
Department of Computer Science,
University of Otago

Technical Report OUCS-2005-09

Implementation of a model of the relation between language

and sensorimotor cognition

Authors:

Maarten van der Veen, Jeroen van Dijk
Department of Computer Science, University of Otago

Status: Report for a project by two visiting students from the University
of Groningen

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.html

Implementation of a model of the relation between language

and sensorimotor cognition

M. van der Veen J. van Dijk

June 17, 2005

Contents

1 Introduction 4

2 A model of the relationship between language and sensorimotor cognition 6
2.1 Preliminaries: Elman networks for sequence learning 6
2.2 Knott’s sensorimotor model of action processing, episodic memory and rein-

forcement learning . 8
2.2.1 Decomposition of event perception into sub-processes 8
2.2.2 Deictic representations . 9
2.2.3 Event perception . 9
2.2.4 Architecture for sensorimotor control 10
2.2.5 Episodic memory . 11
2.2.6 The model of episodic memory: experience mode and recall mode . . 12
2.2.7 Learning the decision function: rewind mode 13

2.3 A model of sentence syntax: Chomsky’s Minimalism 14
2.3.1 Universal grammar . 15
2.3.2 Building blocks of Minimalism . 16
2.3.3 The structure of the logical form of a sentence 17
2.3.4 Mapping of LF to PF . 19

2.4 Knott’s sensorimotor interpretation of LF . 22
2.5 A model for mapping the sensorimotor sequence to a word sequence 24

2.5.1 Elman networks for sequencing words 24
2.5.2 Adding semantics to an Elman network 25
2.5.3 The word-sequencing model . 26

3 Implementation and evaluation 30
3.1 Preliminaries: Catastrophic interference . 30
3.2 Implementation of the sensorimotor model . 32

3.2.1 Training data . 32
3.2.2 Experience mode . 35
3.2.3 Rewind mode . 36
3.2.4 Decision function . 37
3.2.5 Sensorimotor function . 38
3.2.6 Experiments and Results . 39
3.2.7 Conclusions . 44

3.3 Implementation: the word-sequencing model 45
3.3.1 Word mapping . 45

2

3.3.2 Predicting sentences . 46
3.3.3 Conclusions . 49

4 Conclusion and Future Work 50

A Training patterns for the decision function 52

3

Chapter 1

Introduction

This report is about the relation between natural language and sensorimotor cognition. While
traditionally there has not been much collaborative effort between linguists and cognitive
scientists to search for a relationship between language and sensorimotor cognition, this issue
has recently been tackled by a number of researchers (Feldman, Lakoff, Bailey, Narayanan,
Regier & Stolcke, 1996; Siskind, 1995; Rizzolatti & Arbib, 1998; Givón, 2002; Corballis, 2002;
Hurford, 2003; Dominey, Hoen, Blanc & Lelekov-Boissard, 2003; Knott, 2005). Some of these
researches have worked on solving the L0 task ’a touchstone for cognitive science’, which was
introduced by (Feldman et al., 1996). The L0 task is to build a system that simulates the
task of a child learning a language: it has to take pairs of (a) video of an action or state and
(b) sentence describing the action/state, and learn to generate new sentences given new video
inputs.

Research on this topic is uncovering interesting evidence that suggests there is overlap
between theories of language and theories of sensorimotor cognition and that we may find
some possible answers to questions like: the origin of universal grammar, by considering it’s
relation to sensorimotor capabilities.

The general hypothesis in many of the above works is that the human capacity to use
natural language has emerged from prelinguistic sensorimotor capacities. The specific hy-
pothesis which we will consider in this project is one proposed by (Knott, 2005) that when a
human agent observes a concrete physical event (for instance, a man picking up a cup), that
the syntactic structure of the sentence he uses to describe this event can be understood as
a trace of the sensorimotor processes via which the information is acquired. These sensori-
motor events happen in several fairly independent neural pathways; for instance, a pathway
which works out what are salient points in the environment to attend to, a pathway which
categorises objects which are attended to, and a pathway which categorises actions which are
observed. In Knott’s model of action recognition and action execution, the main suggestion
is that events in these separate pathways happen in a characteristic sequence, and that the
cognitive representation of an event is thus a sequence of sensorimotor activations in different
areas of the brain. The hypothesis is that these sequences are encoded in episodic mem-
ory representations, and these memory representations map onto the syntactic structure of
sentences.

The goal of this research is to develop two neural networks: one which implements a model
of episodic memory for sensorimotor sequences, and one which maps sensorimotor sequences
onto the surface structure of sentences. The first network will take as input the sequence of

4

sensorimotor activations which occurs when an agent observes one simple physical event, such
as ”the man grabs a cup”, and will learn to reproduce this sequence when given a contextually
appropriate cue. The second network takes pairs of sensorimotor sequences and sentences,
and learns to generate the appropriate sentence for new sensorimotor sequences.

For each network, there were four things to do: first to read and understand Knott’s
model and the relevant background literature, second to design a concrete neural network to
implement the model, third to produce the implementation itself, and finally to evaluate the
implementation and the plausibility of the model. The design phase often involved suggesting
changes to or additional specifications for Knott’s original model.

The understanding, revision, implementation and evaluating of the sensorimotor model
has been done by M. van der Veen. The understanding of Knott’s syntactic framework, and
the construction and evaluation of a sentence generation model has been done by J. van Dijk.

In this report we start by giving an overview of the model proposed by Knott in Chapter 2.
This includes an introduction to both the sensorimotor model and the syntactic model and
includes the changes made to the original models. In Chapter 3 the implementation of the
different parts of both the sensorimotor model and the syntactic model is discussed. Exper-
iments and results for both models will also be discussed in this chapter. Finally we draw
conclusions about the models and evaluate to what extent it offers an explanation for the
relationship between natural language and sensorimotor cognition in Chapter 4. We present
some ideas for future work in Chapter 4.

5

Chapter 2

A model of the relationship
between language and sensorimotor
cognition

This chapter introduces a model of the relationship between language and sensorimotor cog-
nition proposed by Knott (2005). The model that is developed has two parts: a sensorimotor
model of action processing and episodic memory, which is discussed in Section 2.2, and a
model of sentence syntax, discussed in Section 2.5. Both these models use the basic Elman
network architecture. An overview of the general idea behind this type of network is given
in Section 2.1 to give the reader a better understanding of the model under discussion. The
model of sentence syntax is based on Chomskyan Minimalism, which is discussed in sec-
tion 2.3. An interpretation of how the sensorimotor model and sentence syntax model relate
is given in 2.4.

2.1 Preliminaries: Elman networks for sequence learning

Both in word sequencing and sensorimotor sequencing tasks, it is necessary to learn a se-
quence of items. To learn a sequence, one common neural network architecture is an Elman
recurrent network (Elman, 1990). Elman networks are normal multiple feedforward neural
networks extended with a context layer. Elman networks have the specific ability to en-
code sequences because the context in which an input item is presented to the network is
remembered by copying the hidden layer to the context layer; see Figure 2.1.

For an Elman network to learn a sequence, it uses the current item as an input and
the next item as a target for the output of the network. After the network has learned a
sequence, or multiple sequences, it is able to predict the next item in the sequence when given
the current item and context. This is why such a network can be refered to as a next-state
function.

Elman networks can not only be used for remembering sequences, but also for recognizing
sequences. (Elman, 1990) points out that it is possible to use an Elman network to remem-
ber multiple sequences and predict with increasing probability the items in each sequence.
Because the first item in each sequence is never preceded by the same item structurally, the
probability of it being predicted correctly corresponds to one divided by the number of dif-
ferent items in the first position of all training sequences. However, the second item in each

6

Hidden

Copy

Fully ConnectedFully Connected

Fully Connected

Current item Context

Next item

Figure 2.1: Simple Elman Network

sequence is more often preceded by these first items than by any other item. The third item
in the sequence is even more often preceded by these first two items than by other items. As
the sequences get longer, the probability that the same items precede an item further down
the sequence decreases. Thus, the network can predict the items further down the sequence
with more accuracy than the first items in the sequence. The more unique a sequence is,
the more accurate an Elman network can predict its items. The following steps show how an
Elman network learns a sequence:

1. Initialize context layer with random weights

2. Present item A to current item layer

3. Calculate network output at the next item layer

4. Compare predicted next item with target item B and
backpropagate the error

5. Copy new context from hidden layer to context layer

6. Start again at 2, but present B to the current item
layer, with C as target value

7. Stop training when the error over all items is sufficiently small

In Figure 2.2 dotted lines show which weights are being updated when backpropagating
the error between the predicted next item and the target item. For a more detailed description
on Elman Networks, see Elman (1990). However, there are a few important points worth
noting here.

Weight initialisation When presenting the first item in a sequence there is no sensible
context to use, since the context represents the previous items in the sequence. Thus, the
context layer is initialized with random values in the range [-1,1]. This random initialization
is important to prevent a bias in learning.

7

Hidden

Error

Copy

Target item

Next item

Current item Context

Figure 2.2: Backpropagation in a simple Elman Network

Update function It is important, for the outcome of a cycle, to visit the neurons in a
network in a specific order. In an Elman Network a pattern is propagated from the input
to the hidden layer and then to the output layer. After this the context layer is updated by
copying the hidden layer to the context layer.

Learning algorithm The weights from the hidden layer to the context layer are fixed. The
weights are set to 1.0 and are not changed by the learning algorithm. This is a neural network
equivalent of a ‘copy’ operation. Since the weights from the hidden layer to the context layer
are fixed, the network can be seen as a normal feedforward network. That is why it is safe to
train the network with a normal error backpropagation algorithm.

2.2 Knott’s sensorimotor model of action processing, episodic
memory and reinforcement learning

In this section we review Knott’s argument that a transitive action is cognitively encoded
as a sequence of attentional operations, in which agent, patient and action are defined as
operations occurring in characteristic serial positions.

In Sections 2.2.1 and 2.2.2, evidence is presented for a decomposition of events into sub-
processes and saccadic eye movements as an explanation of how different processes in the
brain use the same information. In Section 2.2.3, event perception is elaborated by stepping
through an example of the perception of an event. Finally, in Sections 2.2.4 to 2.2.7, we look
at the different parts of the suggested model and how they can account for the steps in event
perception.

2.2.1 Decomposition of event perception into sub-processes

Knott (2005) develops a sensorimotor model in which the visual perception of an event in
the world invokes several relatively separate sub-processes. This idea is motivated from the
well accepted hypothesis that the brain’s visual processing is organized in separate pathways
(see e.g. Milner & Goodale, 1995). Each of these pathways extracts different information

8

from the visual input. Among others, one pathway categorises objects according to their
static form (Riesenhuber & Poggio, 1999), another delivers representations about the motor
affordances of objects (Fagg & Arbib, 1998; Rizzolatti, Fogassi & Gallese, 2000), another
delivers objects and actions derived from motion information (Johansson, 1973) and another
delivers information about the most salient objects in the scene (Itti & Koch, n.d.).

2.2.2 Deictic representations

There is also evidence for a temporal decomposition of perceptual processes. Humans perceive
the world via a sequence of separate snapshots, each resulting from a separate eye fixation
(Ballard, 1991). The eye moves from one position to another in a fast ballistic motion called
a saccade. There are roughly three saccades every second for the human eye. Each snapshot
delivers deictic representation -i.e. a transitory representation of what the eye is currently
looking at. Each visual pathway can compute its own deictic representation to encode e.g. the
template, motor affordances of, or action associated with, the currently attended to object.

The notion of deictic representations suggest that cognitive processing proceeds by iter-
atively executing an action of attention and interpreting its results. Two examples of this
process are given below.

Object categorization

(2.1) (i) The agent performs a saccade to an object

(ii) The agent categorizes the object it is looking at

Grasp action

(2.2) (i) The agent performs a saccade to an object

(ii) The agent grasps the object it is looking at

In each case, the second action invokes a deictic representation which gets its meaning
from the immediately preceding direction of attention. We cannot understand what is going
on until we look at a sequence of operations; first a direction of attention, and then some other
operation. If the next direction of attention can itself be a function of the current sensory
state, we end up with a picture where complex cognitive operations have a strong sequential
structure. Such a sequence of deictic representations is a deictic routine (Ballard, Hayhoe,
Pook & Rao, 1997).

2.2.3 Event perception

Knott’s suggestion is that event perception can be decomposed into a strict sequence of deictic
operations, which constitute a deictic routine (Knott, 2005). To give an example of such a
deictic routine, consider the perception of the transitive event: ‘I grab a cup’.

At stage 1, the observer is in an attentional state where objects in the world, including
the observer himself, compete for the observer’s attention.

At stage 2, the observer selects an object to attend to, by considering both the bottom-
up availability of objects in the world and the top-down preferences derived from its current
desires. In our example, the observer selects himself. This initial attented to object will end
up being the agent of the action.

9

At stage 3, the observer creates a new attentional environment, now centred on the
attended-to-object (in this case his own body). This biases attention to objects which are
close to the agent, and within reach (Tipper, Lortie & Bylis, 1992). In this new environment,
these objects compete for the observer’s attention.

At stage 4, the observer selects one of these objects to attend to, in our example a cup.
This object will end up being the patient of the action.

At stage 5, the observer is in an attentional state where several possible alternative
actions on the cup are represented, and compete for selection. These actions are represented
as motor goals - goals to get the hand / arm into some positions in relation to the cup.

At stage 6, one of these motor actions is selected. In our example, ”grab”. This triggers
a physical motion. As a side effect of the changes in the agent’s motor state during the
execution of the action, the observer once more attends to the agent (in this case the observer
himself) via the biological motion pathway: when we observe an agent perform an action, we
cannot help establishing the agent as an object at the same time (Giese, 2000).

At stage 7, tracking of the agent’s motor action is finished when the agent successfully
reaches its goal motor state. In this case, when the agent is holding the cup. While executing
this motor action, the agent re-attends to the target object, in this case the cup (Jeannerod,
1996).

In stages 2 and 4 the observer selects an attentional action. In stage 6 the observer selects
a goal motor state. This selection process is performed by a combination of two separate sub-
processes: a decision function, which provides a top-down bias, and the sensorimotor
system, which provides a bottom-up interaction with the world. Both these processes are
explained in the next paragraph.

2.2.4 Architecture for sensorimotor control

We can model the process which transits from one stage to the next in the above sequence as a
function, whose input is a deictic representation (which we will call the ”current sensorimotor
state”) and whose output is firstly an attentional operation and secondly a new sensorimotor
state.

The decision function is a sub-process that uses the current sensorimotor state (which
comprizes the currently active object template and the currently active motor state) to decide
on the next action. This action can be either an attentional action or a motor action, or both.
We will use the term deictic operation to refer to both kinds of actions. In the case of an
attentional action this deictic operation is a top-down bias on the visual system to look for
objects with certain low-level visual features (Treisman & Gelade, 1980). In the case of a
motor action this deictic operation is a motor goal state to activate. The decision function
chooses a deictic operation which is most likely to get the observer into a state which has
benefits for the observer (which we will call a reward state). To be able to perform this
task, the decision function has to be trained. How this training operates is explained in
Section 2.2.7.

The sensorimotor function models certain aspects of the sensorimotor system as em-
bedded in a real world context. It receives a deictic operation from the decision function1.
Since the agent operates in an environment which does not necessarily conform perfectly to

1In Knott’s original model, the decision function was directly connected to the hidden layer of the episodic
memory, this has been changed since the episodic memory would then learn not to consider the context and
only use the decision function output to produce the next remembered state.

10

the observer’s desires, an object or motor goal state with these preferred features cannot
always be selected. This selection process is one of the functions of the sensorimotor function.

The sensorimotor function chooses an object template and motor goal state to activate2.
This selection is dependent on both the bottom-up preferred features from the deictic opera-
tion and the features of the actual objects in the world. The mapping from deictic operation
onto object templates is done by comparing these features. The template that shares the most
features with the bottom-up preferred features is chosen. It is not necessary that an object
exists in the world which shares all the features with the deictic operation. If no such object
exists, the object which shares most of the features is chosen. The sensorimotor function will
then determine what object to attend to, or what action to execute.

There is also the matter of exploration versus exploitation. When the decision func-
tion is untrained, the observer should explore the world and find the reward states in that
world. If the observer starts exploiting previously learned sequences too soon, he will not
be able to find most or all reward states possible. The sensorimotor function handles this
problem in two separate ways. First, the observer is less sensitive to the decision function’s
advice in the early stages of learning. Second, there is the notion of inhibition of return.
When the observer has attended to a certain object and executed an action on this object,
the object is inhibited so as to make sure it is not attended to again in the near future. Inhi-
bition of return also makes sure that the observer chooses different actions when the decision
function has learned all sequences.

The object template and motor state which are output of the episodic memory have
to be mapped onto deictic operations, in order to train the decision function. The feature
decomposition function maps object templates and motor states back onto deictic operations.
See Section 2.2.7 to learn how this functionality is used in practice

2.2.5 Episodic memory

In Knott’s model, episodic memories of sensorimotor sequences play a crucial role. Why
is episodic memory considered to be a part of the proposed model? The goal is to link the
syntactic structure of a sentence to the sensorimotor system of humans. But, sentence creation
and event perception are not parallel processes; a sentence is not necessarily pronounced while
perceiving the action. Rather, the sentence describing an event can be formulated long after
the event was perceived. The hypothesis is thus that the syntactic structure of a sentence can
be seen as a trace of an episodic memory operation which rehearses or simulates the original
sensorimotor experience (see also Bergen & Chang, 2003).

In Knott’s model, when an event is perceived, the sequence of activated object templates
and motor goal states is stored in episodic memory. When this event is recalled, the sequence
in which the objects and actions were originally perceived is reactivated. It is this reactivation
of the sequence, rather than the original sequence, which is linked to sentence creation. For
a more detailed description of the link between the episodic memory and sentence structure,
see Section 2.4.

In Knott’s model, the episodic memory is implemented as an Elman style recurrent net-
work. The basic architecture of Elman Networks was discussed in Chapter 2.1 since it is basis
of both the sensorimotor model and the word sequencing model discussed later.

2Knott’s original model did not make a distinction between deictic operations and object templates / motor
goal states.

11

2.2.6 The model of episodic memory: experience mode and recall mode

The model has three modes. In experience mode mode the observer stores new events in
episodic memory when object templates and motor states are activated by the sensorimotor
function. In recall mode, the observer recalls an event by replaying the sequence of object
templates and motor states stored in episodic memory. In rewind mode, the decision
function is trained to produce sequences which are more likely to lead to reward states. The
first two will be discussed in this section, the latter is discussed in Section 2.2.7.

The model consists of three sub-processes, all discussed earlier: the decision function and
sensorimotor function to determine what object the agent will attend to or what action he will
execute and the episodic memory to remember in what sequence these events were perceived.
The episodic memory model is an Elman Network. See Figure 2.3 for how these sub-processes
are connected in both experience mode and recall mode.

Hidden

Context

Function
Decision

Experience mode

Targets
Function

Sensorimotor

Deictic operation

Environment

templateObject
Current

templateObject
Next

Hidden

Context

Recall mode

Copy

templateObject
Current

templateObject
Next

Current
Motor State

Next
Motor State

Next
Motor State

Current
Motor State

Figure 2.3: Experience mode and Recall mode

In experience mode, assume that the observer has no previous memories. An object
in the world catches the attention of the observer and the object template is activated by
the sensorimotor system3. The observer’s attentional context now changes. This perceptual
event has to be remembered, so the episodic memory is trained to predict this object from
the initial context and object, which are both random since the observer had no previous
memories. The decision function now chooses a preferred next deictic operation on the basis
of this new context and activated object template. The sensorimotor function interacts with
the world to see if an object with the features of this deictic operation exists. If so, this
results in a new object template being activated. If a motor goal state is present in the

3The sensorimotor function has been added to Knott’s original model to account for the mapping of deictic
operations onto templates and motor states.

12

deictic operation, the motor action is executed. The episodic memory now stores the new
object template and motor state and the whole process is repeated.

In recall mode, an event has to be remembered. Assume that a series of events is stored
in episodic memory. The observer activates the sequence of events by triggering the network
with an initial context, object template and motor state. The episodic memory will then give
the next template that was activated. This predicted template is made the current template
at the next iteration of the network. The hidden layer is copied to the context layer at the
next iteration, and the network then predicts the next item in the sequence. This way, the
whole sequence of events can be recalled.

2.2.7 Learning the decision function: rewind mode

The agent’s intrinsic goal is to execute motor actions and attentional actions in such an order
that it leads to a reward state. An example of a successful sequence of these actions is shown
in Table 2.1. In this case, the reward state is the observer holding the cup.

{attend to oneself, attend to cup, cup-grasp}

Table 2.1: Sequences of deictic operations that lead to a reward

Attentional actions by themselves do not lead to reward states. Neither do motor actions
without the proper prior attentional actions lead to a reward state, because the agent will
not successfully perform the action on an object. However, the right sequence of attentional
actions and motor goal states can lead to a reward state. In the example shown in Table 2.1,
the attentional action to the cup generates the proper motor goal state for a cup-grasp action,
which is centered on the observer because of the first attentional action on the observer himself.

When the decision function is untrained it will generate random deictic operations, that
do not necessarily move the agent closer to a reward state. But when a specific sequence of
actions does happen to result in a reward state, the agent wants to train the decision function
in order to generate similar sequences in the future. The decision function thus not only
has to learn to generate the deictic operation that resulted in the reward state, but also the
previous deictic operations that resulted in the activations of the previous object templates
and motor states. That is why the model moves into rewind mode to train the decision
function on the whole sequence. To be able to remember sequences and predict next deictic
operations that are more likely to result in a reward state, we use an Elman Network. See
Figure 2.4 for the connection of sub-processes in rewind mode.

Once a deictic operation from the decision function leads to a reward state, the episodic
memory is used to retrieve the previous object templates and motor states which the senso-
rimotor function has activated. By rewinding through the episodic memory the network sets
itself to the beginning of the sequence.

The decision function has to learn each next item in the sequence from the current item.
The first item is presented to the decision function. At the same time, the episodic memory
generates the next item, which is then used as a target for the decision function. Next, the
next item is copied to the current item, and the new context to the context layer. This way
the episodic memory forwards through the items of the sequence and passes each current item
and predicted next item to the decision function, which can now learn the whole sequence4.

4Knott’s original model used a delay function to retrieve the next state, but since the episodic memory has

13

Hidden

Context

templateObject
Current

templateObject
Next

Motor State

Next
Motor State

Current

Copy

Feature

Decomposition

Function

Function

Feature

Decomposition

Function
Decision

Targets
Templates

Current
Templates

Current
Deictic operation

Target
Deictic operation

Copy

Figure 2.4: Rewind mode network

Figure 2.5 shows how the decision function learns a sequence. The decision function learns
to generate sequences of deictic operations, not of object templates. The object templates
are thus decomposed into features by a new function called the feature decomposition
function. The best target deictic operation that can be used to learn the decision function
is a deictic operation which shares all the features with the rewarded object template and
motor state. This way it will be more likely that the correct object template and motor state
are actually activated by the sensorimotor function when the decision function chooses that
deictic operation.

After the reinforcement process is finished, the agent goes into experience mode again
until another reward state is reached. After encountering several reward states, the agent is
now able to perform the right action on a certain object in order to reach a reward state.

2.3 A model of sentence syntax: Chomsky’s Minimalism

We now have a sensorimotor model. The next stage is to outline a model of natural language
syntax, so that we can begin to consider possible ways of mapping between sensorimotor
sequences and syntactic representations.

There are several theories of language which can be used. For example, unification-based
grammars, used by computational linguists (e.g. HPSG (Pollard & Sag, 1994)) or construc-
tion grammar used by many psycholinguists and developmental linguists (which focuses on
how language is learned using general-purpose learning mechanisms (Goldberg, 1995)). The
theory which Knott uses is Minimalism (Chomsky, 1995), the successor to Government-

learned the next states, we use the episodic memory to get the next object template and motor state in the
sequence.

14

Current
Motor Goal StateAttentional operation

Current

Hidden

Context

Copy

Motor Goal StateAttentional operation
NextNext

Motor Goal StateAttentional operation
Predicted Predicted

Error

Target

Figure 2.5: Decision function

and-Binding (GB) theory (Chomsky, 1981). The goal of this theory is to express the
relationship between the logical form (LF) and the phonological structure (PF) of a
sentence. Minimalism argues that an adequate linguistic model of sentences requires their
analysis not only at a surface level, but at an underlying level at which many of the surface
differences between languages disappear as well. This make Minimalism a good candidate for
characterisation in sensorimotor terms.

The hypothesis of Knott (2005) is that the structure of any transitive sentence is grounded
in the sensorimotor memory architecture described in the previous section. This hypothesis
makes a strong assumption about universal grammar: if we assume (as seems plausible) that
all humans have the same sensorimotor algorithm regardless of what language they speak,
then the linguistic structure of a transitive sentence in any language must be the same at
some level of abstraction. The suggestion in Minimalism, that the syntactic representation of
sentences in different languages is the same at some underlying level, is clearly consistent with
this idea, and therefore Minimalism is the right kind of framework to explore. In the following
sections this theory will be elaborated more to illustrate the arguments for the hypothesis.
All the information about Minimalism in the next sections if not cited otherwise comes from
Knott (2005) (an overview) and Radford (1997) (detailed).

2.3.1 Universal grammar

In Minimalism it is assumed that people possess a Universal Grammar (UG), which is
basically a facility for learning the kind of languages that humans speak. An important
argument for this is that children in principle are able to learn any language as their native
language. For example, Dutch orphan babies brought up by English-speaking foster parents
in an English-speaking community will acquire English as their first language. Moreover,
children are able to learn a language in a short amount of time more easily than you would
expect if language learning would be just a general learning ability. Another example is

15

XP

X’

X YP

[Spec, XP]

Figure 2.6: The X-bar schema

given by (Baker, 1979), referred to as Baker’s paradox (Gropen, 1989): children are able to
generalize verbs and nouns in novel frames. Instead of the generalization on irregular verbs
(e.g. ”doed” instead of ”did” and ”drinked” instead of ”drank”) children are able to recover
from this overgeneralization. This behaviour could be explained by saying that children
gradually learn to constrain the generalization because of negative evidence of their parents.
However, parents and adults in general do not give negative evidence that is detailed enough
for children to avoid overgeneralization, and so it remains unclear how children learn the
constraints. From these observations it is argued that there must be a language faculty which
provides a set of principles of Universal Grammar so that children are able to learn any
natural language if enough linguistic experience in that specific language is provided. This
experience should contain examples of words, phrases and sentences in this language produced
by native speakers. Therefore, an important feature of a theory of language is learnability.
The UG theory developed by Chomsky (1995) accounts for a rapid grammatical development.
This theory will be used in the next sections. In the next paragraph we will introduce the
basic structure of Minimalism.

2.3.2 Building blocks of Minimalism

Minimalism uses X-bar schema’s as the basic building block in syntactic representations.
The X-bar theory is introduced by Jackendoff (1977) and is still used as a basic element of most
theories of grammar. This is because it is one of the most stable components of generative
grammar, actually of all theories of grammar. The main idea is that at a certain level of
abstraction all phrases have the same structure. The central element is its head. This head
creates a grammatical constituent, called a phrase, which has certain standard slots which
can be filled by other elements. The basic examples: a noun projects a noun phrase (NP), a
verb projects a verb phrase (VP), a preposition projects a prepositional phrase (PP).

The X-bar schema is given in Figure 2.6. X is the head of the phrase. This can be a lexical
head - an open-class lexical item - such as a noun, verb or adjective, or it can be a closed-class
item, such as a preposition or an inflection. In Figure 2.6 the complement of X is labelled
’YP’. This is intended to stand for ’any maximal projection’, as XP does. Hence, the X-bar
schema is recursive: one maximal projection has slots in it which are to be filled by other
maximal projections. The relationship between two X-bar schema’s is given in Figure 2.7.
The X-bar schema is the building block for the hypothesis of Knott.

16

X1P

X1’

X1 Y1P

[Spec, X2P]

binding
Recursive
application

Top
application

[Spec, X1P]

X2P

X2’

Y2PX2

Figure 2.7: recursive application of the X-bar schema

2.3.3 The structure of the logical form of a sentence

In the introduction of this section the term logical form (LF) of a sentence was mentioned
briefly. To put it simply, the LF is the ’underlying’ representation of a sentence, which
abstracts away from the surface differences in word order between different languages. It is
supposed to be the syntactic representation which ’interfaces’ with semantics. In Minimalism
sentences are described by trees, built up by X-bar schema’s. An example of the LF in English
of the sentence A man grabbed the cup is given in Figure 2.8.

Note that the tree is built from recursive X-bar schema’s. In the figure are also a few
terms which we have not seen before and need some more explanation. (We will not go into
this deeply, however the following ideas are all well-established in the syntactic literature.)

First, on top of the tree there is an element IP. This stands for inflection phrase, the GB
term for ’sentence’. The whole clause is seen as a projection of the inflection of its main verb,
which is termed I. In Minimalist syntax a verb (V) appears at a separate point in a syntactic
tree from its inflection. The left-hand daughter of IP (Spec, IP) is associated with the subject
of the sentence.

Second, noun phrases are relabelled as DPs or determiner phrases. Abney (1987)
argued that determiners should be the heads of the phrases which plug into the subject and
object positions in a sentence structure. Following an argument by Koopman & Sportiche
(1991), the subject DP appears in two positions; it originates at [Spec, VP], and raises to
[Spec, IP] as shown by the dotted arrows.

Third, there is an extra XP intervening between IP and VP called AgrP (or agreement
phrase). This projection was originally suggested by Pollock (1989). Later, Chomsky (1995)
proposed that the object DP should also appear in two positions: first as the complement of
V, and second as [Spec, AgrP].

A key idea in Minimalism is that movement of constituents is invoked at LF. The top
diagram in Figure 2.8 shows LF after this movement, and the lower diagram shows LF before
movement has taken place. The suggestion is, for instance, that the subject the man is
originally generated at the specifier of VP, but for various reasons has to move to the specifier

17

Spec(=DP)
the man

IP

I’

AgrP

Agr’

VP

V’

DPV

Spec(=DP)

Agr

Spec(=DP)
a cup

grabbed
I

Spec(=DP)

IP

I’

AgrP

Agr’

VP

V’

DPV

Spec(=DP)

Agr

Spec(=DP)

I

a cupgrabbed

the man

Before

After

Figure 2.8: The logical form (LF) of the man grabbed a cup after movement and before
movement

18

of IP. The object undergoes a similar kind of movement. The verb undergoes a different kind
of movement, not to a specifier position, but successively to the heads of AgrP and IP, i.e.
Agr and I. In fact, the verb is not always subject to movement. In finite sentences, it moves
as shown, and picks up the verb inflection at Agr and I, in non-finite sentences, it remains at
V, and hence is uninflected. Movements will be discussed further in Section 2.3.4.

We will discuss some of these features elsewhere in this report. At this moment it is only
important to have a notion of the representation of a sentence in Minimalism. In the next
section we will talk more about movements of constituents.

2.3.4 Mapping of LF to PF

In the last section we have introduced the LF. In this section, the phonological structure
(PF) of a sentence will be introduced by some examples. It is well known that languages
differ from one another, not only in their vocabulary, but also in their syntactic structure.
In particular, different languages have different word orderings. However, there are groups
of languages which have similar word or phrase ordering, and these have been extensively
studied (see e.g. Greenberg, 1963). The following sentences illustrate all the possible orderings
in natural languages.

(2.3)

Subject - Object - Verb (SOV)
John ga hon o yonde-iru. (Japanese)
John the book ACC read-Present
”John read a book”

(2.4)

Subject - Verb - Object (SVO)
Weiyo tau moru. (One)
Weiyo build house
”Weiyo build a house.”

(2.5)

Verb - Object - Subject (VOS)
No-sai te kolikoli na La Udi. (Tukang Besi)
make canoe NOM Mr Udin
”Udin’s making a canoe.”

(2.6)

Verb - Subject - Object (VSO)
Lladdodd y dyn y ddraig. (Welsh)
killed the man the dragon
”The man killed the dragon.”

(2.7)

Object - Verb - Subject (OVS)
Kaikuxi etapa-ã toto. (Apaláı)
jaguar kill-TENSE they
”They killed a jaguar.”

(2.8)

Object - Subject - Verb
Manaiin Subih a-wa. (Nadëb)
cara Subih eat
”Subih is eating cara.”

19

The most common orderings are from the first examples, the Subject-Verb-Object (SVO)
order (e.g. English, Dutch) and the Subject-Object-Verb (SOV) (e.g. Korean, Japanese)
order. Minimalism claims that these different orderings are caused by a difference in the
derivation from the underlying structure to the PF. Minimalism calls this derivation ’spell-
out’. In figure 2.9 this generative mechanism is shown schematically.

movement
operations

OvertPhrase
formation
operations

movement
operations

Covert Logical form (LF)

Phonological form (PF)

Spell−out

Figure 2.9: derivation in Minimalist syntax

In Minimalism the generative mechanism begins with a series of phrase-formation oper-
ations which create the basic LF tree structure associated with a sentence. Then a series
of movement operations are executed on this basic structure, as was already mentioned. At
some point during these movement operations, the PF of the sentence is read off. Movement
operations which occur before this point are called overt, because they are reflected at PF.
Those occur afterwards are called covert, because PF does not reflect them.

The spell-out can also be explained by showing a sentence as an X-bar schema. Assume
that the tree shown in Figure 2.10 is the tree generated after a series of phrase-formation
operations. Note the numbered arrows: these are movements. These movements can occur
before or after spell-out. Minimalism says that the different word orders of different languages
are caused by these movements, because they can occur before or after spell-out as we have
described in the previous paragraph. For example, in English and One (see example 2.4) only
movement 1 occurs before spell-out, hence, this movement is overt. For the SOV-order as in
Japanese, the movements 1 and 2 are overt.

For non-linguists the figures of the syntactic structures we have seen so far might look
complicated. One might ask why the structure has to be so complex. Linguists argue that
a language model must explain all well-formed sentences in all languages; therefore a model
has to obey a high number of constraints, and hence a language model cannot be simple.
On the other hand, if we try to model brain functions nobody will argue against a high
complexity of this model. Recall that the hypothesis of Knott (2005) says that the language
faculty is grounded in the sensorimotor apparatus. If this hypothesis is correct it means that
linguistics are actually modelling parts of the sensorimotor apparatus. This could explain why
a syntactic model is so complex. In the next section we will talk more about this relationship.

20

Spec(=DP)

IP

I’

AgrP

Agr’

VP

V’

DPV

Spec(=DP)

Agr

Spec(=DP)

I

1

2

3

4

grabbed a cup

the man

Figure 2.10: The possible movements after phrase-formations operations

21

2.4 Knott’s sensorimotor interpretation of LF

In this section Knott’s hypothesis about the relationship between sensorimotor and syntacti-
cal representations will be outlined. We will discuss his idea of the relation between the model
of sensorimotor learning and memory (Section 2.2), and the model of natural language syntax
from the previous section. The ideas we are talking about in this section are all adopted from
Knott (2005). To begin with, we introduce Knott’s general proposal:

Principle 1 The LF of a sentence describing an eventuality encodes the structure
of the episodic memory representation of the sensorimotor process via which this
eventuality was witnessed.

The idea is that the structure of the sensorimotor sequence has overlap with the struc-
ture linguists have given to a sentence at LF. In other words, Knott believes that the LF of a
sentence is an encoding of the sensorimotor sequence. Knott’s specific proposal is given below:

Principle 2 An application of the X-bar schema in LF can be understood as a
description of the processing that occurs at a single time point in the execution of
the episodic memory network.

- XP denotes the current sensory state/context;

- YP denotes the next sensory state/context;

- X denotes an application of the decision function, whose input is the current
state/context and whose output is a deictic operation;

- [Spec, XP] the next object template generated during the current iteration of
the episodic memory network.

This principle states an overlap between a syntactic structure (an LF X-bar schema) and
a sensorimotor structure (the sensorimotor model). In Figure 2.11 this principle is given
graphically. Recall that an X-bar schema is recursive (see Figure 2.7). Every time point of
the sensorimotor sequence can be understood as an encoding of a single X-bar schema. An
X-bar schema application is taken to be a description of what happens at one time point in
the sensorimotor model; in other words, it links the current state to the next state.

Knott applies this principle to a whole clause. For example, the transitive sentence The
man grabbed a cup is a right-branching structure of X-bar schema’s. According to Principle
2, this can be understood as a description of a sequence of several iterations of the episodic
memory network. Recall, the seven stages of event perception discussed in Section 2.2.3. In
Figure 2.12 these stages are mapped onto the syntactic structure. The figure shows that the
order of the description at sensorimotor level is the similar to the order at syntactic level. In
particular, the DP-movement for the subject and the object is very much the same as the

22

[Spec, XP]

XP

X’

X YP

current context/state

next context/state

next−object

decision function

template

Figure 2.11: Reinterpretation of the X-bar schema (adapted from Knott (2005))

Stage 4b
top−down act
of attention

Stage 6b:
activation of

establishment
of a cup

Stage 4a:

top−down action
Stage 2b:

of attention

Stage 2a:
establishment
of the man

Stage 1:
initial context/state

Stage 5:
context/state of
having−attended−to−a−cup

Stage 7:

haptic−attention−to−the−cup
context/state of

context/state of
having−attended−to−the−man

Stage 3:

Stage 6a:
re−attention to the man
via motor state tracking

Spec(=DP)
the man

IP

I’

AgrP

Agr’

VP

V’

DPV

Spec(=DP)

Agr

Spec(=DP)
a cup

grabbed
I

’grab’ motor programme

Figure 2.12: Sensorimotor interpretation of the LF of The man grabbed a cup (adapted from
Knott (2005))

23

re-attention to the objects on sensorimotor level.
Verb movement can be associated with the rewind mode described in Section 2.2.7. Ex-

amples 2.9 and 2.10 are two examples of non-finite sentences.

(2.9) I want to grab a cup

(2.10) I can grab a cup

In these sentences the main verb grab does not move from V to Agr to I, but remains in
its current position I 5. Only finite sentences exhibit verb movement. Since finite sentences
describe actions, the sensorimotor model gives an explanation of what is happening. In rewind
mode only actual actions can lead to a reward. This rewinding of the model is associated
with the movements of a verb in a finite sentence. In non-finite sentences no actual action is
executed; there is no reward situation and thus no rewinding. Without rewind mode there
is no verb movement in the sentence. For this reason, Knott proposes that V -> Agr -> I
movement might be a reflex of rewind mode.

In summary, what we have seen so far is that the syntactic structure of Minimalism maps
nicely onto the idea of iterative sensorimotor operations. First, the general right-branching
X-bar structure of LF maps onto the idea that a transitive sentence is encoded as a sequence
of of actions of attention, as each phrase on the LF structure corresponds to an appropriate
operation of the sensorimotor sequence. Second, the idea that subject and object DPs are
each found in two locations as LF maps neatly onto the idea that the agent and patient are
each attended to at two points during the sensorimotor sequence.

In particular the multiple representation of the agent and the patient in the sensorimotor
sequence, which are also multiple represented in the X-bar schema as a DP for the subject and
a DP for the object. Second, both from the syntactic point of view as the sensorimotor point
of view is the observation that sequences make sense since in both models each state is bound
to the next one. Finally, Knott suggests that rewind mode gives a natural interpretation for
verb movement.

Now we have described Knott’s interpretation of the sensorimotor sequence of the LF. In
the next section we introduce a model for mapping the sensorimotor sequence onto surface
phonological structure.

2.5 A model for mapping the sensorimotor sequence to a word
sequence

Knott’s model expresses a relationship between the sensorimotor sequence and LF, but the
mapping from LF to PF still needs to be explained. In this section, we will describe this
mapping, and then propose a concrete model.

2.5.1 Elman networks for sequencing words

Humans never produce or receive a sentence as a whole; instead we attend to it step by step,
we produce one word at a time. Therefore, it is not biologically plausible to use a normal
feedforward network when making a language model. Instead, a network that can learn

5We will not describe why Minimalism argues there is no movement here.

24

sequences is needed. Elman (1990) described a network which is able to extract temporal
patterns from sequences (see Section 2.1 for a short introduction on Elman networks).

Elman (1990)’s original network was in fact designed to encode word sequences. Elman
used the network described in Section 2.1. The goal of the network was to predict the
next word given the current context. A generator program was used to create training data
consisting of short (two- and three-word) sentences. Thirteen different classes of nouns and
verbs were chosen. These nouns and verbs were put randomly into 15 sentence frames. This
way the generator created a data set of 10000 sentences. These sentences were concatenated.
Each word was presented as a binary vector. When trained, the network did not have an
impressive low error rate. However, the task is nondeterministic. Successors cannot be
predicted with absolute certainty; in the task is a built-in error which is inevitable. In spite
of this, any given word had only a limited number of successors. Suspecting that the network
did learn something useful, Elman inspected the internal representations of the hidden units.
Elman found that the network had developed internal representations for the input vectors
which reflected syntactic and semantics similarities for words, which were the factors which it
learned were responsible for facts about the possible ordering of the inputs. The network was
not able to make exact predictions about the word order, but it did recognized that different
words belong to different classes of inputs. This property of an Elman network will be used
in the model proposed in Section 2.5.3.

2.5.2 Adding semantics to an Elman network

Although Elman (1990) showed that Elman networks are useful when learning sequences, the
original Elman network has no treatment of semantics, it is just a device for predicting the
next word of a sentence, or at least, the type of the next word. It seems clear human syntactic
competence is not just an ability to predict word sequences statistically (Fodor & Pylyshyn,
1988; Marcus, 1998; Chang, 2002).

Chang (2002) presented a model, the so-called dual-path model that both had a semantic
representation of a sentence and additional input to an Elman-style word-prediction network.
Training data consisted of pairs of semantic representations and word sequences. When
trained, the network was able to take unseen semantic representations and create an appro-
priate sequence of words.

In Chang’s network, the message is stored in two pairs of connections between thematic
role units (agent, patient, verb) and the object/action representations (man, grab, cup).
Chang’s model (see figure 2.13) has two subsystems (pathways); the message-lexical system
and the sequencing system. The first subsystem is a feedforward network which has two
separate layers to represent respectively the thematic and the semantic contents of the message
(as weights). The second subsystem is a simple recurrent network with some extra inputs.
This network creates a message independent representation of the message content because
it has no access to the message. The message-lexical system and the sequencing system have
interactions via a connection from the hidden units of the sequencing system to the ”where”
units of the message-lexical system. The second interaction points are the word units. Here
the message-lexical system activates meaning related possibilities, and the sequencing system
activated syntactically-appropriate possibilities. In short, the dual-path model is biologically
plausible since it simulates the learn-curve of children (overgeneralization and overcoming
this overgeneralization without explicit reinforcement) and it’s able to explain the double
dissociation’s in aphasia. The model has a subsystem for representation of the semantics and

25

a subsystem for representations of the syntax. The model explains some linguistic puzzles
and has a natural explanation of how children avoid the Baker’s paradox; children are able
to overcome the overgeneralization without negative evidence from their parents.

word

compress
what

where

cwhere

hidden

cwhat
cwhere2

context

event−semantics
ccompress

cword
prod

comp

message−lexical system

sequencing system

Figure 2.13: The dual-pathway model (adopted from Chang (2002))

We will follow Chang in augmenting a word-sequencing Elman network with a repre-
sentation of semantics, and in providing training data consisting of pairs of word sequences
and semantic representations. However, our encoding for semantics is quite different from
Chang’s: for us, the semantics of a sentence is itself a sequence, rather than a static mapping
of concepts to thematic roles. The key task for the LF-to-PF mapping function, then, is to
map a sensorimotor sequence onto a sequence of words.

2.5.3 The word-sequencing model

We have now come to the part where a concrete model of the mapping between LF and
PF is proposed. In the previous sections we have outlined the problem and have mentioned
a few constrains the model must have. In Section 2.3 we have briefly described Baker’s
paradox. The model we will propose, ideally, will be able to explain the self-constraining
of overgeneralization on verbs. However, the focus is first to explain the different orderings
of languages as we have talked about in Section 2.3.4. We want to map a word sequence
onto a sensorimotor sequence from the model of episodic memory described in Section 2.2.
Figure 2.14 illustrates a simplification of this mapping. Note that stage 1, 3, 5 and 7 are not
mentioned in this figure, because these stages are binding the states and so are only implicitly
part of the sequence. Since children learn their language without negative evidence our goal
is to design a model that only uses positive evidence.

26

The model we need to build has to take as input a sensorimotor sequence of the states
generated by the episodic memory network, and produce as output a sequence of words. This
mapping is shown in Figure 2.14. In this figure we talk about gaps. These gaps represent

Subject
DP

(Spec, IP)

Stage
2a

Object
DP

DP

Stage
7

Verb
DP

V

Stage
6b

The man

Subject
DP

(Spec, VP)

Stage
6a

Object
DP

(Spec, AgrP)

Stage
4A

Object
agreement

Agr

Stage
4b

gap gap gap gap grabbed the cup

Subject
agreement

I	

Stage
2b

features features

Figure 2.14: The mapping of a sensorimotor sequence onto a word sequence in English

lexical items that are not visible in the word sequence. These gaps are necessary to explain
the difference in length between a sensorimotor sequence produced by the episodic memory
and a word sequence. In literature the first reference to gaps in sentences is from Lakoff
(1970).

The model we propose has too stages. In the first stage, the model will learn the mapping
between a random sensorimotor item and a word. This stage represents the stage of word
learning with children. The next stage is trying to produce complete sentences. At this stage,
the model has to learn in what context to actually propounce the word associated with a
sensorimotor item, as when to generate a gap.

The model is an extended Elman network as shown in Figure 2.15. The difference with
a normal Elman network is the extra input for the sensorimotor sequence. We expect the
model is able to link the different categories of the sensorimotor sequence to different states in
the network, so that the model can predict the next state. Recall the task in the experiment
of Elman (described in Section 2.5.1), this task was nondeterministic. However, our task is
deterministic. The sensorimotor sequence combined with the current context gives enough
information to know absolutely which word to predict. There is no built-in error as in the
task of Elman. We should expect that when the model is trained the error on a test set
which contains familiar words therefore tends to zero. During the first stage the model is
trained on random sensorimotor items. This stage can be seen as the stage when a child’s
parent looks at an object structure, and names it for the child. The model will learn the
relation between the sensorimotor items and words. It will ignore the context since that does
not yet deliver anything meaningful. The second stage is when the episodic memory model
is becoming better at its task. Sensorimotor items have a certain order at this stage. The
model will produce the same word mappings; however in this case the sensorimotor sequences
are descriptions of events in the world. Thus the sequence can be mapped on a correct
sentence. When producing the word sequences the model will now compare the prediction
with the desired word. If this is not correct the model will assume that it has to ignore6 this
sensorimotor item in the current context, and generate a new piece of training data for itself

6Ignoring a sensorimotor item is equivalent to predicting a gap.

27

Current word

Target word

Reinforcement
Positive

Previous word Context

Hidden

Copy

Current item of
sensorimotor sequence

Figure 2.15: The word-sequencing model

to reflect this fact. If it is correct, the model will also generate a new piece of training data
for itself, recording the context in which an explicit word is expected.

This procedure is summed up below:

1. Initialize the context.

2. Train the model to map a sensorimotor item on a word (there is no order in the training
sequence).

3. Try to predict the word when representing the sensorimotor sequence of a concrete
event.

4. If the prediction is correct add the prediction to the new training patterns.

5. If the prediction is wrong add a gap to the new training patterns.

6. Go back to step 2 until all sensorimotor sequences are seen.

7. Train on all the new training patterns in step 4 and 5.

The hypothesis is that for children this is the process where they are producing their first
sentences. Although not corrected by their parents or adults, they will see that they are not
understood very well when using the original mapping. Therefore, they have to adjust the first
learned rules about the word mapping so that they can use the current context as an extra
fact whether or not to ignore the current sensorimotor item. These rules are different for the
different language orderings (SVO, SOV, OVS, OSV, VOS and VSO). The model will simulate
this by training on new patterns created on-the-fly while predicting the words. After learning
the patterns the model should be able to predict the next word given the current sensorimotor

28

item. It must be able to learn different mappings between sensorimotor sequences and word
sequences, to reflect the fact that different languages have different constituents ordering. In
the implementation section we will describe this model in more detail.

29

Chapter 3

Implementation and evaluation

This chapter discusses the implementation of both the sensorimotor model (Section 3.2) and
the syntactic word sequencing model (Section 3.3). Since learning in both models involves
the learning of sequences, there is the problem of catastrophic interference to overcome. The
implications of this problem and possible solutions are addressed in Section 3.1.

As far as the implementation, we started by searching for a good neural network simulator
tool which could help us with building and evaluating different kinds of networks easily. Pack-
ages we looked at were: SNNS, JavaNNS, Lens and Interact. After experiencing disappointing
results with these tools, we decided to build the whole model by hand in the programming
language PHP. This programming language proved to be too slow to learn the networks in a
descent amount of time. That is why the final implementation of the networks and supporting
functions are written in Java.

3.1 Preliminaries: Catastrophic interference

To learn patterns sequentially in a feedforward network, one has to overcome the problem of
catastrophic interference. In short, when a pattern is presented to the network it approximates
the function between inputs and outputs and stores this as a set of weights in the hidden layer.
Once a second pattern is presented, the weight changes will override the function learned for
the previous pattern. The network will not be able to produce the correct output for the
previous pattern and has thus completely forgotten it. This is exactly what catastrophic
interference is.

One solution would be to train the network on both the new pattern and all the previous
patterns the network has seen so far. Unfortunately, in real world situations it is unlikely
that all these previous patterns are still available when the new pattern is being presented.

A solution proposed by Robins (1995) is to use pseudopatterns to simulate previous learned
data. Pseudopatterns are like normal patterns, but generated by the network to approximate
the function learned by the network. A pseudopattern thus consists of both an input and a
target value. A pseudopattern is created by using a random value as an input for the learned
network. The output of the network is stored as the target value for this random input value.
The generated pseudopatterns are then used together with the new pattern to learn the new
function which explains both the new and previous input patterns without the need of these
previous patterns when learning a new pattern.

In order to be able to build a model of episodic memory, the network must not only

30

be able to learn patterns sequentially, but must also learn multiple sequences. A sequence
can be learned by Elman networks. But Elman networks are also subject to catastrophic
interference when a new sequence overwrites the function learned for the previous sequence.
A model using pseudopatterns in Elman networks is proposed by Ans, Rousset, French &
Musca (2002). This network generates and uses pseudopatterns in the same way as the
standard feed-forward network discussed earlier.

Context layer

Output layer

Hidden layer

fully connectedfully connected

fully connected

Hidden layer

fully connected

copy

Context layer Input layer Input layer

fully connected

Target

copy

Output layer

fully connected

Random inputNew pattern

Learning network Generation Network

Figure 3.1: Coupled reverberating Elman Networks

Learning with pseudopatterns requires two parallel networks as shown in Figure 3.1. One
network to represent the learned function for all the previous patterns, which is called the
‘generation network’, and another network to learn the new pattern, called the ’learning’
network. The pseudopatterns are generated by the generation network and used, together
with the new input pattern as input for the learning network. Once the learning network has
learned these patterns the network needs to be copied to the generation network. This can
be achieved by using a new set of pseudopatterns, generated by the learning network, as an
input for the generation network.

Because of the possible implausibility of using dual networks, there are other solutions
to overcoming the catastrophic interference problem. One solution (Robins, 1997) is to use
two weights on a connection: one slow learning and one fast learning weight. This way the
network can prevent catastrophical forgetting with just a single network. Another single
network solution (Ans, 2004) is to use clamp states on input and output neurons, to switch
the network between a ’new pattern mode’ and a ’pattern generation mode’.

There are a few solutions to the problem of catastrophic forgetting. The two models that
will be discussed in the next sections, overcome this problem by training the new pattern in
combination with all the previous patterns. Any of the other solutions would have worked as
well, but would take longer to implement.

31

3.2 Implementation of the sensorimotor model

This section discusses the implementation of the model described in Section 2.2. First we look
at the training data and how it can be put in the right format to be used in this model. Next
we discuss both the experience mode and rewind model. The implementation of the recall
mode will not be discussed. We discuss the implementation of the last two sub-processes
of the model: the decision function and the sensorimotor function. Experiments on all the
different parts of the model show us in what sense the model is plausible and what problems
arise.

3.2.1 Training data

Assume the agent operates in a world as displayed in 3.2. The observer can attend to three

Cup

PlatePen

John

Mary

Agent

Figure 3.2: Simplified worldmodel

different objects in the world: a cup, a pen and a plate. There are also three agents in the
world the observer can attend to: John, Mary and the observer himself. The agent has an
action repertoire of four actions: raise arm, cup-grasp, plate-grasp and pen-grasp. Each of
these objects and actions are represented as a template. A template is a sensory state if it
concerns the perception of an agent or an object. A template is a motor state if it concerns
the perception or execution of an action. See Table 3.1 for an overview of the templates in
this world. The episodic memory is a neural network implementation which has to learn to
remember sequences of object templates and motor states. For a network to be able to learn
these templates, they have to be encoded into bytes. Table 3.2 shows a simplistic example
of this encoding. Object templates and motor states always go together. If the observer
perceives an object on which an action is executed, the next state of the model contains both
the object template and the motor state. On the other hand, if the observer perceives an
object on which no action is executed, the next state will be an object template and an empty
motor state.

A pair of an object template and a motor state is used by the decision function to choose
the next state. The decision function outputs a deictic operation, which contains two parts:
an attentional operation and a motor goal state. The attentional operation is presented as a
set of preferred features, which the visual system uses to find such an object. The motor goal
state is presented as a set of goal states for joints and muscles. In the current implementation,
the motor goal states are simplified. Table 3.3 shows the deictic operations for this world.

Deictic operations also have to be encoded in bytes for the decision function to be able
to produce them. Each byte stands for a specific feature. An example encoding is shown
in Figure 3.3. Some features, or groups of features, within the attentional operation are

32

Object templates
Tcup = cup
Tplate = plate
Tpen = pen
Toneself = oneself
Tjohn = John
Tmary = Mary

Motor states
Traise−arm = raising arm
Tplate−grasp = grasping the plate with a plate-grasp
Tpen−grasp = grasping the pen with a pen-grasp
Tcup−grasp = grasping the cup with a cup-grasp
Tnone no action selected

Table 3.1: Object and action templates

Object templates
1 0 0 0 0 0 = cup
0 1 0 0 0 0 = plate
0 0 1 0 0 0 = pen
0 0 0 1 0 0 = oneself
0 0 0 0 1 0 = John
0 0 0 0 0 1 = Mary

Motor states
1 0 0 0 = raising arm
0 1 0 0 = grasping the plate with a plate-grasp
0 0 1 0 = grasping the pen with a pen-grasp
0 0 0 1 = grasping the cup with a cup-grasp

Table 3.2: Byte encoding of templates

33

Attentional operations
Ocup = attend to a cup
Oplate = attend to a plate
Open = attend to a pen
Ooneself = attend to oneself
Ojohn = attend to John
Omary = attend to Mary

Motor goal states
Araise−arm = raise arm
Aplate−grasp = grasp the plate with a plate-grasp
Apen−grasp = grasp the pen with a pen-grasp
Acup−grasp = grasp the cup with a cup-grasp

Table 3.3: Deictic operations. ’O’ stands for objects and ’A’ stands for actions

0 0 0 0 0
0 0 0
0

0

0
0

0

0

0

0
0
0

0
0
0
0

0
0

0

attend to a cup
attend to a plate
attend to a pen

1
1 1
1 1

1
0 1 1

1

se
lf

ge
nd

er
th

in
ro

un
d

fla
t

0 0
0

0

raise arm
grasp the plate with a plate−grasp
grasp the pen with a pen−grasp
grasp the cup with a cup−grasp

0
0

01

0
0

pl
at

e−
gr

as
p−

st
at

e

ot
he

r
pe

rs
on

1
10

0

01

attend to onself
attend to John
attend to Mary

1

ra
is

e−
ar

m
−s

ta
te

pe
n−

gr
as

p−
st

at
e

cu
p−

gr
as

p−
st

at
e

Figure 3.3: Byte encoding of attentional operations and motor goal states

34

competing. This means that only one of them can be activated in a deictic operation before
it is mapped onto an object. In this world the following groups of features are competing:
{self, other person, gender} and {thin, round, flat}. And the following single features are
competing: {self} and {other person}.

The reward states in our model are all the states in which an agent successfully grasps
an object. Table 3.4 shows the sequences that lead to a reward state for the world described
in Figure 3.2. Observing another agent in the world performing a deictic operation could also
result in a reward situation.

{Ooneself , Ocup, Acup−grasp}
{Ooneself , Oplate, Aplate−grasp}
{Ooneself , Open, Apen−grasp}
{Omary, Ocup, Acup−grasp}
{Omary, Oplate, Aplate−grasp}
{Omary, Open, Apen−grasp}
{Ojohn, Ocup, Acup−grasp}
{Ojohn, Oplate, Aplate−grasp}
{Ojohn, Open, Apen−grasp}

Table 3.4: Sequences of deictic operations that lead to a reward

3.2.2 Experience mode

The experience mode network is shown in Figure 3.4. Below follows a procedure for how to
step through this model. It explains in what sequence the different processes of the model
are executed and what data is used.

1. Initialize context layer with random values and choose
random object template and motor state.

2. Present the current object template and motor goal state to the episodic memory

3. Decompose the object template and motor state into a deictic operation which is input
for the decision function

4. Calculate preferred next deictic operation in the decision function

5. Present this deictic operation to the sensorimotor function

6. Determine what object template to activate and what motor action
to execute in the sensorimotor function

7. Calculate predicted next object template and motor state
in the episodic memory

8. Compare the next object template and motor state with the target
object template and motor state from the sensorimotor function in 5

9. Backpropagate the error between output and target

35

10. Copy new context from hidden layer to context layer

11. Evaluate the agent’s current state, if this is a reward state, switch to rewind mode

12. Else, start again at 2, but use the sensorimotor function output
as the new current object template and motor state

templateObject
Current Current

Motor State

Hidden

Context

Function
Decision

Sensorimotor
Function

Targets

1

2 2

templateObject
Next Next

Motor State

3

4

5

6

7

8

10

Figure 3.4: Experience mode network

3.2.3 Rewind mode

The rewind mode network is shown in Figure 3.5. Below follows a procedure for how to step
through this model. Just as in the previous section, this describes the sequence in which the
processes are activated and what data is used.

1. A reward situation occurs

2. Rewind the episodic memory to the start of the sequence that has to be reinforced

3. Present current object template and motor goal to the episodic memory.

4. Use the object template and motor state from episodic memory
as an input to the feature decomposition function to get the features
of the current deictic operation

5. Generate next item in the episodic memory

6. Present next item to the feature decomposition function to get
the features of the next deictic operation

36

7. Present current deictic operation as an input to the decision function

8. Present next deictic operation as a target to the decision function

9. Train the decision function to generate the next deictic operation from the current
deictic operation

10. Copy the next object template and motor state to the current object
and motor state

11. Copy the hidden layer output to the context layer

12. If the end of the sequence is reached, exit rewind mode

The episodic memory has to rewind to the start of the sequence that has to be reinforced.
So how do we know how far to rewind the episodic memory? It turns out that it is
not really important how far back the episodic memory rewinds as long as we rewind
further than the position where the sequence actually started. Motor sequences that
can be described by transitive sentences are in general not longer than 4 to 5 attentional
actions and or motor actions. After reinforcing the same sequence multiple times, the
decision function will learn that only overlapping items at the end of each sequence are
important. The other items in the sequences will eventually be regarded as noise.

Hidden

Context

templateObject
Current

templateObject
Next

Motor State

Next
Motor State

Current

Feature

Decomposition

Function

Function

Feature

Decomposition

Function
Decision

Targets
Templates

Current
Templates

Current
Deictic operation

Target
Deictic operation

Copy

2

3

4

5

6

7

89

Copy

10

Figure 3.5: Rewind mode network

3.2.4 Decision function

The decision function is implemented as an Elman Network as shown in Figure 3.6. To learn
multiple sequences in an Elman Network, all previous sequences have to be learned again
(see Section 3.1). Besides this, the network has to learn that each sequence is independent of

37

the other sequences. This can be achieved by creating a new long sequence which contains
multiple instances of each sequence randomly concatenated. Below follows a description of
the training regime for this network.

1. Present the features from the first item in the sequence to the decision function

2. Generate predicted deictic operation in the decision function

3. Use the object features and motor goal state (deictic operation) from the
next item in the sequence as a target for the decision function’s
predicted object features and motor goal state

4. Calculate error between predicted deictic operation and its target

5. Change the weights of the network by backpropagating the error

6. Go back to 1 and train on the other items in the sequence

Current
Motor Goal StateAttentional operation

Current

Hidden

Context

Copy

Motor Goal StateAttentional operation
NextNext

Motor Goal StateAttentional operation
Predicted Predicted

Error

Target

1

2

3

4

5

Figure 3.6: Decision function

3.2.5 Sensorimotor function

The sensorimotor function implements the mapping of deictic operations onto object tem-
plates and motor states. When the sensorimotor function receives a deictic operation from
the decision function it finds the object in the world which shares the most features with
the attentional operation part of the deictic operation. Before the attentional operation is
mapped onto the objects, the competing features are evaluated. The sensorimotor function

38

first competes between groups of features. If the sum of the activation of the group its features
are larger than that sum of another group its features, then the first group remains activated,
all the features from the other group are deactivated. After this the features themselves com-
pete. The feature with the largest value remains activated, the other is deactivated. Finally,
all features, including the features that do not compete with any other features, are evaluated
by a threshold function to see if that feature should be present in the actual deictic operation.

This deictic operation is now mapped onto all the objects. When an object is found, the
template for this object is activated by the sensorimotor function. It also activates the motor
action that results from the motor operation part of the deictic operation. The sensorimotor
function is implemented symbolically in an algorithm, not in a neural network. See Figure 3.7.
The feature decomposition function maps object templates and motor states back onto

Sensorimotor function
compares features and
activates a template

Perceived features of
objects in the world

object features
state

0 0 0 0 0
0 0 0
0

0

0
0 0

0

0

0

0
0
0

0
0
0
0

0
0

0

1
1 1
1 1

1
0 1 1

10 0 0 0 10

0 0 0 0
0 0 0
0 0

0 0 0
0
0
000

1
1

1

1
1

0
0

0
00

00
0

0 0 01000010

0 0 01 101000

Object templates

Activated template motor state

goal motor

Figure 3.7: Deictic operation on Template mapping

deictic operations, by looking up all the features for the object and the joint and muscle
positions for the motor action necessary to get into this motor state. This results in a new
deictic operation. The procedure is the same as the procedure of the sensorimotor function
and can be seen as reading the Figure 3.7 upside down.

3.2.6 Experiments and Results

Episodic Memory Results

The episodic memory learns a sequence with an Elman Network. In theory, we want the
episodic memory to store all the previous object templates and motor states that were acti-
vated. To achieve this, the Elman Network capacity must be infinite. The Elman network
capacity is directly related to the size of the hidden layer and context layer. We conducted
a number of experiments which showed that there is a positive relationship between the size
of the hidden layer and the number of patterns that can be stored in the network. However,
the time it takes to learn a single pattern increases exponentially with the size of the hidden
layer; an exponential number of weights have to be adjusted. An infinite memory would thus
require an infinite amount of time to learn each pattern. This suggests that Elman Networks

39

are not ideally suited for learning long sequences. Using up to 6 nodes in the hidden layer
and context layer is feasible for fast learning and will enable us to store up to 5 patterns.

When we say the episodic memory can store up to 5 patterns, this means that a sequence
of the last 5 object templates and motor states can be recalled from memory. Figure 3.8
shows the average error over 100 runs for learning a single sequence of 3 patterns by using 6
hidden and 6 context nodes. Also displayed in this figure are the 95% confidence boundaries
based on two times the standard deviation over these 100 runs. The same experiment using
different sequences of 3 patterns shows the same trend, only the initial errors are higher.

0 200 400 600 800 1000
Number of epochs

0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Sq

ua
re

d
Er

ro
r

Average error
95% confidence upper boundary
95% confidence lower boundary

Sequence learning
6 hidden nodes, 3 items in sequence

Figure 3.8: Episodic memory learning error

It has proven to be quite difficult to pinpoint a specific error value that would indicate
that the whole sequence has been learned. To overcome this, every 500 epochs, the episodic
memory tests its learned sequence by running the episodic memory and comparing the episodic
memory trace with the sequence that has to be learned. If the sequence matches, the training
stops.

Decision function results

Testing the performance of an Elman Network that learns multiple sequences can be tricky,
since each sequence that has to be learned is independent of the other sequences. To make
sure that the sequences are learned as independent sequences, we first make a single sequence

40

which contains 100 instances of each sequence. Next, the sequences are randomly shuffled, in
such a way that the dependent items in each sequence are kept together and only complete
sequences are shuffled. We have now created a very long sequence of sequences which can be
learned by an Elman Network. Due to the random ordering of the sequences and the limited
capacity of the Elman Network, it will not be able to learn the newly created long sequence as
a single sequence and will only generalize over multiple sequences within that long sequence.

In the current experiment we will show that an Elman Network can learn all nine reward
situations as shown in Table 3.4. The Elman Network used in this experiment has 15 hidden
nodes and 15 context nodes. The deictic operations is a combination of an attentional action
and a motor goal state as shown in Figure 3.3. The resulting 10 bit vector is presented to the
input layer which has 10 input nodes. The output of the network is again a deictic operation
of 10 nodes.

The network has to learn a sequence of 100 instances of each of the nine sequences,
concatenated into one big sequence as discussed in the previous paragraph. This results in a
long sequence of 900 sequences, each sequence containing 3 deictic operations. The result is
a training set of 1800 patterns.

Figure 3.9: Decision function learning error

The network is tested by training the network for 500 epochs and then testing it on the
reward states shown in Table 3.4. Each sequence is preceded by a noise pattern of 4 deictic

41

operations to make sure that the prediction of the sequences is correct even if it is preceded
by unseen inputs. This noise patterns of course cannot be predicted by the network and have
the same output every time, shown as a high peak. The training and testing is done 50 times
and the results have been averaged. Figure 3.9 show the mean squared error for all nine
sequences preceded by the noise deictic operations.

We will explain the results by looking at the sequence: ‘oneself cup cup-grasp’. The first
deictic operation of each sequence has a probability of one divided by it’s frequency in that
position. The attentional operation ”oneself” has a probability of 1/3 of being selected. The
second attentional operation, ‘cup’, has the same probability of being correctly predicted
because we have already seen ‘oneself’. Since there are only 3 sequences which starts with
‘oneself’ the probability of cup being correctly predicted is 1/3 . The third item in the
sequence, ‘cup-grasp’, has a probability of 1 of being correctly predicted, since the observer
has already seen ”oneself cup”. In other words, the decision function does indeed manage to
learn to generate the sequences of deictic operations which move the agent to a reward state.

Since there are 10 output nodes and a threshold output function is used, a 0.1 mean square
error means that on the average 1 node provides an incorrect output, 0.2 means that 2 nodes
are incorrect, etc. The reason that in the results shown in Figure 3.9 the mean square error
of for instance onself, or cup is not equal to 1/3, is that the deictic operations of the objects
are really close in Hamming distance. The reason that the mean square error of the motor
goal states is not zero, is because once in so many runs the decision function doesn’t perfectly
learn the problem. Figure A.1 shows the standard deviation over these 50 runs.

The decision function in experience mode

We’ve seen that the decision function can learn to recognize sequences, even when noise is
present in the testing sequence. However, we would like to prove that an observer using the
sensorimotor model as described in Section 3.2.2 is able to explore the world it is in. More
importantly, after exploring the world, the observer should exploit the decision function to
improve the sequence in which it attends to objects and activates motor actions.

The performance of the decision function in experience mode is measured in an experiment
in which an observer experiences the world for 20000 cycles. Figure 3.10, shows the average
number of sequences the observer evaluates before finding a reward state. Also shown is
the number of sequences it takes the observer to find a reward sequence when the decision
function is not trained. Learning the decision function does definitely improve the performance
of the agent. After finding the first reward state by randomly choosing attentions to objects
and motor actions, successful sequences follow each other up more rapidly. Every time the
decision function finds a new sequence, the frequency of finding new reward states increases.
Eventually, the observer chooses actions in such a sequence that it reaches a reward state at
the end of each sequence. This experiment has been done several times, but due to the time
variability and time of onset of the first reward state there was no point in averaging the
results.

Another interesting question is how many different sequences the observer will explore
and exploit. When the observer first starts to experience the world, it doesn’t pay much
attention to the decision function since it doesn’t bring the observer to reward states at all.
The observer chooses random actions of attention and motor actions until it finds a reward
state. The observer starts listening to the decision function more and more as it finds more
reward states. By increasing the influence of the decision function just slightly, the observer

42

0 5000 10000 15000 20000
Number of decision function activations

0

500

1000

1500

2000

N
um

be
r o

f s
eq

ue
nc

es

Average with training the decision function
Average without training the decision function

Average number of sequences it takes to reach a reward state

Figure 3.10: This graph show how many sequences it takes on the average, to bring the
observer in a reward state

43

has enough time to find all the reward sequences in the world by random attentional actions
and motor actions.

As soon as the decision function is fully trained on all successful sequences in the world
the observer listens to the decision function’s advice more and more. The agent now starts
to exploit its knowledge. As shown in Figure 3.11 the observer does not equally exploit all
learned sequences. Due to the fact that the objects are not described by enough different
features in the deictic operation, some objects tend to be chosen over others. This is not as
such a failure of the decision function and could be solved by adding more features to describe
objects and actions. Figure 3.11 shows that 5 of the 9 sequences are chosen frequently, the
other sequences are hardly ever chosen.

0 5000 10000 15000
Number of decision function activations

-100

0

100

200

300

400

500

600

700

800

N
um

be
r o

f r
ew

ar
d

se
qu

en
ce

s

oneself-pen-pen_grasp
oneself-cup-cup_grasp
oneself-plate-plate_grasp
john-pen-pen_grasp
john-cup-cup_grasp
john-plate-plate_grasp
mary-pen-pen_grasp
mary-cup-cup_grasp
mary-plate-plate_grasp

Exploitation of learned reward sequences

Figure 3.11: Shows how often the different rewards states are chosen during experience mode

3.2.7 Conclusions

Both the episodic memory and the decision function networks are able to learn the sequences
necessary for the experience mode to improve over time. However, both these networks have
their limitations. As a result the model is, at this stage, not scalable enough.

The episodic memory is able to learn sequences, but to keep the speed of the sensorimotor
model within limits, only short sequences are feasible. Elman Networks are just not suited
for remembering long sequences. The Elman Network used in this implementation is rather
a short term memory, then a long term episodic memory.

44

The decision function is trained every time a reward state is encountered. The performance
of the decision function after it is trained is dependent on the initial state of the network and
how soon it can find the function that describes the sequences in the training set. It is not
even certain that from this initial state of the network this function can be found at all. This
poses a problem for the sensorimotor model in experience mode. As the plasticity of the
observer decreases, he tends to take the advice of the decision function more seriously. When
the decision function doesn’t learn the function that describes the sequences in this stage, it
is possible that the observer will not reach any reward states again in the future. The decision
function does in this case not give any sensible advice on the best next deictic operation and
the randomness in the system is minimal due to the decreasing plasticity.

The decision function also doesn’t exploit all learned sequences. Because the deictic
operations tend to be really alike, the decision function biases towards some deictic operations
more than others.

In Chapter 4 we will propose a number of improvements on the current model which might
be able to overcome these problems.

3.3 Implementation: the word-sequencing model

This section discusses the implementation of the word-sequencing model described in Sec-
tion 2.3. The first phase, when ... word meanings are learned, is presented in Section 3.3.1.
The second phase, when the system learns to generate whole sentences, is presented in Sec-
tion 3.3.2.

3.3.1 Word mapping

Training data

The training data for the model is a sequence of random sensorimotor items, each associated
with an appropriate word. In this phase the word-sequencing model learns to map sensori-
motor items onto words. A part of this sequence with the target word is shown in Table 3.5.

Sensorimotor sequence THE DOG THE CUP GRABBED BIKE SEE
Word sequence the dog the cup grabbed bike see

Table 3.5: An example of a target mapping between the sensorimotor sequence and the word
sequence

The training data consisted of 11 nouns and 10 verbs. The sensorimotor items and the
word items were translated into bit vectors. Each word and sensorimotor item was randomly
replaced by a bit vector each training run . Each vector was 22 bits long and had only one bit
flipped on. This encoding guaranteed that each vector was orthogonal to every other vector
(as in an experiment of Elman (1990)). Examples of this encoding is shown in Table 3.6.

Experiment and results

The model was trained on all the 21 sensorimotor-word mappings. Each sensorimotor-word
pattern was added more than once to the training set so that the model was not generalizing

45

Sensorimotor item Target word
0000000001000000000000 (BREAK) 0000000000000000100000 (break)
0000000000010000000000 (MAN) 0100000000000000000000 (man)
0000000000000000000001 (WOLF) 1000000000000000000000 (wolf)
0000010000000000000000 (CAT) 0010000000000000000000 (cat)
0000100000000000000000 (MOUSE) 0001000000000000000000 (mouse)
0000000000000000000100 (SEE) 0000000000000000001000 (see)
0100000000000000000000 (SLEEP) 0000000000001000000000 (sleep)
0000000000001000000000 (ROCK) 0000010000000000000000 (rock)
0000000000000000010000 (SEE) 0000000000000100000000 (see)
0000000000000000000010 (SMASH) 0000000000000000000100 (smash)
0000000000000000100000 (PLATE) 0000000001000000000000 (plate)
0000001000000000000000 (CHASE) 0000000000000010000000 (chase)
0000000100000000000000 (BOOK) 0000100000000000000000 (book)
0010000000000000000000 (GLASS) 0000000010000000000000 (glass)
0000000000000100000000 (MOVE) 0000000000000001000000 (move)
0000000000000010000000 (EAT) 0000000000000000000010 (eat)
0000000000000001000000 (THINK) 0000000000010000000000 (think)
0000000000100000000000 (SMELL) 0000000000000000010000 (smell)
0000000000000000001000 (DRAGON) 0000001000000000000000 (dragon)
0000000010000000000000 (COOKIE) 0000000000100000000000 (cookie)

Table 3.6: Training data for word-sequencing model

on the random order of the training set. To prevent the model from getting a bias to certain
words each word had the same frequency in the training set. The training set contained a
total of 200 sensorimotor-word patterns. The model had 22 output units, 30 hidden units, 30
context units and 44 input units (22 for the current sensorimotor item, 22 for the previous
word). We trained the network over 1000 epochs. We repeated the experiment over 100 times.
In Figure the learn curve average over 100 runs can be seen in Figure 3.12. The final average
MSE was 1.049 x 10−4. This seems really low, but an error of 0.181 means that it has chosen
for the wrong word. So we should be carefull by making to optimistic conclusions. Therefore,
we used the model to predict words which were seen but in an unseen order. The test set was
a sequence of 5000 items. Every run after training the network was tested on the test set.
On average, the trained model predicted 4999.51 items correct with a standard deviation of
1.25.

These results are important because this part of the model influences the results on the
other experiments. This trained model produces the pseudo patterns. If the words are
learned incorrect the pseudo patterns will be wrong. As result, the prediction on the final
test sentences will be wrong as well.

3.3.2 Predicting sentences

Training data

The training data for this experiment is partly the same as in the previous experiment. The
words and sensorimotor items are represented again as a randomly assigned bit vector of
length 22. The difference with the previous experiment is that gap is also represented as a
bit vector. The vector also has only one bit flipped on, so it is orthogonal to the other words.
This representation is used as new training data when the model is unable to predict the right
word.

1If the model chooses the wrong item using the winner-takes-all function the difference is 2. Taking the
square of this and dividing it by the number of output units, 22, we have a mean squared error of 0.18

46

0 500 1000
Epochs

0

0.05

M
ea

n
sq

ua
re

d
er

ro
r

Mean
lower boundary 95% confindence interval
upper boundary 95% confindence interval

Learn curve mapping
averaged over 100 runs

Figure 3.12: The learn curve of word mapping, averaged over 100 runs

Sensorimotor sequence THE MAN THE CUP THE MAN GRABBED THE CUP
Word sequence the man gap gap grabbed the cup

Table 3.7: An example of a target mapping in SVO order between the sensorimotor sequence
and the word sequence

47

Another example, Table 3.8, shows the sequence in OSV order.

Sensorimotor sequence THE MAN THE CUP THE MAN GRABBED THE CUP
Word sequence gap the cup the man grabbed gap

Table 3.8: An example of a target mapping in OSV order between the sensorimotor sequence
and the word sequence

Experiment and results

As in the first experiment the model is trained on sensorimotor-word mappings. After that
the model is used to create its own patterns with gaps. A complete description of the this
procedure is given in Section 2.5.3. The experiment was run 100 times. The mapping phase
had 1500 epochs and the sentence learning had 4000 epochs. As in the first experiment the
model had 22 output units, 30 hidden units, 30 context units and 44 input units. We have
run the experiments for the SVO, SOV and OSV order. The results are given in Table 3.9.

SOV SVO OSV
Average MSE 2.298 x 10−2 1.27 x 10−2 2.91 x 10−2

Standard deviation MSE 1.080 x 10−2 7.57 x 10−3 9.25 x 10−3

Average sentences predicted correct 14.67 23.97 6.78
Standard deviation predictions 8.39 8.71 4.69
Total sentences 44 44 44
Words predicted correct 164.38 189.27 149.47
Standard deviation word predictions 26.14 18.32 22.39
Total words 220 220 220
Quality pseudo patterns 99.01% 99.02% 99.99%

Table 3.9: The results for predicting sentences for the orders SOV, SVO, OSV averaged over
100 runs

The table shows the performance of the model averaged over 100 runs. It seems the
model roughly works. Individual words are predicted with an accuracy of 68% for OSV, 75%
for SOV to 86% for SVO. Complete sentences2 are predicted with an accuracy of 15% for
OSV, 33% for SOV and 50% for SVO. These results might not be convincing enough without
showing what the likelihood is of getting words and sentences correct by chance. The chance
to predict a word correct is given in Equation 3.1. Nw is the number of words per sentence.
Ns is the number of items in a sentence. Ng is the number of gaps in a sentence and fw is
the number of possible words. Pw is the probability of predicting a correct word.

Pw =
Nw

(
Nw

Ns

)(
1
fw

)
+ Ng

(
Ng

Ns

)

Ns
(3.1)

When we compute the chance for our problem with Nw = 3, Ns = 5, fw = 21 and Ng = 2 we
get a probability of 1.77 x 10−1. This would mean that on average a random model would

2A complete sentence means that all the words are correct

48

predict 38.97 words from a set of 220 words. This means that our model is definitely not
random for all the orderings. Equation 3.2 gives the formula for the chance to predict a
complete sentence. Ps is the probability of predicting a correct sentence.

Ps =

[(
Nw

Ns

)(
1
fw

)]Nw
[

Ng

Ns

]Ng

(3.2)

When we use the previous result for this formula we get a probability of 3.73 x 10−6 for
Ps. This means that a random model on average over 44 sentences can predict 8.21 x 10−4

sentences. Therefore, our model is performing considerably better than chance, even for the
worst case of OSV.

Now we know that the results are pretty good it is interesting to speculate why there is
a difference between the different orders. The table shows that the OSV order seems to be
more difficult than the two other orderings, SVO and SOV. This error could have occurred
in the first phase while creating the new training patterns. Therefore, we have looked at the
quality of the created training patterns. These results are also shown in the Table 3.9. The
table shows that the quality of for the OSV order is even better than for the other two orders.
This is thus not the cause of the worse performance for OSV.

Now we have seen that the problem is far from randomly solveable and wrongly created
training data is not the cause, it can be concluded that the cause must lie in learning the OSV
order itself. This is interesting because there are in fact very few OSV languages - these are
by far the rares group of languages. The poor performance of the model on OSV languages
might therefore be taken as positive evidence for the model (See Lupyan & Christiansen,
2002, for a similar argument).

3.3.3 Conclusions

The experiments show that the word-sequencing model is able to learn the mapping between
sensorimotor items and words. Although the results are not optimal. A more optimal learning
rule than our basic back-propagation without momentum would probably be more powerful.
Which would lead to better results. This will be left as future work. The experiments have
shown that the model is able to learn the problem pretty well if you compare it to a random
model. More interesting is that the model is performing worse on OSV than on the other two
orders. This is interesting because Lupyan & Christiansen (2002) confirm this result while the
representation of the language problem in our experiment differs from their representation of
the language order problem. However, the model is not really biologically plausible at this
moment and the results are not totally convincing. Therefore, future work will have to show
that it is significant.

49

Chapter 4

Conclusion and Future Work

All the work done in this project should be seen in the context of Knott’s (2005) programme
to build a model of sensorimotor cognition and language, which solves the L0 task (Feldman
et al., 1996). The full model takes into account the whole process from perception to action
execution and generating the corresponding sentences that describe the events that took place.

In this project we implemented two parts of Knott’s model. The first part is a model of
action selection and memory for events, using a decision function to make decisions on the
next object to attend to, or motor action to execute, and an episodic memory, to store the
events that happened in the past. With this model an observer can experience the world and
learn in what sequence to attend to objects or execute actions, in order to reach states which
are beneficial to the observer. The second part of Knott’s model that we implemented is a
word sequencing network, which takes as input an event as a trace of the episodic memory
and outputs sentences in different word orderings, suitable different types of languages.

The sensorimotor model and the word sequencing model have been designed with the
idea to combine these two models. These two models combined can be used to evaluate
the hypothesis that natural language has emerged from prelinguistic sensorimotor capacities.
This hypothesis can be tested by evaluating the model against claims by both linguists and
cognitive scientists.

In the current project we have unfortunately been unable to evaluate the combination of
the two models. It is probably a bit too early to connect the two models in order to make
claims about this hypothesis. Further work on the models can improve the results significantly
to reach the point where a combination is actually possible. The sensorimotor model must
be capable of remembering more events in episodic memory. The decision function in the
sensorimotor function should be able to generalize over the problem every single time it
encounters a reward state. The variability in training performance would become an issue
when the two models are combined. The word sequencing model is only able to produce
correct sentences in at most 50% of the time. This is a problem, since human speakers make
hardly any errors in word ordering in sentences in their own language. In order to explain a
linguistic finding like word and verb movement as an effect of rewind mode in the sensorimotor
model, both models should perform as well as their human counterparts. Another hypothesis
we would have liked to evaluate is that word mapping in the word sequencing model can be
achieved by using the random sensorimotor output in the early stages of experiencing in the
world.

50

Future work

Although both the sensorimotor model experiments and the word sequencing model experi-
ments show us that the problems we discussed are learnable, there are still quite a few im-
provements possible. First we propose solutions to the problems with the sensorimotor model,
especially the episodic memory and the decision function; next we discuss the improvements
that can be made on the word sequencing model.

In order for experience mode to work better, the sensorimotor model could be extended
with an extra ‘long term memory’, which stores context of sequences generated by the ‘short
term’ Elman Network. Added to that, the decision function should not be unstable when it
comes to learning the reward sequences. Future work on this problem might include extending
the Elman Network with multiple hidden layers and context layers, increasing the context
layer size and probably spend some extra time on finding the optimal parameters for learning
the decision function.

The word sequencing model is now only capable of using the sentences ordering of SVO,
SOV and OSV. To make a more plausible model it is necessary to model the other orderings,
OVS, VOS VSO, as well. This can be done by using the real sensorimotor sequence which
contains seven items instead of five which we used in the word-sequencing model experiments.
Since the sensorimotor sequences gives information whether an item is an action or an object
another improvement would be for the word sequencing model to use this information so it
can make better predictions. When this is achieved it might be possible to present sequences
that do not have a fixed length of five.

Finally, the two models should be combined. Both models should be trained on-the-fly.
This means that both models improve over time. When both models are combined the next
challenge will be to predict sensorimotor sequences from word sequences.

51

Appendix A

Training patterns for the decision
function

0 10 20 30 40 50 60 70
Pattern number

-0.2

0

0.2

0.4

0.6

M
ea

n
Sq

ua
re

d
Er

ro
r

Decision Function
Averaged over 50 runs, showing standard deviation boundaries

Figure A.1: Decision function learning error, coloured area is the standard deviation upper
and lower boundary from the average, which is shown by the white line

52

Bibliography

Abney, S. (1987), The English noun phrase in its sentential aspect, MIT, Cambridge, MA.
unpublished MIT Ph. D.

Ans, B. (2004), ‘Sequential learning in distributed neural networks without catastrophic for-
getting: A single and realistic self-refreshing memory can do it’, Neural Information Pro-
cessing Letters and Reviews 4, 27–32.

Ans, B. & Rousset, S. (2000), ‘Subscribed content neural networks with a self-refreshing
memory: knowledge transfer in sequential learning tasks without catastrophic forgetting’,
Connection Science 12(1), 1–19.

Ans, B., Rousset, S., French, R. M. & Musca, S. (2002), Preventing catastrophic interference
in multiple-sequence learning using coupled reverberating elman networks, in ‘Proceedings
of the 24th Annual Conference of the Cognitive Science Society’, number NJ:LEA.

Baker, C. L. (1979), ‘Syntactic theory and the projection problem’, Linguistic Inguiry
10(4), 533–581.

Bakker, B. & van der Voort van der Kleij, G. (2000), Trading off perception with internal
state: Reinforcement learning and analysis of q-elman networks in a markovian task, in
C. L. Amari, M. Giles & G. V. Piuri, eds, ‘Proceedings of the International Joint Conference
on Neural Networks’, Vol. 3, pp. 213–218.

Bakker, P. B. (2004), The State of Mind Reinforcement Learning with Recurrent Neural
Networks, PhD thesis, Universiteit van Amsterdam, The Netherlands.

Ballard, D. (1991), ‘Animate vision’, Artificial Intelligence.

Ballard, D., Hayhoe, M., Pook, P. & Rao, R. (1997), ‘Deictic codes for the embodiment of
cognition’, Behavioral and Brain Sciences 20(4), 723–767.

Bergen, B. K. & Chang, N. (2003), ‘Embodied construction grammar in simulation-based
language understanding’, in press J.-O. Ostman and M. Fried (eds.), Construction Gram-
mar(s): Cognitive and Cross-Language Dimensions. (updated 6/2003).

Bruske, J., Ahrns, I. & Sommer, G. (96), Practicing q-learning, in ‘ESSAN’, Proceedings of
the 1996 Conference, Bruges, pp. 25–30.

Chang, F. (2002), ‘Symbolically speaking: a connectionist model of sentence production’,
Cognitive Science 26(5), 609–651.

53

Chomsky, N. (1981), Lectures on government and binding, Foris publications, Dordrecht.

Chomsky, N. (1995), The minimalist program, Mit Press, Cambridga, MA.

Corballis, M. (2002), From hand to mouth: the origins of language, Princeton University
Press, Princeton.

Dominey, P., Hoen, M., Blanc, J. & Lelekov-Boissard, T. (2003), ‘Neurological basis of lan-
guage and sequential cognition: Evidence from simulation, aphasia and erp studies’, Brain
and Language 86, 207–225.

Elman, J. (1990), ‘Finding structure in time’, Cognitive Science 14, 179–211.

Fagg, A. & Arbib, M. (1998), ‘Modeling parietal-premotor interactions in primate control of
grasping’, Neural Networks 11(7/8), 1277–1303.

Feldman, J., Lakoff, G., Bailey, D., Narayanan, S., Regier, T. & Stolcke, A. (1996), ‘L0: The
first five years of an automated language acquisition project’, Artificial Intelligence Review
10(1–2), 103–129.

Fodor, J. A. & Pylyshyn, Z. W. (1988), ‘Connectionism and cognitive archictecture - a critical
analysis’, Cognition 28(1-2), 3–71.

French, R. (1999), ‘Catastrophic forgetting in connectionist networks’, Trends in Cognitive
Sciences 3(4), 129–135.

Giese, M. (2000), Neural model for the recognition of biological motion, in G. Baratoff &
H. Neumann, eds, ‘Dynamische Perzeption’, Infix Verlag, Berlin, pp. 105–110.

Givón, T. (2002), The visual information-processing system as an evolutionary precursor of
human language, in T. Givón & B. Malle, eds, ‘The evolution of language out of prelan-
guage’, John Benjamins, Amsterdam.

Goldberg, A., ed. (1995), Constructions. A Construction Grammar approach to argument
structure, University of Chicago Press, Chicago.

Greenberg, J. (1963), Universals of Language, 2nd edn, The MIT Press, chapter Some univer-
sals of grammar with particular reference to the order of meaningful elements, pp. 73–113.

Gropen, J. (1989), ‘The learnability and acquisition of the dative alternation in english’,
Language 65(2), 203–257.

Hurford, J. (2003), ‘The neural basis of predicate-argument structure’, Behavioral and Brain
Sciences 26(3), 261–283.

Itti, L. & Koch, C. (n.d.), ‘Computational modelling of visual attention.’, Nature Reviews—
Neuroscience 2, 1–11.

Jackendoff, R. (1977), ‘X-bar syntax: A study of phrase structure’, Linguistic Inguiry Mono-
graph 2.

Jeannerod, M. (1996), Handbook of perception and action. Vol. 2: motor skills, Vol. 2, Aca-
demic Press, London, chapter Reaching and grasping. Parallel specification of visuomotor
channels, pp. 405–460.

54

Johansson, G. (1973), ‘Visual perception of biological motion, and a model for its analysis’,
Visual Perception and Psychophysics.

Knott, A. (2003a), ‘Do sensorimotor processes have reflexes in sentence syntax as well as
sentence semantics?’, Behavioral and Brain Sciences.

Knott, A. (2003b), Grounding syntactic representations in an architecture for sensorimotor
control, Technical report, OUCS.

Knott, A. (2005), Sensorimotor cognition and natural language syntax, Unpublished.

Koopman, H. & Sportiche, D. (1991), ‘The position of subjects’, Lingua 85(2-3), 211–258.

Lakoff, G. (1970), ‘Global rules’, Language 46, 627–639.

Lupyan, G. & Christiansen, M. H. (2002), Case, word order and laguage learnability: In-
sights from connectionist modeling., in ‘Proceedings of the 24th Annual Conference of the
Cognitive Science Society’, pp. 596–601.

Marcus, G. F. (1998), ‘Rethinking eliminative connectionism’, Cognitive psychology
37(3), 243–282.

Milner, R. & Goodale, M. (1995), ‘The visual brain in action’, Oxford University Press.

Oram, M. & Perrett, D. (1996), ‘Integration of form and motion in the anterior superior
temporal polysensory area (STPa) of the Macaque monkey’, Journal of Neurophysiology
76(1), 109–129.

Pollard, C. & Sag, I. (1994), Head-Driven Phrase Structure Grammar, University of Chicago
Press.

Pollock, J. Y. (1989), ‘Verb movement, universal grammar, and the structure of ip’, Linguistic
Inguiry 20(3), 365–424.

Radford, A. (1997), Syntactic theory and the structure of English - A minimalist approach,
Cambridge University Press.

Riesenhuber, M. & Poggio, T. (1999), ‘Hierarchical models of object recognition in cortex’,
Nature Neuroscience.

Rizzolatti, G. & Arbib, M. (1998), ‘Language within our grasp’, Trends in Neurosciences
21, 188–194.

Rizzolatti, G., Fogassi, L. & Gallese, V. (2000), Cortical mechanisms subserving object grasp-
ing and action recognition: a new view on the cortical motor functions, in M. Gazzaniga,
ed., ‘The new cognitive neurosciences’, MIT Press, pp. 539–552.

Robins, A. (1995), ‘Catastrophic forgetting, reheursal and pseudorehearsal’, Connection Sci-
ence 7, 301–329.

Robins, A. (1997), Mainaining stability during new learning in neural networks, in ‘Pro-
ceedings of the IEEE International Conference on Systems, Man and Cybernetics’, IEEE
Society Press, Los Alamos, pp. 3013–3018.

55

Sag, I. A. & Fodor, J. D. (1994), Extraction without traces, in ‘Proceedings of West
Coast Conference on Formal Linguistics’, Vol. 13, Stanford University: CSLI Pulbications,
pp. 365–384.

Siskind, J. (1995), ‘Grounding language in perception’, Artificial Intelligence Review 8, 371–
391.

Thornton, I., Cavanagh, P. & Labianca, A. (2000), ‘The role of attention in the processing of
biological motion’, Perception 29(Suppl), 114.

Tipper, S., Lortie, C. & Bylis, G. (1992), ‘Selective reaching: Evidence for action-centred
attention’, Journal of Experimental Psychology: Human Perception and Performance
18(4), 891–905.

Treisman, A. & Gelade, G. (1980), ‘A feature integration theory of attention’, Cognitive
Psychology 12(1), 97–136.

Watkins, C. J. C. H. (1989), Learning from Delayed Rewards, PhD thesis, University of
University of Cambridge, England.

56

