
Department of Computer Science,
University of Otago

Technical Report OUCS-2004-19

On the Permutational Power of Token

Passing Networks

Authors:
M. H. Albert

Department of Computer Science, University of Otago
N. Ruškuc,

School of Mathematics and Statistics, University of St Andrews
S. Linton

School of Computer Science, University of St Andrews

Status: Submitted for publication to the London Mathematical Society

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.html

ON THE PERMUTATIONAL POWER OF TOKEN
PASSING NETWORKS.

M. H. ALBERT, N. RUŠKUC, AND S. LINTON

Abstract. A token passing network is a directed graph with one
or more specified input vertices and one or more specified output
vertices. A vertex of the graph may be occupied by at most one
token, and tokens are passed through the graph. The reorderings
of tokens that can arise as a result of this process are called the
language of the token passing network. It was known that these
languages correspond through a natural encoding to certain reg-
ular languages. We show that the collection of such languages is
relatively restricted, in particular that only finitely many occur
over each fixed alphabet.

1. Introduction

The study of graphs whose vertices can be occupied by tokens, or peb-
bles, which are moved along the edges has ranged from recreational
mathematics [8, 10] to motion planning and related topics [3, 4, 6]. In
most of these papers the problem is restricted to moving a fixed set
of pebbles within a given graph, generally aiming to obtain a specific
configuration. On the other hand, early works such as [5, 7, 9] dealt
in a similar way with moving tokens, now thought of as items of data,
within a network (represented as a directed graph) with the aim of
producing specified outputs from a fixed input, or sorted output from
a variable input.

In the latter area the problem of identifying permutations which could
be produced when the network was restricted to a fixed size was con-
sidered in [2]. They showed that, under a natural encoding scheme,
the collection of permutations generated by a token passing network
is always a regular language. In this paper we continue the analysis
of these collections of permutations and establish in Theorem 1 and
Theorem 2 that, in effect, for each alphabet size, there are only finitely
many such languages.

In Section 6 we provide a complete catalog of these languages over the
three letter alphabet, along with networks producing them. We also
provide some examples to show that certain natural conjectures about
the behaviour of these networks are not correct. The results of Section

1

2 M. H. ALBERT, N. RUŠKUC, AND S. LINTON

Figure 1. S2,2, a network of two stacks of capacity two
in parallel

6 are obtained by implementing some of the implicit computational
methods introduced in [1] and [2],

We conclude this introduction with an informal, but illustrative ex-
ample drawn from [2]. Consider the network S2,2 shown in Figure 1.
This network consists essentially of two stacks in parallel, each capable
of containing up to two items. Input arrives at the rightmost node
(shown by an inward pointing arrow without a source), and output
occurs at the leftmost node (an outward pointing arrow without a tar-
get). We think of this network operating non-deterministically, with
the following basic operations:

• If the input node is empty, then a new token may be added to
the network at the input node. The input source is considered
to be a (potentially infinite) queue containing tokens labelled
1, 2, . . .

• If the source of an edge is occupied by a token, and its target
is not, then the token may be moved along that edge.

• If the output node is occupied, then the token on it may be
removed from the network.

• If the network is empty, operation may halt.

The output of a particular run of the network is the permutation π =
p1p2 · · · pn where pi is the label of the ith token removed from the
network. The set of all such permutations will be denoted Out(S2,2).

Once four tokens are present in the network S2,2 the next output symbol
will be one of those four. Therefore, each element pi in an output
permutation π is one of the four smallest of the remaining elements.
This suggests using the rank encoding of π to describe it, replacing
each pi by its rank among the remaining elements of π. Under this
encoding Out(S2,2) forms a regular language. Of perhaps more interest
are the minimal elements of the complement of Out(S2,2). These are
permutations not in Out(S2,2) but with the property that if any single
symbol is deleted from them, then the resulting permutation (that is

ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS. 3

the output permutation of the remaining input items) is in Out(S2,2).
It was noted in [2] that this set is infinite, containing at least the
permutations:

4, 1, 6, 3, 8, 5, 10, 7, . . . , 4n, 4n − 3, 2, 4n − 1

for any n. As a consequence of the methods of [1] and our explicit
computations outlined below we can report that these permutations
together with all the permutations of length 5 beginning with a 5 are
the complete set of minimal elements in the complement of Out(S2,2).

2. Definitions and basic results

In a token passing network as defined informally above, we move to-
kens from vertex to vertex along directed edges, sometimes adding new
tokens to the network at specified input vertices, and sometimes re-
moving them from specified output vertices. Operation is to halt at
any point when there are no tokens in the network. We now formalize
this definition.

A token passing network, T (G, I, O), consists of a directed graph G

together with non-empty subsets I and O of the vertices of G. When
clear from context, we suppress the parameters. Of course I represents
the set of input vertices, and O the set of output vertices.

Token passing networks operate as described in the introduction. Un-
der this form of operation, in order to identify the output permutation,
it suffices to know the rank of each output token, among all the remain-
ing elements of the permutation. This rank cannot exceed the number
of vertices in the underlying graph G of T . The rank encoding of a
permutation is obtained by replacing each symbol with its rank among
the remaining symbols. By concentrating on the rank of each token,
rather than its actual value, we can describe the operation of T quite
simply.

A state of T consists of a sequence (possibly empty) of vertices of the
network, not containing any duplicates. This represents the situation
where the vertices in the sequence are occupied by numbered tokens,
whose relative ordering agrees with the ordering of the sequence. That
is, the smallest token occupies the first vertex of the sequence, the
second smallest token the second vertex, and so on.

The primitive transitions in a token passing network in state s are of
the following types:

Input: If i ∈ I and i does not occur in s, then there is a transition
s → si.

Movement: If s = avb and v → w is an edge of G and w does
not occur in s then there is a transition s → awb.

4 M. H. ALBERT, N. RUŠKUC, AND S. LINTON

Output: If s = aob with o ∈ O then there is a transition s → ab

A run of T begins with the empty state, and proceeds by some sequence
of primitive transitions. At the end of this sequence the state of T
must again be empty. The permutation produced by such a run is
the decoded form of the sequence of tokens removed during output
steps. For instance if this sequence were 23211 this would represent
the permutation 24315.

The output class, Out(T) consists of all the permutations π that can be
produced by some run of T . This output class is closed under deletion.
That is, if π ∈ Out(T) and we delete a symbol of π, then re-index
the remaining symbols, preserving their relative order, to produce a
permutation π′ then it is also the case that π′ ∈ Out(T). This is
because we can produce the permutation π′ by following the run of T
which produced π but ignoring any operation on the token representing
the element we wish to delete. A collection of permutations closed
under this deletion operation is called a pattern class.

The style of argument of the preceding paragraph, will be repeated in a
number of different contexts. When we use it, we will generally refer to
the tokens we are ignoring in some modified run of T as ghost tokens.

The runs of T can be identified with the accepting computations of
a non-deterministic finite state automaton by considering input and
movement transitions as ε-transitions, and output transitions as tran-
sitions on the symbol k where k is the index of the output symbol in s.
Under this identification the language accepted by T , which we denote
L(T) is precisely the rank encoding of the collection of permutations
Out(T). This is essentially the content of Theorem 1 of [2].

Let k be a positive integer. A k-buffer is the token passing network
Bk = T (K, K, K) where K is any directed graph on k vertices. From an
operational standpoint any two k-buffers are completely equivalent, so
the notation above is justified. The language B(k) = L(Bk) consists of
the rank encodings of all permutations where the rank of any element
is bounded by k. These permutations are referred to as k-bounded.
Many other token passing networks produce this same language, for
instance a cycle of k vertices with a single vertex serving as both input
and output vertex.

The language accepted by a token passing network, T (G, I, O), is a
sublanguage of B(|G|) since at most |G| tokens can occupy the graph.
We define the boundedness of T to be the minimum k such that L(T) ⊆
B(k).

We will also consider token passing networks restricted to operate with
a total of at most c tokens in the network at any one time. In terms of

ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS. 5

the states introduced above, we restrict the operation of T to states rep-
resented by sequences of length at most c. We refer to such networks as
capacity restricted token passing networks and denote the token passing
network T restricted in this way by Tc. Obviously L(Tc) ⊆ B(c)∩L(T).
We will see in Section 6 that, in general, this inclusion is proper. Specif-
ically in Figure 6 we illustrate a token passing network which can pro-
duce certain 4-bounded permutations, but not without containing at
least 5 tokens at some point in its operation.

The main results of this paper are the following:

Theorem 1. Let c be a fixed positive integer. Then:

{L(T) : T a token passing network of boundedness c}

is finite.

Theorem 2. Let c be a fixed positive integer. Then:

{L(Tc) : T a token passing network}

is finite.

These two results indicate that the permutational power of token pass-
ing networks is relatively restricted, in that there are infinitely many
pattern classes represented by regular sublanguages of B(C). Alter-
natively they can be viewed as compactness results for token passing
networks. They say that, for a fixed boundedness or capacity bound,
there is a finite test set, T , of permutations such that, if two token pass-
ing networks satisfying the boundedness conditions generate the same
subset of T then they generate the same language. In Section 6 we
will see that for boundedness (or capacity bound) 2, the set T = {21}
suffices, while for boundedness 3 we may take:

T = {21, 321, 312, 31542, 324651}.

3. Strongly cycle connected graphs

We say that a directed graph is strongly cycle connected if it has a
strongly connected subgraph in which every edge belongs to a directed
cycle of length at least three. For instance any directed graph on at
least three vertices containing a directed Hamilton cycle is strongly
cycle connected and the bi-directed orientation of an undirected graph
is strongly cycle connected if and only if the graph contains no bridge
edges.

In this section we prove a useful lemma which shows that strongly
cycle connected graphs behave almost like buffers. In particular, if
they appear as a subgraph within a token passing network, then each
one can be used to store at least one token. Of course if a token passing

6 M. H. ALBERT, N. RUŠKUC, AND S. LINTON

network T can store c elements, then L(T) ⊇ B(c), and the same holds
for L(Tc).

Lemma 3. Let C be a strongly cycle connected graph containing m

vertices. The language of T (C, I, O) contains B(m− 2). If m ∈ {3, 4}
then it contains B(m − 1).

Proof. We will show that if m − 2 or fewer tokens are present in C,
and if v is any vertex of C occupied by some token a, and v → w is an
edge of C, then we can move a to w. In fact we will prove that this is
possible after we have deleted any edges from C which do not belong
to proper cycles.

This will suffice to prove the first part of the lemma. For, if fewer than
m − 2 tokens are in C then treating one of the unoccupied vertices as
a “ghost token” and applying the above operation repeatedly, we can
arrange for an input vertex to be unoccupied, allowing further input.
Likewise, we can output any token from the network if it is occupied
by m − 2 or fewer tokens. So, any word in B(m − 2) can be produced
by the network.

We refer to unoccupied vertices as holes. When we refer to the distance

from u to w we mean the length of the shortest directed path from u

to w. We will frequently make use of the fact that if a cycle C contains
a hole, then we may advance the tokens in C along it by successively
moving the hole backwards. When we wish to move a token t to a vertex
v on the cycle by this method we will indicate this by the phrase cycle

t along C to v or something similar.

Our assumption is that there are at least two holes. By moving holes
backwards along paths we may assume that there are two holes at x and
y either (Case 1) both at distance 1 from v, or (Case 2) x at distance
1, and y at distance 2 (along a path v → x → y). Choose a cycle
A containing the edge v → w. If A contains a hole we’re done, after
moving it backwards along the cycle to w. So, suppose otherwise. The
critical situations in these two cases are illustrated in Figure 2 which
may aid in visualising the details of the following arguments.

In case 1, choose a cycle Ax containing v → x. If w belongs to Ax we
can just use Ax in place of A in the preceding paragraph. So assume
there is a vertex u of A not on Ax. Move the token a from v to x and
move the hole from y backwards along the path from u to y, preserving
the hole at v. Now cycle a back to v along Ax, reaching a state where
A contains a hole.

Now consider case 2. Consider any cycle Cx containing v → x. The
either (i) y ∈ Cx or (ii) y 6∈ Cx.

(sub-case i) Again if every vertex of A belongs to this cycle we’re done.
If not, move a hole from this cycle to v, and then move this hole back

ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS. 7

a

v

Case 1

a

vy

y

x x

ww

Case 2(ii)

Figure 2. Critical cases for the argument concerning
buffering capacity of strongly cycle connected graphs

along A to a vertex u not on Cx. Cycle Cx again until a returns to its
original position, and A now contains a hole.

(sub-case ii) Cycle along Cx until there is a hole at v, but a does not
occupy x. Move the token at x to y. This creates two holes at v and
x. Move the hole at x onto A. Move a back onto A along Cx. Now A

has a hole and we’re done.

The final sentence of the lemma follows simply by considering the pos-
sible cases. A strongly cycle connected graph with 3 vertices contains
a directed triangle, and trivially can produce any element of B(2). If
there are 4 vertices then either there is a directed 4-cycle, or two 3-
cycles containing a common edge. In either case it is easy to check that
all elements of B(3) can be produced. �

The 5 vertex strongly connected graph consisting of two directed 3-
cycles sharing a common vertex does not produce all of B(4). So in
general, the bound m − 2 in the lemma above cannot be improved.
However, it is easy to see that, if G is a graph which has the property
that for every edge v → w, there is a path in G \ v from w to every
other vertex, then the language generated by a token passing network
based on G contains B(|G| − 1) since we can guarantee the movement
of a token along any edge v → w provided there is at least one hole in
the graph.

4. Token passing networks with fixed boundedness

The aim of this section is to prove Theorem 1. So, let a fixed positive
real number c be given, and consider a language L ⊆ B(c) produced
by at least one token passing network of boundedness c. Among the
networks which produce this language choose one, T , which has the
following properties:

• There is a single input vertex i and a single output vertex o.

8 M. H. ALBERT, N. RUŠKUC, AND S. LINTON

• Among all such token passing networks, T is one with the small-
est possible number of vertices.

We will establish a bound, independent of L, on the number of vertices
of T . Of course this suffices to prove the theorem since there are only
finitely many token passing networks of such sizes.

First note that every vertex v of G has the property that there is a
directed path from i to v and also one from v to o. For if there were a
vertex for which this failed, then v could never be occupied in any run
of T . Thus v could be deleted without affecting the output language,
and so the second condition on T would be contradicted.

Now choose a shortest directed path S:

i = v0 → v1 → · · · → vm = o

from the input to the output vertex. We will call this the spine of T .
The complement of the spine will be called the body, its set of vertices
will be denoted B, and the number of vertices in the body will be
denoted b.

Since the boundedness of T is c, it follows that b < c. For, we can
fill all the vertices of the body with tokens, working in reverse order
of distance from i to avoid any possible blockages and then move the
next token along the spine from input to output. If b ≥ c this would
contradict the c-boundedness of T .

We say that a vertex v ∈ S is spanned if there is some vertex w ∈ B,
and vertices v1 ∈ S not following v and v2 ∈ S not preceding v such
that there is a directed path from v1 to w not meeting S except at v1

and one from w to v2 not meeting S except at v2. Note that either v1

or v2 (or even both) might equal v.

For each vertex w ∈ B, there is an earliest vertex v1 ∈ S which allows
a directed path from v1 to w not meeting S except at v1, and a latest
vertex v2 ∈ S allowing a directed path from w to v2 not meeting S

except at v2. Since the sum of the lengths of these paths is at most 2b
the distance on S between v1 and v2 must be at most 2b. In particular
the number of elements of S which are spanned is less than 2c2.

Furthermore by lemma 3, at most 3c of the vertices of the spine can
lie on cycles of length 3 or more, or else we would be able to store at
least c + 1 items, again violating the boundedness condition of T .

Consider any vertex v ∈ S which is neither spanned, nor belongs to
any cycle. We call such a vertex queuelike because the only possible
edges having v as an endpoint are of the form:

u ↔ v ↔ w

where u, w ∈ S are the predecessor and successor of v in S.

ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS. 9

Figure 3. Schematic of a token passing network con-
taining two internal queues. The shaded node is an in-
ternal queue of length one. The boxes may contain ad-
ditional structure.

A maximal interval vi through vj of S consisting entirely of queuelike
vertices with the additional property that for i ≤ k < j both the edges
vi → vi+1 and vi+1 → vi are present in T will be called an internal

queue. The structure of a token passing network containing an internal
queue is illustrated in Figure 3 which also illustrates the fact that it is
possible for an internal queue to consist of a single vertex. Note that
every queuelike vertex belongs to a unique internal queue.

We now define the backwards mobility of an internal queue Q. This
is the largest number k such that if tokens 1 through k are placed in
order in Q (with 1 closest to the output vertex) then it is possible to
rearrange them in Q in such a way that 1 is no longer the first element,
using only the vertices of T between i and the end of Q.

Observation 4. The backwards mobility of an internal queue cannot

exceed c.

Proof. Suppose that we had an internal queue Q of backwards mobility
at least c + 1. Then certainly (by using virtual or ghost tokens if
necessary) we could rearrange the initial contents 1 through c + 1 of Q

into a sequence:

a, . . . , 1, . . .

where 1 does not occur in the first position. By leaving the elements
before 1 fixed we could now move 1 further down the sequence. So,
after a series of such movements we could rearrange the contents of Q

into some permutation π ending with 1. By repeating this same series
of movements we could generate all the powers of π, including π−1.
However, in π−1, token c+1 has been moved to the front of the queue.
It could now be output from T , contradicting c-boundedness. �

There is an analogous notion of forwards mobility, the largest number
k such that if tokens 1 through k are placed in order in Q then it is
possible to rearrange them in Q in such a way that k is no longer the
last element, using only the vertices of T between the end of Q and o.
By similar reasoning to the above, the forwards mobility of an internal
queue is also at most c.

10 M. H. ALBERT, N. RUŠKUC, AND S. LINTON

Observation 5. If the length of an internal queue is greater than the

sum of its forwards and backwards mobilities, then it is possible to

produce a token passing network generating the same language as T
but having fewer vertices.

Proof. The key idea in proving this observation is that in such an in-
ternal queue, we can safely delete a vertex from the middle. It is
instructive to begin with an extreme case of this observation, namely
an internal queue whose forward and backward mobilities are both 0.
Then, as soon as an object is added to the queue, because the back-
ward mobility is 0, it will necessarily be the first to eventually leave the
queue. So, we can reschedule any action involving addition of further
elements to the queue until this element has finally left the queue. In
fact, we can postpone its addition to the queue until the situation fol-
lowing the queue has been adjusted to the state at which this element
leaves the queue for the final time. This then allows the element to
simply be pushed directly through the queue. Thus the queue actually
performs no useful function and can be short-circuited.

In the general case, suppose that we are about to add a token, a, to
Q which already contains as many tokens as the sum of its forward
and backward mobilities. This addition would create a token, k, in
the middle of the queue whose order, relative to its successors and
predecessors in the queue would have to remain fixed until some token
had been removed permanently from the queue. The token k functions
as a barrier between operations of T between i and it, and operations
between it and o. So any operations of the latter type that precede
the permanent removal of some element from Q can be advanced to
occur before the addition of a to Q ensuring that at no point does Q

ever contain more tokens than the sum of its forward and backward
mobilities. Now the observation follows since vertices of Q in excess of
this number are now superfluous to its effective operation. �

It follows from these two observations that, under the conditions im-
posed on T , no internal queue has length at most 2c. In fact, no internal
queue can be bounded at both ends by one way edges, for such a queue
has zero mobility in either direction. Thus there can be at most two
internal queues in any block of queuelike elements. Since there are at
most 2c2 non-queuelike vertices on S and at most two internal queues
each of size at most 2c between non-queuelike vertices, there can be at
most 8c3 queuelike vertices in T , establishing Theorem 1.

5. Capacity restricted token passing networks

We now turn to the proof of Theorem 2. In this case the proof relies
on a decomposition of the directed graph G underlying T . If we can

ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS. 11

identify part of the graph which can be operated in such a way as to
simulate the effect of a buffer of size c, then L(Tc) (respectively L(T))
must equal B(c). Conversely, we will argue that if we cannot find such
parts of the graph, then the structure of the graph as a whole must
be very simple, and, if the graph is sufficiently large, parts could be
pruned away without affecting its permutational power.

Our graph decomposition occurs on two levels. The first is fairly stan-
dard. Let a directed graph G be given. Then G has a maximal acyclic
quotient A, and the equivalence classes of the quotient map are pre-
cisely the strongly connected components of G. A strongly connected
graph S has a maximal quotient T which is a bi-directed tree (the only
type of strongly connected graph which has no cycles of length at least
3). The equivalence classes of this quotient map are strongly cycle con-
nected, and we will call them the strongly cycle connected components
of S.

The proof of the theorem now follows a standard inductive approach as
in the previous section. We begin with a language of the form L(Tc).
Among all the token passing networks whose capacity c restrictions
generate this language and which have singleton input and output sets
we choose a smallest one T (G, {i}, {o})). We then argue that the sizes
of its strongly cycle connected components, and the two quotients A

and T can be bounded, establishing a bound on |G|. The result then
follows.

Let a language L(Tc) be given, and suppose that among all the token
passing networks whose c-capacity restriction generates this language,
T is one whose underlying graph, G, is as small as possible. As in the
previous section this implies that for every vertex, v, of G there is at
least one directed path from i to v and at least one directed path from
v to o.

For convenience suppose that L(Tc) 6= B(c). The following lemma is
directed towards limiting the size of the directed acyclic quotient A of
G.

Lemma 6. Let D be a directed acyclic graph, and let i and o be specified

vertices of D. Suppose that for every vertex v of D there is a directed

path from i to v and also one from v to o. If D has a directed spanning

tree from i which has c or more leaves, then L(Tc(D, {i}, {o})) = B(c).

Proof. We prove this result by describing an algorithm for actually
running this network to produce any given word ω ∈ B(c). Take an
inward directed spanning tree T leading to the output vertex o, and
identify in it c vertices which are the leaves of some outward directed
spanning tree, S, from i. We will use these vertices as storage, and

12 M. H. ALBERT, N. RUŠKUC, AND S. LINTON

we shall arrange matters so that the following invariant properties are
maintained:

• If a token is stored at v in T and w is a storage vertex such that
the path in T from w to o passes through v then a token is also
stored at w.

• If tokens are stored at v and w in T , and the path in T from v

to o passes through w, then the token stored at w occurs earlier
in ω than the one stored at v.

These properties certainly hold at the beginning of the run, since no
tokens are stored. Suppose that we have reached some intermediate
step of the run, and the next token of ω which we have not yet produced
is ωi. If ωi is in storage, then by the second invariant property, the
path from it to o is unblocked by other stored elements, and so we can
move it to o, remove it from the network, and maintain both invariant
properties.

Suppose now that ωi has not yet been placed in storage. Consider the
next input token, α, (which may not represent ωi). Choose a currently
unoccupied storage vertex, v, at the maximum available distance from
o in T . If placing α at v maintains both invariants, then do so. If not,
then consider the subtree of T rooted at v. All the storage vertices
nearest the root are occupied. Among the occupants is one which
occurs earliest in ω. Move this token from its current location v1 to v.
Now, if placing α at v1 maintains both invariants then do so. Otherwise,
consider the subtree of T rooted at v1. Proceed as in the preceding step.
Eventually, we must free a storage location at which α can be placed,
since at worst, when we eventually must arrive at a leaf of T then we
can place α there. Thus α can be added to storage while maintaining
the invariants.

Continue this procedure for as long as necessary. In each phase we ei-
ther store a new element, or output an element required next in ω. The
invariants ensure that we never get blocked in any way, so eventually
we will have succeeded in producing all of ω. �

Note that a minor modification of the proof establishes the same result
when D has an inward directed spanning tree to o having c or more
leaves.

Consider the graph A which is the directed acyclic quotient of G. By
the lemma above and the remark following it we may assume the in-
degree and out-degree of any vertex of A is at most c.

Choose an outward directed spanning tree T from i in A with the
maximum possible number of leaves. By Lemma 6 this tree has at
most c − 1 leaves. Thus it also has at most c − 2 branch vertices
(vertices which do not have degree 2 consisting of an in-edge and an

ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS. 13

out-edge). Consider any segment, S, between a branch vertex and a
leaf, or between two branch vertices. There cannot be incoming edges
to this segment from off the segment at as many as c vertices. If there
were, we could use these c vertices as a form of storage to produce all
of B(c) (the argument is much the same as, but simpler than, that for
Lemma 6). Moreover, the in-degree of any vertex in A is at most c, thus
there are fewer than c2 incoming edges to S from off S. However, there
cannot be any edges internal to S other than the ones belonging to S,
for the existence of such an edge would create either a cycle (impossible
as A is acyclic), or the possibility of creating a spanning tree with more
leaves.

The total number of segments is at most 2c−4, hence the total number
of edges of A which are not edges of T is bounded above by (2c− 4)c2.
Suppose that there were a segment longer than (2c − 4)c2M (for a
value of M to be chosen later). Then this segment would contain
a sequence of M consecutive vertices, each of degree exactly two in
A. These vertices represent strongly connected components of G, so
their actual structure may be somewhat more complex. However, each
such component which is anything other than a simple 2-way path,
connected only at its two ends within G is capable of storing at least one
element. Thus, there cannot be as many as c vertices of this segment
which represent components not of this type. Choosing M > c2 we
find more than c consecutive vertices of the segment which represent
either individual vertices of G, or two way paths connected only at
their endpoints. Any manipulation of c or fewer tokens along such a
path can be carried out equally well when one of the vertices of the
path is deleted, yielding a contradiction.

Now it remains only to show that the strongly connected components
of G which are not simple two way paths connected only at their end-
points, can also contribute only a bounded amount to the size of G.

Consider a bi-directed tree T which is the quotient of such a strongly
connected component of G by identifying vertices belonging to a com-
mon strongly cycle connected components. If T contains c + 1 or more
leaves, then it can store c items, and so produces B(c). On the other
hand if it contains at most c leaves, then it can contain at most c − 1
branch vertices. Consider once more, a segment S of T .

As in the previous argument, there cannot be as many as c vertices of S

which have an incoming edge from off S. Finally, by Lemma 3 there can
not be as many as c vertices of S that represent non-trivial strongly
cycle connected components. So, if S has more than 2c2 elements,
then there is a block of more than c consecutive elements of S which
are actually vertices of G and whose only adjacencies in G are the edges
involving them in S. One of these can be deleted without affecting the
language produced by Tc, giving a contradiction.

14 M. H. ALBERT, N. RUŠKUC, AND S. LINTON

Figure 4. Simple token passing networks producing all
2-bounded permutations.

Since the total size of the strongly cycle connected components of G

is already known to be bounded, we have succeeded in establishing
Theorem 2.

6. Examples

We illustrate some of the preceding results with some example net-
works. In all cases we will adhere to the convention that our networks
have a single input and a single output vertex.

The 2-bounded (but not 1-bounded) permutation classes produced by
token passing networks are not very interesting. There is only one,
which is the class of all 2-bounded permutations. Two simple networks
producing it are shown in Figure 4.

Following the proofs of Theorems 1 and 2 for the case of 3-bounded
classes shows that the underlying networks cannot be very complex.
There are in fact precisely five 3-bounded classes that can be produced
by token passing networks (and there is no distinction between the
inherently bounded, or capacity bounded framework in this case). The
five classes are:

(A) All 3-bounded permutations. These can be produced by adding
an extra vertex in the middle section of the left hand network in
Figure 4, or by combining two copies of the right hand network
in series, as well as by many other networks.

(B) The 3-bounded permutations avoiding the pattern 321. These
can be produced by two queues in parallel.

(C) The 3-bounded permutations avoiding the pattern 312. These
can be produced by a stack.

(D) The 3-bounded permutations avoiding both the pattern 31542
and 32541.

(E) A class whose set of minimal avoided patterns is infinite, given
in the language of the rank encoding by:

322321, 3213(31)∗321.

Networks producing the latter four classes are shown in Figure 5.

ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS. 15

C

D

E

B

Figure 5. Examples of networks producing each possi-
ble non-universal 3-bounded class.

Figure 6. A network which produces the 4-bounded
permutation with encoding 4222434111 but not without
holding at least five tokens at some point.

A notable feature of the bottom right network in Figure 5 is that it
produces the permutation 32541, but in doing so, the element 2 cannot
be output before the element 4 is added to the network. This establishes
that one type of greedy protocol for operating token passing networks
is not effective.

Our final example is a token passing network T which has the property
that:

L(T4) 6= L(T)
⋂

B(4).

The network shown in Figure 6 can produce the permutation

4 2 3 5 8 7 10 1 6 9

whose rank encoding is:

4 2 2 2 4 3 4 1 1 1.

However, it cannot do so without at some point having five tokens in
the network, namely token 10 must be added before token 7 is output.
As this network has an inherent capacity of 5 this still leaves open
the question of whether it is ever necessary to add more tokens to the
network than its inherent capacity.

16 M. H. ALBERT, N. RUŠKUC, AND S. LINTON

7. Summary and conclusions

We have shown that the permutational power of token passing networks
is relatively limited, at least in the variety of classes of permutations
that they can produce. For the sake of simplicity, the arguments we
used in proving Theorems 1 and 2 were extremely conservative in the
numerical bounds derived. In many cases multiplicative bounds could
have been replaced by additive ones. So the actual size of the smallest
network producing any given c-bounded language (if such a network
exists) is quite small. This allowed us to determine the complete cata-
logue of such languages for c = 3. A similar catalogue for c = 4 would
probably be feasible, though the collection of minimal avoided patterns
is already much richer in this case.

We have skirted the issue of the complexity of determining L(T) given
T . The underlying non deterministic automaton has, potentially, |G|!
states, although in practice many of these are unreachable and so need
never be considered. The equivalent minimal deterministic automa-
ton often exhibits a very straightforward structure. Determining the
minimal avoided patterns using the methods of [1] requires several ap-
plications of non-deterministic transducers, complementation, and re-
determinization and so is of exponential complexity in the worst case,
and empirically also in practice. However, the final automaton pro-
duced by this procedure is generally quite small. It has been possible,
by various ad hoc methods, to extend the practical range in which
these computations can be carried out. Still, a general theoretical un-
derstanding of why the deterministic automata for the language and
its minimal avoided patterns are so simple is lacking as is a method to
exploit this apparent phenomenon in constructing one from the other.

The proof of Lemma 6 contains an algorithm for the efficient solution
of the following problem:

Given: A directed acyclic graph G with a specified input vertex
i, and output vertex o and such that for any vertex v there is
a directed path from i to v and from v to o, together with a
positive integer c, not greater than the number of leaves of some
directed spanning tree of G rooted at i.

Problem: Use this graph to sort an incoming sequence of pack-
ets provided only with the guarantee that no packet will be
preceded by c or more packets which should follow it.

This problem is the inverse view of the problem addressed in Lemma 6
and the algorithm provided in the proof of the lemma provide an online
linear time solution of it in which no packet ever moves more than 2|G|
times.

ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS. 17

We have seen that the relationship between L(Tc) and L(T) ∩ B(c) is
not entirely simple. However, a range of questions of a similar character
remain open. For example, given a token passing network of inherent
boundedness c what is the minimum number of tokens we must allow in
the network to guarantee producing every permutation in its language?

References

[1] M. H. Albert, M. D. Atkinson, and N. Ruškuc. Regular closed sets of permu-
tations. Theoret. Comput. Sci., 306(1-3):85–100, 2003.

[2] M. D. Atkinson, M. J. Livesey, and D. Tulley. Permutations generated by token
passing in graphs. Theoret. Comput. Sci., 178(1-2):103–118, 1997.

[3] V. Auletta, A. Monti, M. Parente, and P. Persiano. A linear-time algorithm for
the feasibility of pebble motion on trees. Algorithmica, 23(3):223–245, 1999.

[4] Vincenzo Auletta and Pino Persiano. Optimal pebble motion on a tree. Inform.
and Comput., 165(1):42–68, 2001.

[5] Donald E. Knuth. The art of computer programming. Addison-Wesley Publish-
ing Co., Reading, Mass.-London-Amsterdam, second edition, 1975. Volume 1:
Fundamental algorithms, Addison-Wesley Series in Computer Science and In-
formation Processing.

[6] C. H. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki. Motion planning
on a graph. In Proc. of 35-th IEEE Symp. on Found. of Comp. Sc., pages 511–
520, 1994.

[7] Vaughan R. Pratt. Computing permutations with double-ended queues. Paral-
lel stacks and parallel queues. In Fifth Annual ACM Symposium on Theory of
Computing (Austin, Tex., 1973), pages 268–277. Assoc. Comput. Mach., New
York, 1973.

[8] Daniel Ratner and Manfred Warmuth. The (n2 − 1)-puzzle and related reloca-
tion problems. J. Symbolic Comput., 10(2):111–137, 1990.

[9] Robert Tarjan. Sorting using networks of queues and stacks. J. Assoc. Comput.
Mach., 19:341–346, 1972.

[10] Richard M. Wilson. Graph puzzles, homotopy, and the alternating group. J.
Combinatorial Theory Ser. B, 16:86–96, 1974.

Department of Computer Science, University of Otago, Dunedin, New

Zealand

E-mail address : malbert@cs.otago.ac.nz

School of Mathematics and Statistics, University of St. Andrews, St.

Andrews, United Kingdom

E-mail address : nik@mcs.st-and.ac.uk

School of Computer Science, University of St. Andrews, St. An-

drews, United Kingdom

E-mail address : sal@dcs.st-and.ac.uk

