )M;w

0 j= '

M;w j= C' :, 8w0 : w �N w
0 )M;w

0 j= '

M;w j= [ ]' :, M;w j=  )M ; w j= '

In the clause for C', �N := (
S
n2N

�n)
� (the transitive and reexive closure of the union of all

equivalence relations on W ). In the last clause, M is the restriction of M , including access �,
to those states where  holds, i.e. M = hW 0

;�0; V 0i such that, for arbitrary n 2 N and p 2 P :

W
0 := fv 2W j M; v j=  g

8v; v0 2W 0 : v �0
n
v
0 , v �n v

0

V
0

p
= VpjW

0
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[2b ! 1a]

[Ka(2a ! 0b)]

[Ka:2a]

[Kb(2b ! 1a)]

[Ka0b _Ka1b _Ka2b)]

Figure 1: Updates in the information state (Hexa; 0j1j2). Write 012 for 0j1j2, etc. The actual

deal has been underlined. Deals in the same n-equivalence class are linked, and are labeled with

n. Formula :Æ210 expresses that the deal of cards is not 2j1j0, see Section 2.3.

Example 2 (Public updates in Hexa) We illustrate the interpretation of updates by the sim-

ple example of an information state where there are only three cards 0; 1; 2 and where every player

holds one card. As there are six such deals of cards, we call the initial (`hexagonal') model I1j1j1:

Hexa. Assume that the actual deal of cards is 0j1j2, which for simplicity we now write as 012.

Figure 1 pictures the information state (Hexa; 012) and the result of some updates in this state.

For example, we now have that

(Hexa; 012) j= [Ka(2a ! 0b)]C:2a

which stands for `After Anne says: \If I have 2, then Bill has 0," it is common knowledge that

Anne doesn't have card 2 in the current information state'. This is, because it is commonly known

to all players that Anne doesn't know any of Bill's cards at this state of the game. If Anne hadn't

had card 0, she could have imagined both Bill and Crow to have card 0. Therefore, she can only

truthfully make her announcement if the antecedent of the implication if false and she actually

doesn't hold card 2. So, incidentally, Anne could also immediately have said: \I don't have card

2." For another example, we have that

(Hexa; 012) j= [Ka(2a ! 0b)][Kb(2b ! 1a)]C:Kc0a

which stands for `After Anne says \If I have 2, then Bill has 0," and Bill says \If I have 2, then

Anne has 1," it is common knowledge that Crow doesn't know that Anne has 0.

The remaining updates in Figure 1 result if an insider (`having access to all cards') says: \If

Anne has 2, then Bill has 0," (or: \The deal of cards is not 210") and then says: \If Bill has

2, then Anne has 1." If Anne then says: \I know Bill's card," this update [Ka0b _Ka1b _Ka2b]

results in Crow learning the deal of cards.1

1Public updates in Hexa can be performed online on

http : ==www:science:uva:nl=projects=opencollege=cognitie=hexagon=
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Before we continue with the description of card game states in this logic in a more formal way

than in Example 2, we give some of its revelant properties and concepts:

Proposition 1 (Combining two updates) For all formulas in the language, [' ^ ['] ]� is

equivalent to ['][ ]� (also written as [' ;  ]�).

In other words, if you say that `' and after that  ', this is the same as �rst saying ' and then

saying  . For an (elementary) proof, see the Appendix.

It is tempting to think that saying something is the same as making it common knowledge.

This turns out to be false. A well-known complication of this logic (and basically, the reason that

we need the update operator), is that you may announce something after which it is no longer

true and therefore certainly not commonly known. The simplest example of this is a saying to b:

\you don't know that (the fact) p (is true)." This corresponds to update [Ka(p ^ :Kbp)]. After

having said that, b of course knows that p. From Kbp follows :p _ Kbp, so :Ka:(:p _ Kbp),

and the last is equivalent to :Ka(p ^ :Kbp), the negation of the update formula. This is just the

most simple example of a regularly occurring phenomenon while establishing a common ground

of information:

De�nition 5 (Unsuccessful update) Given an information state (M;w), an unsuccessful up-

date is a formula ' such that M;w j= [']:'.

Example 3 (Public updates in Hexa) If in model Hexa the actual deal had not been 012 but

102, and if therefore in (Hexa2a!0b)2b!0a ; 120) Anne announces that she doesn't know Bill's

card, Crow can derive Bill's card from that announcement. Formally Hexa; 120 j= [2a ! 0b][2b !
0a][:(Ka0b _Ka1b _Ka2b)](Kc0b _Kc1b _Kc2b). The corresponding unsuccessful update actually

is, that after Anne truthfully says that she doesn't know if some player knows the card deal, she

knows that some player will know the card deal.

The best-known example of an unsuccessful update is `nobody knows whether (s)he is muddy'

in the Muddy Children problem, in the last round [FHMV95]. The term is introduced in [Ger99]

and used in [vD00]. Because some updates are successful and others aren't, the description of

information states resulting from updates may be complex. It is therefore a useful result that

updates with common knowledge are always successful:

Proposition 2 (Common knowledge updates are successful) For all formulas in the lan-

guage, [C']C' is valid.

For an (elementary) proof, see the Appendix.

The logic for L�
N
(P ) can be axiomatized and is complete [Pla89, vB01].

2.3 Logical description of card games

We continue by introducing information states that for a given deal of cards over players describe

their knowledge [vDvdHK02]. Because two deals are the same for an agent if he holds the same

cards in both, agents (at least) know their own local state. This makes card games examples of

distributive or interpreted systems in the sense of [FHMV95]. These can statically be represented

as information states, and dynamically by information state transitions. Because we merely inves-

tigate announcements for card deals, we can even restrict ourselves to information states where

di�erent worlds are about di�erent deals. In general, we cannot restrict ourselves this way, e.g.

after Anne shows one of her cards to Bill without Crow seeing it (even though he is aware of the

action), Anne can distinguish the information state where she has shown card 1 from the state

(same deal) where she has shown card 2.
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De�nition 6 (Public card game state) A set of cards Q and a set of players N induce a set

P = Q � N of atoms, such that qn describes the fact that card q is held by agent n. A public

card game state is an information state (hD;�; V i; d) such that: D � (Q ! N), d 2 D, for

an arbitrary n 2 N and d1; d2 2 D: d1 �n d2 only if ]d1 = ]d2 and d�1
1 (n) = d

�1
2 (n), and for an

arbitrary qn 2 P : Vqn = fd 2 D j d(q) = ng.

In particular, the information state where for a given deal d the players only know their own

cards is a public card game state. It is represented by an initial game state (I]d; d). The domain

of I]d consists of all deals of the same size as d, and for access we have that for an arbitrary n 2 N
and d1; d2 2 D: d1 �n d2 if and only if d�1

1 (n) = d

�1
2 (n).

Proposition 3 (Announcements and public card game states)

If (M;w) is a public card game state for players N and atoms P , and ' 2 L�
N
(P ) such that

M;w j= ', then (M;w)' is a public card game state.

Proof. Every announcement results in a restriction of the domain. a

The example above of Anne showing one of her cards to Bill (which can be done from infor-

mation state (I3j3j1; d)), shows that Proposition 3 doesn't hold for all S5 state transitions.

De�nition 7 (Description of a card deal) Given is a deal d : Q! N . De�ne by overloading:

d(qn) = qn i� d(q) = n, and d(qn) = :qn i� d(q) 6= n. The (atomic) description of a deal

d is the conjunction of atoms or their negations according to d: Æd :=
V
q2Q;n2N

d(qn) (it can be

seen as the characteristic function of the valuation of atoms in world d). The description of the

hand of n, is the conjunction of the atoms involving agent n: Æn
d
:=
V
q2Q

d(qn).

Beyond that, there is a description �d (characteristic formula) of (I]d; d), that sums up the facts

and the knowledge and ignorance of the players. More precisely, �d describes the bisimulation

class of (I]d; d) with respect to the epistemic language without updates. The description �d has the

form Æd^Ckgames, where kgames is the description of the model I]d. For details, see [vDvdHK02].

Example 4 (I]012j345j6; 012j345j6) is the initial information state for the Russian cards problem.

It consists of
�
7
3

��
4
3

��
1
1

�
= 140 deals. The atomic description of that deal is

Æ012j345j6 := 0a ^ 1a ^ 2a ^ :3a ^ ::: ^ :0b ^ ::: ^ :5c ^ 6c

and the hand of player a is described by

Æ

a

012j345j6 := 0a ^ 1a ^ 2a ^ :3a ^ :4a ^ :5a ^ :6a :

For Æa
012j345j6

we also write 012a, etc. Some typical formulas satis�ed in the initial information

state (I]012j345j6; 012j345j6) are: Ka0a (Anne knows that she holds card 0), Kb:Ka3b (Bill knows

that Anne doesn't know that he holds card 3), and C
W
]d=]012j345j6KaÆ

a

d
(It is common knowledge

that Anne knows her own hand of cards).

Proposition 4 (Alternative deals) Every announcement in a public card game state has the

same denotation as one about alternative deals.

Proof. Given a deal d : Q! N , let (D; d) be a public card game state, ' 2 L�
N
, and assume

D; d j= '. Because all worlds e 2 D are di�erent deals, each formula Æe holds in exactly one

information state (D; e) with underlying model D. Therefore, obviously, D j= ' $
W
e2D'

Æe.

(Note that
W
e2D'

Æe 2 LN .) a

The language and structures that we have introduced in this section are actually quite tailored

towards an elegant description of the actions occurring in `Russian cards' and related problems.

For more complex dynamics, such as the action of showing a card, a more expressive dynamic

epistemic logic is needed [Ger99, Bal02, vD00].

We are now ready to do battle with the Russian cards problem.
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3 Safe communications

Let d be an arbitrary deal of cards Q over at least three players N = fa; bg [ O, where O is

the non-empty set of Other players, e.g. Crow in the three player case. A solution of the cards

problem is some sequence of announcements. A reasonable requirement for two communicating

agents appears to be that uninformative statements are never consecutive as long as the problem

is not solved (`epistemic liveness'). This means that the sequence will be �nite: each informative

announcement will reduce the number of deals in the model underlying the { �nite { initial

state. So the maximum length of a `conversation' is twice the number of deals of that size. An

announcement in such a sequence can be regarded as an `epistemic programme', for which we

therefore have to determine the (weakest) pre- and (strongest) postcondition.

After a solution sequence of announcements it should hold that: Anne knows Bill's cards

(aknowsbs), Bill knows Anne's cards (bknowsas), and the other players don't know any of Anne's

or Bill's cards (cignorant { for `c (among Others) is ignorant'). The last is the same as `If c doesn't

hold a card, c can imagine both a and b to have it' (from which follows that c doesn't know a to

have it, and doesn't know b to have it). For the given deal d this amounts to:

KaÆ
b

d

KbÆ
a

dV
c2O

V
q2d�1(a)[d�1(b)(:Kc:qa ^ :Kc:qb)

Example 5 (Russian cards) For Russian cards, for actual deal of cards 012j345j6, we get:

Ka345b (Anne knows that Bill holds f3; 4; 5g), Kb012a (Bill knows that Anne holds f0; 1; 2g),
and :Kc:0a ^ :Kc:1a ^ :Kc:2a ^ :Kc:3a ^ :Kc:4a ^ :Kc:5a (Crow cannot eliminate any of

the cards 0; :::; 5 from consideration for Anne). In this case of three players only, the last entails

that Crow can also imagine Bill to have any of the cards 0; :::; 5.

However, e.g. Ka345b does not say that Anne knows Bill's cards (whatever they are) but only

that Anne knows that Bill's cards are 3, 4, and 5. Obviously, we need a requirement on the model,

that is independent from the actual deal, but from which the above follow:

De�nition 8 (Postconditions) Let d : Q! fa; bg [ O be a card deal. In the information state

(D; d) where the problem is solved it must hold that:

aknowsbs
V
e2D(D)(Æ

b

e
! KaÆ

b

e
)

bknowsas
V
e2D(D)(Æ

a

e
! KbÆ

a

e
)

cignorant
V
c2O

V
q2Q

V
n=a;b(:qc ! :Kc:qn)

The observant reader will immediately remark that, as these are requirements on the model, they

are therefore independent of the actual deal, and part of the `common ground' or context of the

agents. Therefore, they should not just be true but commonly known. So we get: Caknowsbs,

Cbknowsas, and Ccignorant. These are indeed, given that we see a solution sequence as an epis-

temic programme, the required (strongest) postconditions, and we further have to require that

Ccignorant, the ignorance of the other (non-communicating) players, is an invariant under execu-

tion of each announcement in the sequence.2

The next issue is, by what sort of announcements the players obtain this common ground.

For that, it is instructive to analyse example announcements that fail to establish it, such as

the �rst announcement in the example of the introduction, that is repeated below as Example

6. In another example, Example 8, it becomes clear that Anne's intention to keep her hand

2A tempting, more abstract, formulation of the others' ignorance seems to be
V
c2O

V
e2D(D)(Æ

c
e
! :Kc:Æe) {

every (`other') c can imagine every deal that extends his hand (in the given domain). This would nicely correspond

to the `private ignorance' of all players (including a and b) in I]d, as described in �d [vDvdHK02]. Unfortunately

this formulation is too weak: it may hold as well when only a single deal is consistent with the current information,

or only deals that correspond in one or more of a's or b's cards.
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of cards secret is part of the meaning of her announcement, and that because of her intention

she may actually unwillingly reveal her hand of cards: the opposite! The explanation of such

`non-solutions' involves unsuccessful updates. Generally the required ignorance cignorant has been

established after the �rst announcement, but not common knowledge of cignorant. All examples

are about the Russian cards problem, for actual deal 012j345j6. In all examples below it common

knowledge after two announcements that all of cignorant, aknowsbs and bknowsas hold. One can

easily construct yet other examples that do not have that property. The given examples are chosen

for their simplicity.

First consider the sequence:

Example 6 Anne says: \I have f0; 1; 2g, or Bill has f0; 1; 2g," and Bill says:\I have f3; 4; 5g, or
Anne has f3; 4; 5g."

Update of (I3j3j1; 012j345j6) with [012a_012b] results in an information state that consists of eight

card deals, and where cignorant holds but not common knowledge of it. Subsequent update with

[345a _ 345b] results in an information state consisting of the two deals 012j345j6 and 345j012j6,
that are the same for Crow and di�erent for Anne and Bill, so that common knowledge of cignorant,

aknowsbs and bknowsas holds. However, this is not a fair treatment of the information:

A merely truthful public announcement of ' by an agent n would indeed correspond to an

update ['], but an announcement based on n's information corresponds to an update [Kn']. If

Anne's announcements had been made by an insider i, a virtual player who can look in everybody's

cards, or di�erently said, a player whose accessibility on the information state is the identity

relation, the update would indeed have been ['], because in this case ' is equivalent to Ki'.

But Anne knows much less than an insider, and therefore her announcements are much more

informative. Typically, ' can be true but not known by Anne, so Ka' holds in fewer worlds of

the current information state than '.

As it is common knowledge that Anne initially doesn't know any of Bill's cards, she can only

truthfully announce \I have f0; 1; 2g, or Bill has f0; 1; 2g," if she actually holds f0; 1; 2g. E.g., if
Anne's hand had been f0; 3; 4g instead, the only way for the disjunction 012a _ 012b to be true,

given that 012a is false, is that 012b is true: Bill has f0; 1; 2g. But if Anne had held f0; 3; 4g, she
couldn't have known 012b to be true in the state where she only knows her own cards. In other

words: execution of update [Ka(012a_012b)] in I3j3j1; 012j345j6 already restricts I3j3j1 to those four
worlds where Anne's hand is 012. These are the deals 012j345j6; 012j346j5; 012j356j4; 012j456j3,
that are all di�erent for Bill and for Crow. After that update, Crow knows all of Anne's cards,

so cignorant is de�nitely false. A further update [Kb(345a _ 345b)] results in a state where it is

common knowledge that 012j345j6 is the deal of cards. Formally:

I3j3j1; 012j345j6 j= [012a _ 012b]cignorant

I3j3j1; 012j345j6 6j= [Ka(012a _ 012b)]cignorant

It is rather obvious that players' announcements should be based on their information. But it is

now abundantly clear that a precondition for the execution of an announcement ' by player n is

that Kn' holds in the current information state. We now move to the less obvious:

Example 7 Anne says: \I don't have 6," and Bill says: \Neither have I."

After the �rst announcement cignorant holds, and
�
6
3

��
4
3

�
= 80 card deals remain. After Bill's

announcement aknowsbs and bknowsas hold as well, and again all three are even commonly known,

and 20 card deals remain. What is wrong here? In the initial information state, Anne cannot

distinguish actual deal 012j345j6 from deal 012j346j4. If 012j346j4 had been the deal, after Anne's

announcement Crow would have known the owner of one of the cards not held by itself, so cignorant

fails again. So even though for the actual deal 012j345j6 postcondition cignorant holds after Anne's

announcement, Anne doesn't know that, and it is indeed not commonly known: the stronger

postcondition. Formally:

I3j3j1; 012j345j6 j= [Ka:6c]cignorant
I3j3j1; 012j345j6 6j= [Ka:6c]Kacignorant
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It is irrelevant that Ccignorant holds after the second of both announcements. We have to require

Ccignorant to be an invariant for all annoucements of a solution sequence.

It is even less obvious why the following is also a bad solution:

Example 8 Anne says: \I have f0; 1; 2g, or I don't have any of these cards," and Bill says: \I

have f3; 4; 5g, or I don't have any of these cards."

After an update of (I3j3j1; 012j345j6) with [Ka(012a _ (:0a ^ :1a ^ :2a))] (=: [Ka�rst]) we reach

an information state that consists of 17 card deals, namely actual deal 012j345j6 and
�
4
3

��
4
3

�
= 16

others (Anne can have any of the four remaining cards 3; 4; 5; 6, and Bill any three of 0; 1; 2 and

the one Anne didn't get). By a further update [Kb(345b _ (:3b ^ :4b ^ :5b))] we again, as in

Example 6, reach the information state that consists of deals 012j345j6 and 345j012j6, that are
the same for Crow and di�erent for Anne and Bill. Example 7 can be said to be `unsafe' in the

sense that another execution of the apparently underlying protocol (namely Anne saying: \I don't

have 4") would have resulted in Crow learning her cards. Instead, in the underlying Example 8,

Anne's announcement seems `safe' in that respect: no other execution of the underlying protocol

would have resulted in Crow learning any of her cards. Therefore, indeed, Anne knows that

Crow is ignorant of her cards after her announcement. However, Crow doesn't know that, and,

surprisingly, Crow can derive factual knowledge from that ignorance. Crow rightfully assumes

that Anne wouldn't dare make an unsafe communication: Anne wants to know that after her

announcement Crow doesn't know any of her cards. Therefore, the update corresponding to �rst

is not just [Ka�rst] but [Ka�rst ^ [Ka�rst]Kacignorant]: \I know that �rst, and that after having

said that, Crow doesn't know my cards."

For Crow, only deal 345j012j6 is the same as 012j345j6 after update [Ka�rst]. If the deal had

been 345j012j6, Anne could have imagined it to have been, e.g., 345j016j2. In that case it would

have been informative for Crow when Anne had announced �rst: it would have known that Anne

doesn't have 0, 1, and 2: so cignorant is not true. We now can wind up the argument: because

cignorant doesn't hold after [Ka�rst] in 345j016j2 (strictly: that deal in the restriction of the model),

Kacignorant doesn't hold after [Ka�rst] in 345j012j6, thereforeKa�rst^[Ka�rst]Kacignorant doesn't

hold in deal 345j012j6 of the initial information state, so updating with that formula fails in deal

345j012j6 of I3j3j1. But as this was the only alternative for Crow in that model, Crow now knows

that the deal is 012j345j6, so Crow knows all of Anne's cards! Formally:

I3j3j1; 012j345j6 j= [Ka�rst]cignorant

I3j3j1; 012j345j6 j= [Ka�rst]Kacignorant

I3j3j1; 012j345j6 6j= [Ka�rst]KcKacignorant

I3j3j1; 012j345j6 j= [Ka�rst ^ [Ka�rst]Kacignorant]:cignorant

and therefore as well, just to make the unsuccessful update stand out:

(I3j3j1)Ka�rst; 012j345j6 j= [Kacignorant]:Kacignorant

In other words: Crow does not learn Anne's cards from the mere fact that her announcement is

based on her information. Instead, Crow learns Anne's cards from her intention to prevent Crow

learning her cards. Without that intention, Crow would not have learnt Anne's cards. This is an

interesting new type of unsuccessful update.

It is reassuring that with the intention to guarantee Ccignorant, such unsuccessful updates can

be avoided:

M;w j= [Kn' ^ [Kn']Ccignorant]Ccignorant

, proposition 1

M;w j= [Kn'][Ccignorant]Ccignorant

(
MKn'

; w j= [Ccignorant]Ccignorant

, proposition 2

true
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Because of Proposition 2 this intention of the communicating players has become invisible, so to

speak: we merely have to test for the postcondition in the information state resulting from the

simpler update [Kn']. It is therefore important to realize that this is a mere fortunate consequence

of common knowledge updates being successful, and that the players `really' have this intentional

stance and execute the more complex update.

Without taking this intentional stance of agents into account, the information states reached

by mere communications are unstable. If e.g. in Example 8 the announcements are interpreted as

(only) communications, in the resulting information state aknowsbs and bknowsas both hold but

are not commonly known: if Anne makes aknowsbs public (update [Kaaknowsbs]), then Crow can

derive the entire deal of cards. This is comparable to the result of Anne saying: \I know Bill's

card" (Ka0b _Ka1b _Ka2b) in the bottom right of Figure 1.

We summarize our results:

De�nition 9 (Communicative updates) Given is some public card game state where Ccignorant

holds. There are three ways to interpret that an agent n (truthfully) says ' in that state. As not

to confuse such announcements of formulas with the formulas themselves, we keep writing them

as updates:

['] announcement of ' (by an insider)

[Kn'] communication of ' (by player n)

[Kn' ^ [Kn']Ccignorant] safe communication of ' (by player n)

Note that [Kn' ^ [Kn']Ccignorant] is the same as [Kn'][Ccignorant]. Alternatively, a safe an-

nouncement of ' by n is an update [Kn'] such that Ccignorant holds after its execution.

De�nition 10 (Exchange) Given deal d : Q! fa; bg[O of cards (O non-empty), an exchange

(`secret exchange of hands') between two players a and b is a �nite sequence � := �1; �2; :::; �m

of formulas �i 2 L�
fa;bg[O

that are interpreted as safe communications of a and b, such that

after its execution in I]d; d it holds that Caknowsbs^ Cbknowsas. We assume that a is the player

who speaks �rst, and that a and b take turns. So execution of � corresponds to update sequence

[Ka�1][Ccignorant][Kb�2][Ccignorant]::: (ending with either an a- or a b-announcement). A direct

exchange is an exchange of length two.

Observe that Ccignorant also holds after execution of the last announcement �m of �, so

common knowledge of all three conditions of De�nition 8 is satis�ed.

Example 9 (A �ve hand direct exchange for Russian cards) Assume deal of cards 012j345j6.
The following is a direct exchange: Anne announces: \I have one of f012; 034; 056; 135; 246g," and
Bill announces \Crow has card 6."

We explain in detail why Example 9 constitutes a direct exchange. Let � (= 012a _ 034a _
056a_135a_246a) be Anne's announcement. We have to show that all of the following hold. Note

that the common knowledge requirements are translated into model requirements of the commonly

known formula:

I3j3j1; 012j345j6 j= Ka� i

(I3j3j1)Ka�
j= cignorant ii

(I3j3j1)Ka�
; 012j345j6 j= Kb6c iii

((I3j3j1)Ka�
)Kb6c j= cignorant ^ bknowsas^ aknowsbs iv

To prove that cignorant holds on a given model, we proceed in the following systematic way:

For an arbitrary card of c, �rst we can remove all hands containing that card from the commu-

nication, because the actual a-hand cannot contain the actual c-card. Then we show that all other

cards occur at least once and are absent at least once in the remaining hands. In other words:

whatever the actual hand of a, for each of a's cards in that hand, there is still an alternative
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remaining hand where that card does not occur. This guarantees that c remains ignorant of the

ownership of other cards. Proving that bknowsas and aknowsbs hold in the model for the �nal

information state, is almost directly observable: their access on this model is the identity.

We now prove conditions i to iv for this example:

� Hand 012 is in f012; 034; 056; 135; 246g. Therefore i holds.

� If c holds 0, the remaining hands are f135; 246g. Each of 1; 2; :::; 6 both occurs in at least one

of f135; 246g and is absent in at least one of those (1 occurs in 135 and is absent in 246, 2

occurs in 246 and is absent in 135, etc.). If c holds 1, the remaining hands are f034; 056; 246g.
Each of 0; 2; :::; 6 both occurs in at least one of f034; 056; 246g and is absent in at least one

of those (0 occurs in 034 and is absent in 246, ...). Etc. for c holding 2, ..., 6. Therefore ii

holds.

� From f012; 034; 056; 135; 246g, Bill can remove any hand that contains either 3, 4, or 5. This

leaves only hand 012. In deal 012j345j6 Crow actually holds 6. Therefore iii holds.

� After both communications, the following deals are still possible:

f012j345j6; 034j125j6; 135j024j6g:

They are all di�erent for Anne and Bill, therefore bknowsas and aknowsbs hold. They are

all the same for Crow. Each of 0; 1; :::; 5 both occurs in at least one of f012; 034; 135g and is

absent in at least one of those. Therefore iv holds.

We now know the `meaning in context' of a player's announcement: the safe communication

of ' is an update [Kn' ^ [Kn']Ccignorant]. Can we say anything about ' itself? So far, in the

examples we didn't place any restrictions: `my hand of cards is ...', `I don't have the cards ...',

`player c doesn't have ...'. Indeed, anything appears to go, also complex epistemic statements

such as `I don't know the cards of player b yet', `I know that it is not common knowledge whether

player c has card 0', etc. Certainly not every update can be reduced to some non-epistemic one!

In Proposition 4 however we have proved that the denotation of an arbitrary formula in a public

card game state is the same as that of a statement about alternative deals. We can even go beyond

that:

Proposition 5 (Alternative hands) Given is an arbitrary sequence of communications exe-

cuted in an initial card game state. The denotation of a communication in that sequence is the

same as that of an announcement about alternative hands for that player.3

Proof. A communication by player n is an update of the form Kn'. By de�nition of the

semantics of the epistemic operator, such formulas Kn' are either satis�ed in all worlds of an n-

equivalence class, or none at all. In other words, the denotation of Kn' in some given information

state is a union of n-equivalence classes 4. If we can prove that two di�erent n-equivalence classes

do not contain deals for the same n-hand, we are done: if di�erent n-class means di�erent hand, the

denotation of every formulaKn' in some epistemic model is the same as that of `a set of n-hands',

i.e. in the language: some formula Æn
d
_ Æn

e
_ ::: (there is some D0 such that [[Kn']] = [[

W
d2D0

Æ
n

d
]]).

We now prove the proposition by simple induction on the number of communications:

In the initial information state for some deal d, where players only know their own cards, we

therefore had that d �n e, d
�1(n) = e

�1(n), so here, hands and equivalence classes correspond

by de�nition. But the rest is by now obvious: because communications are public announcements,

they always result in a restriction of the domain. Therefore, the result of such an announcement

is either that an n-class for player n is deleted, or that it is restricted. It is never re�ned, what

would be required in order to get di�erent n-classes for the same n-hand. a

3Proposition 5 is by Ben Handley, who also provided a, rather di�erent, proof.
4Di�erently said: every announcement by some player is a basic kind of game action in the sense of [vD01b].

Such propositions are called `n-local' in [EvdMM98].
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Example 10 Bill's announcement \Crow has card 6" in Example 9 could only in this example

also have been \My hand is one of f345; 125; 024g."

Fact 6 (Last communication) The last communication of an exchange may consist of b saying

what all the cards are not held by a or b.

Before we continue by presenting all direct exchanges for the Russian cards problem, a note on

model checking. Both Proposition 4 and Proposition 5 allow systematic model checking procedures

in order to �nd exchanges. Proposition 4 tells that one has `merely' to check for all subsets of deals

of the domain of an initial card game state whether common knowledge of cignorant is met, and

so on, until also common knowledge of aknowsbs and bknowsas is met. It is much more eÆcient

to use Proposition 5 for that:

Proposition 7 (Decision procedure for an exchange) Given a deal of cards over more than

two players, it can be determined whether there is an exchange between two of those players.

Proof. Given deal d : Q! fa; bg[O of cards (O non-empty). The following crude algorithm

computes all (possibly 0) exchanges of secrets:

Start with the set of deals equal to all deals of that size: D := D(I]d), and with model

MD := I]d. For both player a and player b, for every subset D0 � D containing d that is a union of

�a equivalence classes (or, respectively, �b equivalence classes), check whetherMDjD
0 j= cignorant.

If not, discard that subset. If so, check whether MDjD
0 j= aknowsbs ^ bknowsas. If so, we have

found an exchange. If not, set D := D
0 (and MD :=MDjD

0) and repeat the procedure. a

Apart from this model checking perspective also a theorem proving perspective appears. We

have seen that the information state (I]d; d) has a characteristic formula Æd ^ Ckgames. A se-

quence of announcements � := �1; �2; :::; �m is an exchange, if a number of epistemic correctness

statements are valid such as:

(Æd ^ Ckgames)! [Ka�1]Ccignorant

Both the model checking and theorem proving approach may provide alternatives to standard

combinatorial / cryptographic approaches as in [GGL96] and [FW96]. For example, the last

provides information theoretical upper and lower bounds for secret bit exchange for a given deal

of cards, whereas we compute concrete exchanges for such deals.

The epistemic analysis of De�nition 10 also applies to executions of cryptographic protocols,

because these are sequences of announcements. For example, our analysis may correspond to a

procedural requirement for such protocols that is given in [MM01]. The authors have provided me

with a partial translation of their original work, in Russian [Mak01]. The in�nitary avour of what

they de�ne as a protocol appears to relate to the �xed-point character of common knowledge.

We continue with the presentation of solutions for the seven cards problem.

4 Overview of direct exchanges for seven cards

In this section we give an overview of all direct exchanges for card deal size 3j3j1. From now

on, assume all deals to be of that size. Assume that the actual deal is 012j345j6. In a direct

exchange, Bill's announcement can always be \Crow has card 6," even though he could have made

some equivalent statement in terms of his possible hands, see Fact 6. We therefore only mention

Anne's communications in the following. Par abus de langage, we often refer to `Anne's safe

communication as the �rst of a direct exchange' as `the direct exchange'.

Now if we merely used that all communications are about alternative deals (Proposition 4),

we would have apply a procedure as in Proposition 7 check for 2139 subsets of deals (namely all

subsets of card deals of size 3j3j1 containing actual deal 012j345j6). Because of Proposition 5, we
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can see Anne's communication as a set of hands, namely the alternative hands for Anne. Write

a hand as a sequence of three digits. Applying the procedure in Proposition 7 would still lead to

checking 234 subsets of hands (namely all subsets of Anne's hands that include her actual hand

012). Fortunately, by combinatorial reasoning (essentially using Proposition 5), we can be spared

all that e�ort. We present our results in a number of Propositions:

Proposition 8 Every card occurs at least once in a safe communication.

Proof. By `a card occurs in a communication' we mean: `a card occurs in a hand of that

communication'.

Suppose card q does not occur in the communication. Then obviously a doesn't have q (because

a's actual hand is part of the communication). But then a can imagine c not to have q, in which

case c would be able to conclude that a doesn't have q: Kc:qa. Therefore :cignorant. (So

Ccignorant doesn't hold after the communication.) a

Proposition 9 Every card occurs at least twice in a safe communication.

Proof. Suppose card i occurs once only in communication �. Player c now reasons as follows:

Suppose a didn't have card i. Then she can imagine me not to have i. Let ijk be the hand in

� containing i. Now suppose a didn't have j or k herself, say she didn't have j. Then she could

imagine me to have j instead, in which case I would have been able to eliminate hand ijk and to

conclude that a doesn't have card i. From Kc:ia follows that Ccignorant doesn't hold after the

communication. Therefore a must have j. But from Kcja also follows :Ccignorant. Same for k.

Because my assumption that a did not have card i leads to :Ccignorant, a must have card i. But

in that case we have Kcia so again Ccignorant doesn't hold after the communication. a

Proposition 10 No direct exchange consists of less than �ve hands.

Proof. Every card occurs at least twice in a direct exchange (Proposition 9). Therefore, (the

�rst announcement of) a direct exchange must contain at least 7 � 2 = 14 occurrences of cards.

An announcement of four hands consists of 4� 3 = 12 occurrences of cards only. a

Proposition 11 No direct exchange consists of more than seven hands.

Proof. We call hands that have a pair of cards in common `crossing hands'. There are
�
7
2

�
= 21

di�erent pairs of cards. Therefore, the maximum number of hands in an announcement without

crossing hands is seven. Suppose that we extend such an announcement with one more hand (that

is di�erent from the seven in the announcement). This hand will cross with three of the seven

hands (because the eighth hand introduces three pairs of cards).

We now prove that c can eliminate crossing hands in a's announcement from consideration

after b's announcement. Suppose ijk and ijl are part of a's announcement. Crow can reason as

follows:

If b had none of i; j; k; l but the remaining three cards, he would not have been able to determine

which of ijk and ijl is the hand of a. But as he just announced my card, he was able to determine

a's hand from her announcement. Therefore a's hand was neither ijk nor ijl.

Therefore we can remove the eighth hand and the three with which it crosses. Now only four

hands remain: according to Proposition 10 this is not enough for a direct exchange.

Other cases (starting from fewer non-crossing hands) can be similarly treated (see also below).

a

Proposition 12 No direct exchange contains crossing hands.

Proof. Direct exchanges consisting of �ve or six hands cannot (if they exist at all: so far,

we have only proved a �ve hand direct exchange in Example 9) contain a pair of crossing hands:

applying the observation in the proof of Proposition 11, c can remove those from consideration

after b's announcement of his card, after which three or four hands, respectively, remain: not
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enough for a direct exchange. But also direct exchanges of seven hands cannot contain a pair of

crossing hands. We omit the precise argument: it is somewhat similar to that in Proposition 11,

with extra crucial observation that �ve non-crossing hands cannot be extended with two more

hands that are crossing but not with those �ve. a

A �nal observation is that:

Proposition 13 Every card occurs at most thrice in a direct exchange.

Proof. If a card were to occur in four hands, this would involve eight pairs containing that

card: as there are only six other cards, there must therefore be two similar pairs. No direct

exchange contains crossing hands (Proposition 11). a

All the remaining possible �ve, six and seven hand combinations are indeed direct exchanges. We

start with an informal overview of what they are:

Because every card occurs either twice or thrice in a direct exchange, and because there are

no direct exchanges of less than �ve hands, some card must occur thrice.

First suppose this is one of a's actual cards. Assume w.l.o.g. that from a's actual cards 0; 1; 2

card 0 occurs thrice. As the communication does not contain the same pair of cards more than

once, we can assume it w.l.o.g. to contain 012, 034 and 056. Also w.l.o.g. we can assume the fourth

hand to be 135. At this stage there are only four hands left that do not contain a pair of cards

already used: 146, 246, 236, 245. We now have a moment of choice: either 1 occurs thrice in the

message as well, in which case the �fth hand must be 146 (and we can then add either 236, or 245,

or both), or there is no other card that occurs thrice in the message, in which case the �fth hand

must be 246 and the message cannot (as one may observe) be extended further without crossing

hands.

Next, suppose that none of a's actual cards 0; 1; 2 occur thrice. Then they all occur twice.

Starting from some seven hand announcement, where all cards occur thrice exactly, there are

two ways to achieve that. The �rst is to remove a's actual hand from the announcement: in the

remainder cards 0; 1; 2 occur twice. But of course we cannot remove the actual hand! Therefore,

two hands must be removed and we end up with �ve hands, where one of the remaining cards

occurs thrice. An example of such an announcement is f012; 345; 036; 146; 256g. This turns out
to be a symmetric variation of the one we already computed in the previous paragraph. And this

should not surprise us, because if it were not a symmetric variation, c could observe that and

possibly derive factual information from it.

We now prove that the communications we have found so far are direct exchanges. We found

four di�erent types: seven hands, six hands, �ve hands with an a-card thrice, �ve hands with

a non a-card thrice. The proof follows the pattern outlined after Example 9. All other direct

exchanges are merely symmetric variations on the above. We have seen in Proposition 12 that

we cannot extend direct communications with hands that cross with it. We report on how they

may be extended (or restricted) with non-crossing other hands. This, in other words, is a way of

describing whether they are minimal or maximal with respect to deleting / adding hands. We then

enumerate them. We close this section with some other interesting observations and descriptive

versions of exchanges.

Proposition 14 Anne announcing f012; 034; 056; 135; 246g is a direct exchange. It is both mini-

mal and maximal.

Proof. This announcement is the one from Example 9. It was proven there that it is a direct

exchange.

It is obviously minimal, because there is no exchange of four hands (Proposition 10).

This exchange is also maximal, because no hands can be added without sharing two cards with

the �ve we already have: From the available non-crossing �fth hand candidates 146, 246, 236, 245,

we chose to add 246. But then, adding either of 146, 236, 245 creates crossing hands (e.g., 246
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and 236 share (2; 6), etc.). Removing those from the announcement leaves an announcement of

four hands: not an exchange. a

Proposition 15 Anne announcing f012; 036; 146; 256; 345g is a direct exchange. It is both mini-

mal and maximal.

Proof. Almost identical to that of Proposition 14. a

Proposition 16 Anne announcing f012; 034; 056; 135; 146; 236; 245g is a direct exchange. It is

maximal, but not minimal.

Proof. The proof that this is a direct exchange has been omitted (all such proofs are similar).

The exchange is maximal, because there is no direct exchange of more than seven hands: Propo-

sition 11. The exchange is not minimal: an arbitrary hand except the actual one can be deleted.

See Proposition 18, below. a

Proposition 17 There are 6 direct exchanges of secrets consisting of seven hands.

Proof. The �rst hand 012 is obligatory. The two other hands containing card 0 will contain

all four other cards, therefore one of those two will contain card 3. We are free to choose the

third card of that hand out of the remaining three cards. Then the other hand containing 0 is

determined. One of the two other hands containing 1 will also contain card 3 (because the two

other hands containing card 1 will contain all four other cards). We are free to choose the third

card of that hand out of the remaining two cards: our choice must be di�erent from the addition

to 0 and 3. Therefore there are 3� 2 = 6 direct exchanges of seven hands. a

Proposition 18 Anne announcing f012; 034; 056; 135; 146; 236g is a direct exchange. It is mini-

mal, but not maximal.

Proof. We omit the proof that it is a direct exchange. Proof of the minimality:

Suppose we remove 236. Then cignorant doesn't hold on the model underlying the resulting

state: if Crow had 0, it would learn that Anne has 1.

If we remove 146, cignorant doesn't hold either on the model underlying the resulting state: if

Crow had 0, it would learn that Anne has 3. If we remove 135, similarly, if Crow had 0, it would

learn that Anne has 6. If we remove 056, similarly, if Crow had 1, it would learn that Anne has

3. If we remove 034, similarly, if Crow had 1, it would learn that Anne has 6.

We can't remove actual deal 012. a

Proposition 19 There are 36 direct exchanges of secrets consisting of six hands.

Proof. From all of the 6 direct exchanges consisting of seven hands we can delete an arbitrary

hand (except the actual hand). This results in 6� 6 = 36 exchanges. a

Proposition 20 There are 60 direct exchanges of secrets consisting of �ve hands.

Proof. There are 24 direct exchanges where none of Anne's cards 0; 1; 2 occur thrice, and

therefore one of four other cards occur thrice (�ve hands contain 15 card occurrences: six cards

occur twice { 12 { and one thrice { 3). If the remaining three occur together in one hand, then

we can choose one of them to go with card 0 and from the remaining two one to go with 1.

There are 36 direct exchanges where one of Anne's cards 0; 1; 2 occurs thrice: for each of those

three cards, say 0, some other of these three hands containing that card must contain a 3, the

remaining card of that hand may be chosen from one of the remaining three cards. This �xes

the other hand containing 0. One of the remaining hands contains a 1 and the other a 2. For

the hand containing 1 we may choose two out of the four cards not held by Anne, except the two

combinations already used with 0. This leaves four combinations.

Altogether this makes 60.

Using the above, Proposition 18, and the minimality conditions mentioned before De�nition

9, these are indeed all exchanges of �ve hands. a
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Corollary 21 For given deal 012j345j6 there are 102 direct exchanges.

For a list, see the Appendix.

Now apart from these 102 direct exchanges for Russian cards, are there any other, non-direct,

exchanges, consisting of more than two safe communications? Yes, there are. To give a trivial

example: Anne could have started by saying \I have one of all possible hands," after which

Bill could have given a seven hand announcement from the above (but computed for his own

hand, which is 345), after which Anne declares Crow's card. But are such exchanges essentially

di�erent? This one isn't. But in general that is not entirely clear. An exchange starting with a

communication that is not an extension of any of the 102 direct exchanges, could be said to be

`really' di�erent. Also an exchange ending in an information state that was not reached by any of

the 102 direct exchanges can be said to be `really' di�erent. For example, none of the 102 above

reach the information state consisting of f012j345j6; 345j012j6g only, where common knowledge

of the postconditions holds. Is there an exchange that results in that state? We have not been

able to prove that such `really' di�erent exchanges do not exist. In due time, we hope to con�rm

this conjecture by exhaustive model checking. Instead, we give some partial results towards this

conjecture:

Proposition 22 (Extension of safe communications) Let � be a safe a-communication an-

nounced in some initial state (I3j3j1; d), and h an a-hand that is described by Æa
d0
. Then � _ Æa

d0

(� [ fhg) is also safe.

Proof. Because � is safe, (I3j3j1)Ka�
; d j= Ccignorant, therefore (I3j3j1)Ka�

j= cignorant. Let

e 2 (I3j3j1)Ka�
, and q 2 Q n d�1(c), then [e]�c contains both a deal where Anne holds q and one

where Anne doesn't hold q. Now the only way that cignorant may fail to hold on the extended

model (I3j3j1)Ka(�_Æ
a

d0
) is when removing one less class [d0]�a from the initial model (or more),

results in leaving a class [d0]�c that does not occur in (I3j3j1)Ka�
and where c knows some of a's

cards. But this cannot be the case: [d0]�c � (I3j3j1)Ka(�_Æ
a

d0
) must be the extension to that model

of some [e]�c � (I3j3j1)Ka�
that contains both a deal where Anne holds q and one where Anne

doesn't hold q (Anne's �rst announcement, whatever it is, will not publicly rule out any speci�c

card for Crow). Therefore, also (I3j3j1)Ka(�_Æ
a

d0
) j= cignorant, so (I3j3j1)Ka(�_Æ

a

d0
); d j= Ccignorant.

a

Proposition 22 may hold for non-initial card game states as well. Unfortunately the value of

such extended safe communications is questionable, because Bill may very well be unable to say

anything informative after it:

Example 11 For example, suppose that in deal 012j345j6, instead of communication f012; 034;
056; 135; 146; 236; 245g, a had added another hand, say 345. What can Bill still say after Anne

says that?

Bill learns Anne's hand, because he can remove all hands that contain 3, 4, or 5. That includes

345. However, if Bill now announces that Crow's card is 6, as before, Crow now learns, unlike

before, that Anne's hand of cards cannot have been any of f034; 135; 245; 345g (as all of the �rst

three cross with 345), because in that case Bill would not have learnt Crow's card. From the

remaining hands f012; 056; 146g, Crow can eliminate 056 and 146 because they contain 6, so it

can derive the hand of Anne. So Bill cannot say that he knows Crow's card.

Now suppose that Anne had added hand 016 to her announcement. In this case Bill would not

have learnt Anne's hand. If Bill announces that (or, somewhat similarly, that he doesn't know

Crow's card yet), Crow learns that Anne's hand must have been one of 012, 016, 056, 146. From

those it can eliminate all but 012, so once again Crow learns Anne's hand. So Bill cannot say that

he doesn't know Crow's card.

Other cases are similar. It is unclear if Bill can say anything at all after this Anne's ex-

tended `safe' announcement. The least he can say is: \Please say something else, Anne," and in

consideration of the previous, it may well be commonly known that this is all he can say.
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We close this section with some observations on variants of direct exchanges for 3j3j1 and

other matters of logical interest.

Fact 23 Each direct exchange results in factual knowledge for Crow.

Fact 24 Suppose Crow tries to cheat and privately (i.e., without Anne or Bill noticing) peeks into

one or more of Anne's cards. In a seven hand exchange such as f012; 034; 056; 135; 146; 236; 245g
it has in this way to learn privately two of Anne's cards before it learns her hand. In a �ve hand

exchange where Crow's card is the card occurring thrice, e.g. for deal 012j345j6 the communication

f012; 056; 146; 236; 345g, Crow has to learn privately just one of Anne's cards to learn her entire

hand.

Example 12 (Modulo 7 and sum 12 solutions) Instead of announcing \My hand is one of

f012; 046; 136; 145; 235g" Anne could have said: \The sum of my cards modulo 7 is 3." Announcing

the sum modulo seven of your cards is always a direct exchange consisting of �ve hands.

If the sum modulo 7 is 5 (and only in that case) we can even do better. An example of that

is f014; 023; 156; 246; 345g. If card 0 had been named 7 instead, all sums would have been 12.

See the similar example in section 1: Anne's public renaming of cards to 1; :::; 7 does not provide

information. After that, she executes a �ve hand direct exchange.

Example 13 Instead of announcing \My hand is one of f012; 034; 056; 135; 146; 236; 245g," Anne
could have said as well: \I have one of f0; 1; 2g, and one of f0; 3; 4g, and one of f0; 5; 6g, and
one of f1; 3; 5g, and one of f1; 4; 6g, and one of f2; 3; 6g, and one of f2; 4; 5g." In logic, slightly

simpli�ed: instead of

(0a ^ 1a ^ 2a) _ (0a ^ 3a ^ 4a) _ ::: _ (2a ^ 4a ^ 5a)

Anne could have said

(0a _ 1a _ 2a) ^ (0a _ 3a _ 4a) ^ ::: ^ (2a _ 4a _ 5a):

The two announcements are logically equivalent, the �rst is a disjunctive normal form of the

announcement, so to speak, and the second a conjunctive normal form.

Finally, note that the hands of a seven hand direct exchange can be seen as the seven lines of a

projective geometric plane consisting of seven points. The apparent symmetry is an automorphism

property of that plane.

5 Generalizations, conclusions, and applications

For the case of three players of which two hold three cards we have exhaustively described the

ways in which these two agents can exchange their hands by public communications. Some logical

properties of such communications have been proved for arbitrary card deals, most notably that

all communications can be about alternative hands for the communicating player.

We have some tentative results for arbitrary card deals. For some deals of cards no exchange

exists. An example is the deal where each player holds one card (Example 2). Direct exchanges also

exist for deals of size 4j2j1 and 4j7j2 (starting with 7 and 13 hand a-announcements, respectively).

If there is an exchange for size xjyjz, then there is one for size xjyjz-1: in the second case, the

�rst player introduces a virtual extra card for the third player (and the players commonly know

that the third player has that card). A trivial application of that, is that we can solve the 3j3j0
`problem': assume that a seventh card named 6 exists as well and that Crow holds it. Then

execute one of 3j3j1 direct exchanges. It is trivial, because if Crow doesn't hold any card, Anne

and Bill already know each other's hand in the initial game state. A non-trivial example is that

there is an exchange for 4j7j1 (because there is one for 4j7j2).
We conjecture the following: If there is an exchange for a given deal of some size, there is a

direct exchange. If the conjecture holds, it would greatly simplify the algorithm in Proposition 7
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for determining whether an exchange exists for a given deal of cards. There is some suggestive

evidence that the conjecture holds: If any update is allowed, and secrecy is no issue, n agents can

pool their distributed knowledge in a maximum of n communications. For card deals this may

be done by each but the last player saying what their cards are, i.e.: n� 1 communications. For

three players this means: two communications.

Our results are relevant for the analysis of distributed (interpreted) systems [FHMV95] where

the agents' local state is interdependent. Can two agents communicate their local state to each

other without the remaining agents getting to know those states? This is weaker than the re-

quirement for the Russian cards problem, because it is now allowed to learn some of the cards of

the communicating players, but just not all of them. For the Russian cards problem, this weaker

requirement results in shorter solutions:

Example 14 In 012j345j6, after Anne says: \My hand is one of f012; 034; 056g," and Bill says:

\Crow has card 6," it is commonly known that Anne and Bill know each other's hand, and that

Crow doesn't. Even though Crow knows that Anne holds card 0, it does not know her hand.

A general treatment of exchanges for players in card deals is relevant for cryptology. In pub-

lic/private key cryptography for example, the non-communicating (listening in) agents cannot

discover the secrets that are exchanged, because of the unfeasible complexity of factorising a prod-

uct of large primes. Our cryptographic protocols apply to `computationally unlimited' agents

(`perfect logicians'). An example:

Example 15 There are seven cards 0; 1; :::; 6. Anne's hand is 125. Unlike before, she now only

knows her own cards, that there are seven cards, and that either Bill or Crow hold the three cards

346. She wants to �nd out who holds the three cards. She realizes that both 251 and 643 are prime

numbers... She can now either announce: \Who is the �rst to tell me the factorization of 161393,"

which we may expect Bill to do faster than Crow, as Bill can simply divide that number by 643 (his

`private key', so to speak), or she may announce one of the direct exchanges for hand 125, e.g.:

\My hand is one of f125; 023; 246; 045; 356; 016; 134g," after which only Bill, who actually holds

346, and not Crow, is able to tell her that she holds 125. In the �rst case, Crow is (presumably)

not fast enough (`too complex') to pose as Bill with certainty, in the second case, it is impossible

to pose as Bill with certainty.

In Russian cards, Crow has a (commonly known) 25% probability of correctly guessing Anne's

hand if she chooses a seven hand exchange, and an expected probability of 33% or 50% of correctly

guessing her hand if she chooses a �ve hand exchange. For larger deals of cards, the probability of

guessing correctly decreases. If one choose the card deal large enough, outsiders such as Crow will

have a probability below a preferred threshold, say 5%, of correctly guessing the secret. In other

words: we design a cryptographic protocol based on card deals that suits our security requirements.
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Appendix

Proof of Proposition 1: For all formulas in the language, [' ^ ['] ]� is equivalent to ['][ ]�.

Proof. Let M;w be arbitrary. Then:

M;w j= [' ^ ['] ]�

,
M;w j= ' and M;w j= ['] implies M'^['] ; w j= �

,
M;w j= ' and M'; w j=  implies M'^['] ; w j= �

, as M'^['] = (M') ; see below

M;w j= ' and M'; w j=  implies (M') ; w j= �

,
M;w j= ' implies M'; w j= [ ]�

,
M;w j= ['][ ]�

We have that M'^['] = (M') , since:

D(M'^['] )

=

fv j M; v j= ' ^ ['] g
=

fv j M; v j= ' and (M; v j= ' implies M'; v j=  )g
= v 2 D(M') presupposes that M; v j= '

fv j M'; v j=  g
=

D((M') )

a

Proof of Proposition 2: For all formulas in the language, [C']C' is valid.

Proof. De�ne �N := (
S
n2N

�n)
�, and M

w

�N
as the �N -generated submodel of M with

point w (i.e. with D(Mw

�N
) := fv 2 D(M) j v �N wg). Obviously, for all formulas and states,

M;w j=  i� Mv

�N
; w j=  .

Let M;w be arbitrary, and suppose M;w j= C'. Let v �N w. Then M; v j= C' (using the

validity of C' ! CC'), and therefore D(Mw

�N
) � D(MC'). Also M; v j= ', so Mv

�N
; v j= ',

and also MC'; v j= '. As v 2 MC', it follows that MC'; w j= C'. We have now shown that

M;w j= C' impliesMC'; w j= C', in other words: M;w j= [C']C'. AsM and w were arbitrary,

it follows that j= [C']C'. a

Direct exchanges for Russian cards:
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012 034 056 135 146 236

012 034 056 135 146 236 245

012 034 056 135 146 245

012 034 056 135 236 245

012 034 056 135 246

012 034 056 136 145 235

012 034 056 136 145 235 246

012 034 056 136 145 246

012 034 056 136 235 246

012 034 056 136 245

012 034 056 145 235 246

012 034 056 145 236

012 034 056 146 235

012 034 056 146 236 245

012 034 135 146 236 245

012 034 135 146 256

012 034 135 236 456

012 034 136 145 235 246

012 034 136 145 256

012 034 136 235 456

012 034 145 246 356

012 034 146 245 356

012 034 156 235 246

012 034 156 236 245

012 035 046 134 156 236

012 035 046 134 156 236 245

012 035 046 134 156 245

012 035 046 134 236 245

012 035 046 134 256

012 035 046 136 145 234

012 035 046 136 145 234 256

012 035 046 136 145 256

012 035 046 136 234 256

012 035 046 136 245

012 035 046 145 234 256

012 035 046 145 236

012 035 046 156 234

012 035 046 156 236 245

012 035 134 156 236 245

012 035 134 156 246

012 035 134 236 456

012 035 136 145 234 256

012 035 136 145 246

012 035 136 234 456

012 035 145 256 346

012 035 146 234 256

012 035 146 236 245

012 035 156 245 346

012 036 045 134 156 235

012 036 045 134 156 235 246

012 036 045 134 156 246

012 036 045 134 235 246

012 036 045 134 256

012 036 045 135 146 234

012 036 045 135 146 234 256

012 036 045 135 146 256

012 036 045 135 234 256

012 036 045 135 246

012 036 045 146 234 256

012 036 045 146 235

012 036 045 156 234

012 036 045 156 235 246

012 036 134 156 235 246

012 036 134 156 245

012 036 134 235 456

012 036 135 146 234 256

012 036 135 146 245

012 036 135 234 456

012 036 145 234 256

012 036 145 235 246

012 036 146 256 345

012 036 156 246 345

012 045 134 156 235 246

012 045 134 156 236

012 045 134 246 356

012 045 135 146 234 256

012 045 135 146 236

012 045 135 234 256

012 045 135 256 346

012 045 136 235 246

012 045 146 234 356

012 045 156 235 346

012 046 134 156 235

012 046 134 156 236 245

012 046 134 245 356

012 046 135 236 245

012 046 136 145 234 256

012 046 136 145 235

012 046 136 234 256

012 046 136 256 345

012 046 145 234 356

012 046 156 236 345

012 056 134 235 246

012 056 134 236 245

012 056 135 146 234

012 056 135 146 236 245

012 056 135 245 346

012 056 136 145 234

012 056 136 145 235 246

012 056 136 246 345

012 056 145 235 346

012 056 146 236 345
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