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Sum and Product in Dynamic Epistemic Logic∗

H.P. van Ditmarsch†, J. Ruan‡, and L.C. Verbrugge§

Abstract

The Sum-and-Product riddle was first published in [Fre69]. We provide
an overview on the history of the dissemination of this riddle through the
academic and puzzle-math community. This includes some references to
precursors of the riddle, that were previously (as far as we know) unknown.

We then model the Sum-and-Product riddle in a modal logic called
public announcement logic. This logic contains operators for knowledge,
but also operators for the informational consequences of public announce-
ments. The logic is interpreted on multi-agent Kripke models. The infor-
mation in the riddle can be represented in the traditional way by number
pairs, so that Sum knows their sum and Product their product, but also
as an interpreted system, so that Sum and Product at least know their lo-
cal state. We show that the different representations are isomorphic. We
also provide characteristic formulas of the initial epistemic state of the
riddle. Finally we analyze one of the announcements towards the solution
of the riddle as a so-called unsuccessful update: a formula that become
false because it is announced.

The riddle is then implemented and its solution verified in the epis-
temic model checker DEMO. This can be done, we think, surprisingly
elegantly. The results are compared with other work in epistemic model
checking.

Keywords: modal logic, puzzle math, dynamic epistemics, charac-
teristic formula, model checking

1 Introduction

The following problem, or riddle, was first stated, in the Dutch language, in
[Fre69] and subsequently solved in [Fre70]. A translation of the original formu-
lation is:
∗Contact author is Hans van Ditmarsch. Hans and Ji appreciate support from AOARD

research grant AOARD-05-4017. Hans and Rineke appreciate support from the Netherlands
Organization for Scientific Research (NWO). A shortened version of Sections 7 and 8, including
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Figure 1: The original publication

A says to S and P : I have chosen two integers x, y such that 1 < x <
y and x+ y ≤ 100. In a moment, I will inform S only of s = x+ y,
and P only of p = xy. These announcements remain private. You
are required to determine the pair (x, y).

He acts as said. The following conversation now takes place:

i. P says: “I do not know it.”

ii. S says: “I knew you didn’t.”

iii. P says: “I now know it.”

iv. S says: “I now also know it.”

Determine the pair (x, y).

This problem is considered a riddle, or puzzle, because the agents’ announce-
ments appear to be uninformative, as they are about ignorance and knowledge
and not about (numerical) facts, whereas actually they are very informative: the
agents learn facts from the other’s announcements. For example, the numbers
cannot be 2 and 3, or any other pair of prime numbers, nor for example 2 and
4, because in all those cases Product would immediately have deduced the pair
from their product. As a somewhat more complicated example, the numbers
cannot be 14 and 16: if they were, their sum would be 30. This is also the sum
of the prime numbers 7 and 23. But then, as in the previous example, Product
would (P ) would have known the numbers, and therefore Sum (S) – if the sum
had been 30 – would have considered it possible that Product knew the num-
bers. But Sum said that he knew that Product didn’t know the numbers. So the
numbers cannot be 14 and 16. Sum and Product learn enough, by eliminations
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of which we gave some examples, to be able to determine the pair of numbers:
the unique solution of the problem is the pair (4, 13).

The knowledge that agents have about other agents’ mental states and,
in particular, about the effect of communications, is vital for solving impor-
tant problems in multi-agent systems, both for cooperative and for competitive
groups. Dynamic epistemic logic was developed to study the changes brought
about by communication in such higher-order knowledge of other agent’s and
of group knowledge [BMS98, Ger99]. The Sum-and-Product puzzle presents a
complex illustrative case of the strength of specifications in dynamic epistemic
logic and of the possibilities of automated model checking, and both can also be
used in real multi-agent system applications. As far as we know, we are the first
to use an automated model checker to tackle the Sum-and-Product problem.

Section 2 gives an overview of the dissemination of the riddle through the aca-
demic community, and suggests some precursors. In Section 3 we introduce pub-
lic announcement logic. In Section 4 we model the Sum-and-Product problem
in public announcement logic. Section 5 models the Sum-and-Product prob-
lem, alternatively, as an interpreted system, and Section 6 provides the general
setting of unsuccessful updates of which some announcements in the riddle pro-
vide examples. In Section 7 we introduce the epistemic model checker DEMO.
In Section 8 we implement the Sum-and-Product specification of Section 4 in
DEMO, and we verify its epistemic features. Section 9 reports on DEMO im-
plementations of similar problems, and compares the model checking results to
our experiences with other epistemic model checkers.

2 History

John McCarthy wrote the earliest full-length treatment of the Sum-and-Product
riddle in the years 1978–1981 [McC90]. McCarthy formulates the problem as
follows:

Two numbers m and n are chosen such that 2 ≤ m ≤ n ≤ 99. Mr.
S is told their sum and Mr. P is told their product. The following
dialogue ensues:

i. Mr. P : I don’t know the numbers.

ii. Mr. S: I knew you didn’t know. I don’t know either.

iii. Mr. P : Now I know the numbers.

iv. Mr. S: Now I know them too.

In view of the above dialogue, what are the numbers?

In [McC90] the problem is elegantly modeled in modal logic in such a way that
it can be processed in the (first-order) logic theorem prover FOL. This includes
an – almost off-hand – introduction of what corresponds to the essential concept
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of ‘common knowledge’: what Sum and Product commonly know is crucial to
a clear understanding of the problem. Common knowledge had received a very
interesting treatment already in Lewis’ 1969 book Convention [Lew69] (and also
appears in other philosophical literature from that period, e.g. in Schiffer’s work
[Sch72]), but McCarthy seems to have re-invented it in his 1981 article, thereby
inspiring research on common knowledge in Artificial Intelligence.

Note that in the second announcement, Sum seems to give some additional
information that does not appear in the Freudenthal-version of the dialogue,
namely “I don’t know either”. However, some simple considerations show that
this addition is superfluous, because at the current point in the dialogue, it
is already common knowledge among the participants that Sum doesn’t know
either. After all, the only situation in which Sum does know the two numbers
from the start is the one where the pair of numbers is (2, 3), which has already
been ruled out by Product’s first announcement. Further, note that McCarthy
allows the two numbers to be the same, unlike Freudenthal. This also does not
affect the solution.

Many different versions of the puzzle elicited much discussion from the late
seventies onwards. The variations are caused by different announcements, dif-
ferent ranges for the numbers, and different choices for what is considered to be
common knowledge at the starting-point. For yet another example, for a cer-
tain larger range of possible numbers than 2—99 one finds a solution different
from (4, 13) but that then after all is in the 2—99 range. Discussions of several
variants of the problem can be found in the literature on recreational mathe-
matics, see especially [Gar79, Sal95, Isa95], and a website www.mathematik.
uni-bielefeld.de/~sillke/PUZZLES/logic_sum_product that contains many
other references.

More geared towards an epistemic logical audience are [Pla89, Pan91, vdM94,
vdHV02]. Plaza and Panti were students of Rohit Parikh and have both made
some interesting contributions to epistemic logic. In [Pla89] the Sum-and-
Product problem is modeled in a dynamic epistemic logic that is the precursor
of the public announcement logic presented here, namely without an operator
for common knowledge. In [Pan91], on the other hand, the common knowl-
edge involved in the Sum-and-Product puzzle is investigated in detail, with an
emphasis on the arithmetic involved. For example, for the formulation of the
problem where the range of numbers (up to 100) is not considered to be common
knowledge at the start, Panti proves that if the sum of the numbers is greater
or equal than 7, then this (and its logical consequences) is the only fact that is
common knowledge among Sum and Product. Finally, Van der Meyden [vdM94]
suggests a solution in temporal epistemic logic.

2.1 Looking for the origin of Sum and Product

In both of the two first full-length publications on the Sum and Product riddle
[McC90, Gar79], the authors explicitly wondered about but could not give its
exact origins. John McCarthy explains in a footnote in his paper [McC90]:
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I have not been able to trace Mr. S and Mr. P back beyond its alleged
appearance on a bulletin board at Xerox PARC.

Martin Gardner, in his 1979 “Mathematical Games” column [Gar79], writes:

This beautiful problem, which I call “impossible” because it seems to
lack sufficient information for a solution, began making the rounds
of mathematics meetings a year or so ago. I do not know its origin.

After the appearance of [Gar79], the fact that the puzzle had been published al-
ready in 1969 by Dutch topologist and specialist on mathematics education Hans
Freudenthal, was brought to Gardner’s attention by Dutch algebraist Robert
van der Waall. Van der Waall was one of the small number of Dutch mathe-
maticians who had sent in a correct solution to the Dutch mathematics journal
Nieuw Archief voor Wiskunde after the puzzle’s first appearance in 1969.

We have tried to fill in two missing pieces in the history of the Sum-and-
Product riddle:

i. If [Fre69] is indeed the first published appearance of the problem, then
how did the problem migrate from the Dutch mathematics community of
the late 1960s and early 1970s to “a bulletin board at Xerox Parc” and
“the rounds of mathematics meetings” in the United States in the late
1970s?

ii. Did Freudenthal invent the problem? And if so, has he possibly been
inspired by (less complex) precursors?

Despite several requests on international e-mail lists, we have not been able to
answer the first question. As to the second question, we received a partial answer
from one of the subscribers to Nieuw Archief voor Wiskunde, who thought he
remembered to have seen the Sum-and-Product riddle in the puzzle column
“Breinbrouwsels” (brain brews) in the now defunct Dutch-language weekly De
Katholieke Illustratie (‘Illustrated Catholic Magazine’) in the 1950s.

We have visited several libraries and thus managed to read almost all of the
626 “Breinbrouwsels” that G. van Tilburg published from 1954 until 1965 (and
of those we did not read, we could infer what they were from their answers, in
other issues). This did not turn up the Sum-and-Product puzzle, but we did
find four puzzles (published in 1954, 1955, 1957, and 1963, respectively) that can
clearly be seen as precursors. Mostly these puzzles involve partial information
about a number of persons’ ages, where the fact that one of the participants
cannot deduce the ages from the interlocutor’s hint, but can deduce them after
some further dialogue, is crucial information helping the reader to solve the
problem. We will describe some of Van Tilburg’s interesting problems in a
forthcoming publication in Dutch.

Thus, as far as we know now, Freudenthal really invented the Sum-and-
Product puzzle, but may have been inspired by Van Tilburg’s “Breinbrouwsels”.
Possibly he also read some even earlier riddles of British origin, to which we turn
our attention now.
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2.2 Precursors of Sum and Product

David Singmaster’s bibliographies on recreational mathematics (see e.g. www.
g4g4.com/MyCD5/SOURCES/singmaterial.htm) point to some candidate epis-
temic puzzles that appeared even earlier than Van Tilburg’s. The earliest pre-
cursor of the Sum-and-Product riddle that we have been able to trace is the
following one, probably invented by Williams and Savage and first published in
book-form in 1940 in The Penguin Problems Book [WS40, p.53]:

The church afloat
“I’m taking three females on the river to-morrow,” said the vicar to
his curate; “would you care to join our party?”

“What are their ages?” asked the curate, cautiously. “Far be it from
me to disclose a lady’s age!” said the vicar, “but I can tell you this
– the product of their ages is 840, and the sum is twice the number
of years in your own age. You, a mathematician, should be able to
find their ages for yourself.”

“Sounds like casuistry, Vicar,” said the curate; “but, as a matter of
fact, I can’t find their ages from your data. By the way, is the eldest
older than you?”

“No, younger.” “Ah, now I know their ages!” said the curate. “Thanks,
I will come with pleasure.”

What was the curate’s age? How old were the ladies? And what can
be deduced about the vicar’s age?

Here follows Williams’ and Savage’s answer [WS40, p.135]:

Sum of ages must be even.

Uncertainty, resolved by the vicar’s final statement, must be due to
the fact of there being more than one such sum which was twice the
curate’s age.

Of the possible sets of 3 factors of 840, there are only two cases of
the same even sum occurring more than once. The sums in these
cases are 46 and 30. Now the curate’s age could not be 15; therefore
he was 23.

The sets of female ages giving a sum of 46 are 35, 8, 3 and 30, 14,
2. Since the vicar’s answer excluded one of these, that one must be
the former. Therefore the ladies’ ages were 30, 14, 2, and the vicar’s
age must lie between 30 and 35.

Note that some world knowledge is used implicitly here, namely the fact that
mathematicians (and curates) are always older than 15 years, and the fact that
the curate, being a mathematician, reasons correctly.

Another problem, that was published in 1944 in The Second Penguin Prob-
lems Book [WS44, p.27], also hinges on the fact that only for some number
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combinations there is more than one way to make the same sum. In a way, the
next problem is less attractive than the previous one, because the uncertainty
is not completely dissolved at the end: readers are asked to derive the sum of
the ages only.

Domiciliary
“I have told you my age,” said Mr. Ptolemy to the inspector who had
just knocked on his door. “Besides myself, there are three persons
living in this house; the product of their ages is one thousand two
hundred ninety-six, and the sum of their ages is the number of the
house.”

“But it is impossible for me to be sure of their ages without further
information,” said the inspector. “Is any one of them the same age
as yourself?”

“No,” said Mr. Ptolemy.

“Thanks; now I know their ages,” said the inspector.

What was the number of Mr. Ptolemy’s house?

This time, the explanation is as follows [WS44, p.116]; again, the authors im-
plicitly use some world knowledge:

There are many ways of splitting 1296 into three factors, but only
possible ones need be considered. Two of these sets of factors have
the same sum, namely 1, 18, 72 and 2, 8, 81, adding up to 91. The
other sums are all different.

As the inspector could not be sure of the ages from the fact that they
added up to the number of the house (which he, of course, knew),
this number must have been 91.

[Mr. Ptolemy’s age - also known to the inspector - must have been
72 or 81 (unless it was 18 or 8 - both unlikely), but we have no means
of deciding this point.]

The above two puzzles are roughly of the same kind as Van Tilburg’s, but still
different. In fact, Van Tilburg may have been inspired to create his puzzles after
reading the British gentlemen. Essentially the same problem as “Domiciliary”,
but in a somewhat different guise, was printed in Greenblatt’s Mathematical
Entertainments [Gre68], first published in the United States in 1965. Greenblatt
starts with some historical speculation:

One of the few amusing things to come out of World War II was a
new type of brain twister - the “census-taker” problem. (The time
and place of origin of a problem are difficult to specify. To the best
of the author’s knowledge, this problem was born on the M.I.T.
campus in one of the war projects.)
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As we now know, the type of problem probably stems from at least somewhat
before the start of World War II, and from Great Britain instead of the United
States. After all, The Penguin Problems Book, although published during the
War in 1940, was mostly based on earlier puzzles from Williams’ and Savage’s
column “Perplexities” that used to appear in The Strand Magazine. For more
details, see www.cs.otago.ac.nz/staffpriv/hans/sumpro/.

2.3 Descendants of Sum and Product

In recent years, variants of the Sum-and-Product riddle keep cropping up. Johan
van Benthem has communicated a particularly nice example, dubbed “GSM-
puzzle”. The conversation between the two participants in the GSM-puzzle
follows exactly the same pattern as the one in the Sum-and-Product riddle.
However, due to the context in terms of playing cards with points and colors,
no arithmetic is needed to solve it. Thus, the epistemic complexity remains,
while the arithmetic complexity has been canceled. For a formulation of the
problem, see www.ai.rug.nl/mas/openprojecten.html\#GSM and/or www.cs.
otago.ac.nz/staffpriv/hans/sumpro/.

Some of the more recent variants include more than two participants in the
clarifying conversation, for example the following one [Liu04], which combines
themes from the Muddy-Children puzzle [MDH86] with those from the Sum-
and-Product puzzle. We leave this problem as a challenge to the reader.

Each of Ace, Bea and Cec is wearing a hat on which a positive integer
is printed. Each can see only the numbers on the others’ hats. They
are told that one of the numbers is the sum of the other two. They
make the following statements in succession.

i. Ace: I cannot deduce what my number is.

ii. Bea: Knowing that, I still cannot deduce what my number is.

iii. Cec: Knowing that, I still cannot deduce what my number is.

iv. Ace: Now I can deduce that my number is 50.

Assuming that they all use sound reasoning, what are the numbers
on the two other hats?

After this detailed overview of the dissemination of the Sum-and-Product
riddle, which we hope may prevent some of this information from gradually
disappearing into the fog of war on academic battlegrounds, we continue with
the more technical core of this paper, that consists of an introduction into
public announcement logic, modelling the riddle in this logic, and verifying its
properties in a model checker.
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3 Public Announcement Logic

Public announcement logic is a dynamic epistemic logic and is an extension of
standard multi-agent epistemic logic. Intuitive explanations of the epistemic
part of the semantics can be found in [FHMV95, vdHV02, vDvdHK05]. We
give a concise overview of, in that order, the language, the structures on which
the language is interpreted, and the semantics.

Given are a finite set of agents N and a finite or countably infinite set of
atoms Q. The language of public announcement logic is inductively defined as

ϕ ::= q | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CGϕ | [ϕ]ψ

where q ∈ Q, n ∈ N , and G ⊆ N are arbitrary. For Knϕ, read ‘agent n knows
formula ϕ’. For CGϕ, read ‘group of agents G commonly know formula ϕ’. For
[ϕ]ψ, read ‘after public announcement of ϕ, formula ψ (is true)’.

Next, we introduce the structures. An epistemic model M = 〈W,∼, V 〉
consists of a domain W of (factual) states (or ‘worlds’), accessibility ∼ : N →
P(W×W ), where each ∼(n) is an equivalence relation, and a valuation V : Q→
P(W ). For w ∈W , (M,w) is an epistemic state (also known as a pointed Kripke
model). For ∼ (n) we write ∼n, and for V (q) we write Vq. So, accessibility ∼
can be seen as a set of equivalence relations ∼n, and V as a set of valuations Vq.
Given two states w,w′ in the domain, w ∼n w′ means that w is indistinguishable
from w′ for agent n on the basis of its information. For example, at the beginning
of the riddle, pairs (14, 16) and (7, 23) are indistinguishable for Sum but not
for Product. Therefore, assuming a domain of number pairs, we have that
(14, 16) ∼S (7, 23) but that (14, 16) 6∼P (7, 23). The group accessibility relation
∼G is the transitive and reflexive closure of the union of all accessibility relations
for the individuals in G: ∼G ≡ (

⋃
n∈G ∼n)∗. This relation is used to interpret

common knowledge for group G.
Finally, we give the semantics. Assume an epistemic model M = 〈W,∼, V 〉.

M,w |= q iff w ∈ Vq
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= Knϕ iff for all v ∈W : w ∼n v implies M,v |= ϕ
M,w |= CGϕ iff for all v ∈W : w ∼G v implies M,v |= ϕ
M,w |= [ϕ]ψ iff M,w |= ϕ implies M |ϕ,w |= ψ

Here, epistemic model M |ϕ = 〈W ′,∼′, V ′〉 is defined as

W ′ = {w′ ∈W | M,w′ |= ϕ}
∼′n = ∼n ∩ (W ′ ×W ′)
V ′q = Vq ∩W ′

The dynamic modal operator [ϕ] is interpreted as an epistemic state transformer.
Announcements are assumed to be truthful, and this is commonly known by
all agents. Therefore, the model M |ϕ is the model M restricted to all the
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states where ϕ is true, including access between states. The dual of [ϕ] is 〈ϕ〉:
M,w |= 〈ϕ〉ψ iff M,w |= ϕ and M |ϕ,w |= ψ.

Formula ϕ is valid on model M , notation M |= ϕ, if and only if for all states
w in the domain of M : M,w |= ϕ. Formula ϕ is valid, notation |= ϕ, if and
only if for all models M : M |= ϕ. Logical consequence Ψ |= ϕ is defined as “for
all (M,w), if M,w |= ψ for all ψ ∈ Ψ, then M,w |= ϕ.” For {ψ} |= ϕ, write
ψ |= ϕ.

A proof system for this logic is presented, and shown to be complete, in
[BMS98], with precursors – namely for public announcement logic without com-
mon knowledge – in [Pla89, Ger99]. For a concise completeness proof, see
[vDvdHK05]. Some relevant principles of this logic are

i. [ϕ]ψ ↔ (ϕ→ [ϕ]ψ)

ii. [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ

iii. [ϕ]Knψ ↔ (ϕ→ Kn[ϕ]ψ)

iv. [CNϕ]CNϕ

Item i expresses that the interpretation of the dynamic operator [ϕ] is a partial
function. Item ii expresses that a sequence of two announcements ϕ and ψ can be
replaced by the single announcement ‘ϕ, and after ϕ, ψ’. Item iii expresses the
preconditions and postconditions of announcements with respect to individual
knowledge (for common knowledge, this relation is more complex). Item iv
expresses that public knowledge (i.e., common knowledge for the entire group
of agents) remains true after announcement. Not all formulas remain true after
their announcement, in other words, [ϕ]ϕ is not a principle of this logic. This
matter will be addressed in Section 6. Some announcements towards the solution
of the Sum-and-Product problem provide concrete counterexamples, and this
will explain why the ‘puzzling’ conversation of S and P makes sense.

4 Sum and Product in Public Announcement
Logic

We give a specification of the Sum-and-Product problem in public announce-
ment logic. First we need to determine the set of atomic propositions and the
set of agents. In the formulation of the problem, x, y are two integers such that
1 < x < y and x+y ≤ 100. Define I ≡ {(x, y) ∈ N2 | 1 < x < y and x+y ≤ 100}.
Consider the variable x. If its value is 3, we can represent this information as
the (truth of) the atomic proposition ‘x = 3’. Slightly more formally we can
think of ‘x = 3’ as a propositional letter x3. Thus we create a (finite) set of
atoms {xi | (i, j) ∈ I} ∪ {yj | (i, j) ∈ I}.

Concerning the agents, the role of the announcer A is to guarantee that the
background knowledge for solving the problem is commonly known among Sum
and Product. The announcer need not be introduced as an agent in the logical
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modelling of the system. That leaves {S, P} as the set of agents. Agents S and
P will also be referred to as Sum and Product, respectively.

The proposition ‘Sum knows that the numbers are 4 and 13’ is represented
as KS(x4∧y13). The proposition ‘Sum knows the (pair of) numbers’ is described
as KS(x, y) ≡

∨
(i,j)∈I KS(xi ∧ yj). Similarly, ‘Product knows the numbers’ is

represented by KP (x, y) ≡
∨

(i,j)∈I KP (xi ∧ yj). Furthermore, note that the
‘knew’ in announcement ii, by Sum, refers to the truth of KS¬KP (x, y) in the
initial epistemic state, not in the epistemic state resulting from announcement
i, by Product. Therefore, announcement i by Product is superfluous in the
subsequent analysis.1 This is sufficient to formalize the announcements made
towards a solution of the problem:

i. P says: “I do not know it”: ¬KP (x, y)

ii. S says: “I knew you didn’t”: KS¬KP (x, y)

iii. P says: “I now know it”: KP (x, y)

iv. S says: “I now also know it”: KS(x, y)

We can interpret these statements on an epistemic model SP(x,y) ≡ 〈I,∼, V 〉
consisting of a domain of all pairs (x, y) ∈ I (as above), with accessibility
relations ∼S and ∼P such that for Sum: (x, y) ∼S (x′, y′) iff x + y = x′ + y′,
and for Product: (x, y) ∼P (x′, y′) iff xy = x′y′; and with valuation V such that
Vxi = {(x, y) ∈ I | x = i} and Vyj = {(x, y) ∈ I | y = j}.

We can describe the solution of the problem as the truth of the statement

SP(x,y), (4, 13) |= 〈KS¬KP (x, y)〉〈KP (x, y)〉〈KS(x, y)〉>

This expresses that, if (4, 13) is the initial state, then it is possible to publicly
announce ii, iii, and iv, in that order. We can also express more properly that
(4, 13) is the only solution as the model validity

SP(x,y) |= [KS¬KP (x, y)][KP (x, y)][KS(x, y)](x4 ∧ y13)

5 Sum and Product as an interpreted system

A relevant observation is that a pair of numbers (x, y) with x < y corresponds to
exactly one sum-product pair (s, p). In one direction this is trivial, for the other
direction: assume (x+y, xy) = (x′+y′, x′y′). Let without loss of generality x be
the smaller of x and x′, so that x′ = x+v. Then from xy = x′y′ = (x+v)(y−v)
follows that yv − xv − v2 = 0, so that v = 0 or v = y − x. The second merely
reverses the role of x and y; in our terms, it cannot be satisfied, because x
was required to be strictly smaller than y. This observation paves the way

1In dynamic epistemic logic with assignment one can model such past tense epistemic
statements explicitly [Koo05].
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for a different modelling of the problem than the traditional one with ‘(smaller
number, larger number)’ pairs (x, y).

We now let atomic propositions represent the sum and product of the differ-
ent numbers, instead of representing these numbers themselves. For example, s7

represents that the sum of the two numbers is 7. We allow a slight abuse of the
language: if i+j = k then we also write si+j for sk. Similarly, we write pij for pl
when ij = l. Thus we create a set of atoms {sx+y | (x, y) ∈ I}∪{pxy | (x, y) ∈ I}.

The obvious way to interpret such atoms is on an epistemic model SP(s,p) ≡
〈W ′,∼′, V ′〉 with a domain W ′ consisting of all pairs (s, p) such that s = x+ y
and p = xy (as in the original formulation of the problem) for all (x, y) ∈ I, i.e.,
with 1 < x < y and x + y ≤ 100; with accessibility relations ∼′S and ∼′P such
that for Sum: (s, p) ∼′S (s′, p′) iff s = s′, and for Product: (s, p) ∼′P (s′, p′) iff
p = p′; and with valuation such that V ′sx+y

= {(s, p) ∈ W ′ | s = x + y} and
V ′pxy = {(s, p) ∈W ′ | p = xy}.

We have now modelled the problem as an interpreted system where agents at
least know their local state. Interpreted systems were introduced in theoretical
computer science as an abstract architecture for distributed systems [FHMV95].
Sum’s local state is the sum of the two numbers, Product’s local state is the
product of the two numbers. A global state for the problem is a pair of local
states, one for Sum and one for Product. The set of global states is a subset of
the full cartesian product of local state values: the dependencies between local
states enable Sum and Product to communicate their local state to each other
without explicitly referring to it.

‘Sum knows the (pair of) numbers’ can be represented by ‘Sum knows the
global state of the system’, i.e., as KS(s, p) ≡

∨
(x,y)∈I KS(sx+y ∧ pxy), and,

similarly, ‘Product knows the numbers’ by KP (s, p) ≡
∨

(x,y)∈I KP (sx+y ∧ pxy).
The formalization of the announcements made towards a solution of the problem
is then similar to above:

SP(s,p) |= [KS¬KP (s, p)][KP (s, p)][KS(s, p)](s4+13 ∧ p4·13)

An advantage of this representation is that we can apply known results for
interpreted systems, such that agents at least know their local state, and the
availability of characteristic formulas for modal structures [BM96, vB98] to the
specific case of finite interpreted systems [vDvdHK03]. That agent S knows its
local state, means that S knows the sum of the two numbers, whatever they
are: SP(s,p) |= sx+y → KSsx+y. From this follows that in the models for our
problem a requirement KS(sx+y ∧ pxy), that is equivalent to KSsx+y ∧KSpxy,
is equivalent to KSpxy. Similarly, pxy → KP pxy, and therefore, in the models,
KP (sx+y ∧ pxy) is equivalent to KP sx+y.

Concerning the characteristic formula describing the initial situation, we
can apply results from [vDvdHK03].2 The characteristic formula δ(SP(s,p)) is

2A characteristic formula of a pointed model (M,w) is a formula δ(M,w) such that M,w |=
ψ iff δ(M,w) |= ψ, in other words, any ψ true in (M,w) is entailed by δ(M,w). A similar
notion equates model validity with entailment by way of M |= ψ iff δ(M) |= ψ. These
descriptions exist for finite epistemic models. We also have that δ(M,w)↔ (δ(w)∧CN δ(M)),
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defined as

δ(SP(s,p)) ≡
∨

(x,y)∈I(sx+y ∧ pxy) ∧∧
(x,y)∈I(KSsx+y ↔ ¬KS¬(sx+y ∧ pxy)) ∧∧
(x,y)∈I(KP pxy ↔ ¬KP¬(sx+y ∧ pxy))

The first conjunct of δ(SP(s,p)) sums up the valuations of the different states
in the domain. The second conjunct says (entails) that S knows its local state
if and only if it considers possible any global state with that local state. For
example KSs17 ↔ ¬KS¬(s17 ∧ p52); another conjunct is KSs17 ↔ ¬KS¬(s17 ∧
p60). From this follows that KSs17 implies ¬KS¬p52 ∧ ¬KS¬p60 ∧ . . . : if the
sum of the two numbers is 17, S considers it possible that their product is 52,
or 60, etc.

The traditional modelling of Sum and Product relates to the interpreted
system modelling in a precise technical sense. Expand the language to one
containing atoms for all numbers x, y and atoms for all sums and products s, p of
those numbers. Extend the models SP(x,y) and SP(s,p) to SP+

(x,y) and SP+
(s,p),

respectively, by adding valuations for all sum and product atoms in the former,
and for all smaller and larger number atoms in the latter. For example, to define
SP+

(x,y) we have to add valuations for all atoms s and p such that (x, y) ∈ V +
sx+y

iff s = x+y and (x, y) ∈ V +
pxy iff p = xy. We now have that SP+

(x,y) and SP+
(s,p)

are isomorphic. (From this then follows that the models are also bisimilar
[BdRV01] – a slightly weaker notion of ‘sameness of models’ that still guarantees
that the theories describing the models are logically equivalent.) Without going
into great detail, it suffices to define the isomorhphism as R : I → W ′ such
that R : (x, y) 7→ (x + y, xy), to observe that this relation is a bijection, that
(x, y) ∼S (x′, y′) iff R(x, y) ∼S R(x′, y′) iff (x + y, xy) ∼S (x′ + y′, x′y′), and
similarly for Product, and that the valuation of all facts remains the same for
any states (x, y) and (x+ y, xy). The characteristic formula for the interpreted
system SP+

(s,p) in the expanded logical language is the previous one, δ(SP(s,p)),
in conjunction with ∧

(i,j)∈I

((xi ∧ yj)↔ (si+j ∧ pij))

This propositional equivalence relates a number pair to its unique corresponding
sum and product pair.

To conclude, using the interpreted system representation, we can describe the
initial situation for the Sum-and-Product puzzle in a very precise way. Moreover,
the traditional representation and the interpreted system one are in a sense
interchangeable: they have the same logical theory.

where δ(w) is the description of state w, for example summing up its valuation, or some other
formula only true in w.
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6 Unsuccessful updates

Not all formulas remain true after their announcement, in other words, [ϕ]ϕ is
not a principle of public announcement logic. A poignant example is when I’m
telling you that “You don’t know that the Highlanders just beat the Lions!”. In
the standard conversational setting this presumes that the factual information
of which you are ignorant is actually the case, i.e., this normally means “The
Highlanders just beat the Lions and you don’t know that the Highlanders just
beat the Lions.” It is therefore an announcement of the form q∧¬Knq. After the
announcement, you know that the fact in question is true – Knq – and therefore
the formula of the announcement has become false: Knq entails ¬q∨Knq, which
is equivalent to ¬(q∧¬Knq), the negation of the announcement. In a somewhat
different setting that the formula q ∧ ¬Knq cannot be consistently known, this
phenomenon has been known in philosophical circles for a long time, namely
as the Moore-paradox [Moo42, Hin62]. In the underlying dynamic setting it
has been described as an unsuccessful update in [Ger99, Ger05]. General ter-
minology is proposed in [vDK05]. Let ϕ be a formula in the language of public
announcement logic:

• Successful formula
ϕ is successful iff [ϕ]ϕ is valid.

• Unsuccessful formula
ϕ is unsuccessful iff it is not successful.

• Successful update
ϕ is successful in epistemic state (M,w) iff M,w |= 〈ϕ〉ϕ

• Unsuccessful update
ϕ is unsuccessful in (M,w) iff M,w |= 〈ϕ〉¬ϕ.

Note that an unsuccessful formula may be a successful update in one epistemic
state and an unsuccessful update in another epistemic state. It can be shown
that [ϕ]ϕ is valid iff [ϕ]CGϕ is valid iff ϕ→ [ϕ]CGϕ is valid. (See [vDK05], the
second equivalence follows directly from the principle [ϕ]ψ ↔ (ϕ→ [ϕ]ψ), listed
as item i on page 10 in Section 3.) Therefore, the successful formulas capture
the notion ‘formulas that remain true after their announcement’.

Clearly, also in the course of solving the Sum-and-Product problem the
agents appear to learn things that they did not know before. So some re-
versal of ignorance into knowledge seems to take place. We therefore expect
that some of the announcements made towards the solution of the problem are
unsuccessful updates. In this section we refer to those four successive announce-
ments as (how they have been enumerated before, namely as) (i) ¬KP (x, y),
(ii) KS¬KP (x, y), (iii) KP (x, y), and (iv) KS(x, y).

The case i Remember that announcement i was superfluous in the analysis
of the riddle. We therefore do not expect it to have ‘surprising informational
qualities’, and this is indeed the case: i is a successful formula.
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Formula i equals ¬KP (x, y) whereKP (x, y) which was defined as
∨

(i,j)∈I KP (xi∧
yj). Therefore, it has form ¬Knϕ ∧ ¬Knψ ∧ . . . , with ϕ,ψ, . . . booleans. We
show that this formula is successful for two conjuncts, i.e., formula [¬Knϕ ∧
¬Knψ](¬Knϕ ∧ ¬Knψ) is valid for booleans ϕ and ψ; the case for the longer
finite conjunction follows similarly.

Let M,w be arbitrary. Assume M,w |= ¬Knϕ ∧ ¬Knψ. We have to prove
that M |(¬Knϕ ∧ ¬Knψ), w |= ¬Knϕ ∧ ¬Knψ. From M,w |= ¬Knϕ ∧ ¬Knψ
follows that there are v and v′ ∈ D(M) such that v ∼n w and M,v |= ¬ϕ, and
v′ ∼n w and M,v′ |= ¬ψ, respectively. As ∼n is an equivalence relation, we also
have that v ∼n v and v ∼n v′, we have as well M,v |= ¬Knϕ∧¬Knψ; similarly,
M,v′ |= ¬Knϕ ∧ ¬Knψ. In other words, both v and v′ are in the domain of
M |(¬Knϕ ∧ ¬Knψ). As the value of boolean propositions only depends on the
current factual state, from M,v |= ¬ϕ and v ∈ D(M |(¬Knϕ ∧ ¬Knψ)) follows
M |(¬Knϕ∧¬Knψ), v |= ¬ϕ; and from the last follows M |(¬Knϕ∧¬Knψ), w |=
¬Knϕ. Similarly, M |(¬Knϕ∧¬Knψ), v′ |= ¬ψ; from which follows M |(¬Knϕ∧
¬Knψ), w |= ¬Knψ. Therefore M |(¬Knϕ ∧ ¬Knψ), w |= ¬Knϕ ∧ ¬Knψ, as
required.

The case ii An agent can become ignorant from professing his own knowledge,
and announcement ii is a typical example. This may sound strange3, but it can
easily be observed to be true for announcement ii: after ii, Product knows the
numbers (formula iii), so it can no longer be true that Sum knows that Product
does not know the numbers: in other words, formula ii is now false. Ergo, ii is
an unsuccessful update.

The cases iii and iv The last two announcements iii and iv are successful
formulas: this is because they are preserved formulas: they are truth preserving
under submodel restrictions, an inductively defined fragment with – among
other clauses – inductive clauses that atomic propositions are always preserved,
and that if ϕ and ψ are preserved, then also ϕ∧ψ, ϕ∨ψ, and Knϕ [vB02]. The
announcements iii and iv are disjunctions of formulas of the form Kn(xi ∧ yj),
and are therefore preserved. All preserved formulas are successful [vDK05]. And
all successful formulas induce successful updates in all epistemic states.

No inductive definition of the successful formulas is known – in particular, if
ϕ and ψ are both successful, [ϕ]ψ may be unsuccessful. Having said that, it
is remarkable that the sequence of the three announcements ii ; iii ; iv is an
unsuccessful update, or, put in a single formula: ii ∧ [ii]iii ∧ [ii ∧ [ii]iii]iv is
unsuccessful in the initial epistemic state. This formula becomes false after its
announcement: after that, just like after ii, Sum knows that Product knows the
numbers, so it is now false that Sum knows that Product does not know the
numbers: ii has become false, and therefore the entire conjunction correspond-
ing to the sequence ii ; iii ; iv. The first announcement i can also be added to

3Stranger even, is that an agent can also become knowledgeable from professing his own
ignorance, for which there are other examples.
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the conjunction, so that i ∧ ii ∧ [ii]iii ∧ [ii ∧ [ii]iii]iv is also unsuccessful in the
initial epistemic state.

This last observation captures, we think, more than anything else our intu-
ition that the Sum-and-Product problem is puzzling.

7 The Epistemic Model Checker DEMO

Recently, epistemic model checkers have been developed to verify properties
of interpreted systems, knowledge-based protocols, and various other multi-
agent systems. The model checkers MCK [GvdM04] and MCMAS [RL04] use
the interpreted system architecture; MCK does this in a setting of linear and
branching time temporal logic. The exploration of the search space in both
MCK and MCMAS is based on ordered binary decision diagrams.

A different model checker, not based on a temporal epistemic architecture,
is DEMO. It has been developed by Jan van Eijck [vE04]. DEMO is short for
Dynamic Epistemic MOdelling. It allows modelling epistemic updates, graphical
display of Kripke structures involved, and formula evaluation in epistemic states.
DEMO is written in the functional programming language Haskell.

The model checker DEMO implements the dynamic epistemic logic of [BM04].
In this ‘action model logic’ the global state of a multi-agent system is represented
by an epistemic model as in Section 3. But more epistemic actions are allowed
than just public announcements, and each epistemic action is represented by an
action model. Just like an epistemic model, an action model is also based on a
multi-agent Kripke frame, but instead of carrying a valuation it has a precondi-
tion function that assigns a precondition to each point in the action model. A
point in the action model domain stands for an atomic action. The epistemic
state change in the system is via an operation called the update product. This
is a restricted modal product. In this submission we restrict our attention to
action models for public announcements. Such action models have a singleton
domain, and the precondition of that point is the announced formula. We refrain
from details and proceed with (a relevant part of – recursive clauses describing
the effect of updates have been omitted) the recursive definition of formulas in
DEMO.

Form = Top | Prop Prop | Neg Form | Conj [Form] | Disj [Form]
| K Agent Form | CK [Agent] Form

Formula Top stands for >, Prop Prop for atomic propositional letters (the first
occurrence of Prop means that the datatype is ‘propositional atom’, whereas
the second occurrence of Prop is the placeholder for an actual proposition let-
ter, such as P 3), Neg for negation, Conj [Form] stands for the conjunction of
a list of formulas of type Form, similarly for Disj, K Agent stands for the in-
dividual knowledge operator for agent Agent, and CK [Agent] for the common
knowledge operator for the group of agents listed in [Agent].
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The pointed and singleton action model for a public announcement is created
by a function public with a precondition (the announced formula) as argument.
The update operation is specified as

upd :: EpistM -> PoAM -> EpistM

Here, EpistM is an epistemic state and PoAM is a pointed action model, and the
update generates a new epistemic state. If the input epistemic state EpistM
corresponds to some (M,w), then in case of the truthful public announcement
of ϕ the resulting EpistM has the form (M |ϕ,w). We can also update with a
list of pointed action models:

upds :: EpistM -> [PoAM] -> EpistM

An example is the sequence of three announcements in the Sum-and-Product
problem.

8 Sum and Product in DEMO

We implement the Sum-and-Product riddle in DEMO and show how the imple-
mentation finds the unique solution (4, 13). Figure 2 contains the implementa-
tion.

A list is a standard data structure in Haskell, unlike a set. The set I ≡
{(x, y) ∈ N2 | 1 < x < y and x+ y ≤ 100} is realized in DEMO as the list

pairs = [(x,y)| x<-[2..100], y<-[2..100], x<y, x+y<=100]

Thus, { and } are replaced by [ and ], ∈ is replaced by <-, and instead of I
we name it pairs. A pair such as (4, 18) is not a proper name for a domain
element. In DEMO, natural numbers are such proper names. Therefore, we
associate each element in pairs with a natural number and make a new list.

ipairs = zip [0..numpairs-1] pairs

Here, numpairs is the number of elements in pairs, and the function zip pairs
the i-th element in [0..numpairs-1] with the i-th element in pairs, and makes
that the i-th element of ipairs. For example, the first element in ipairs is
(0,(2,3)).

The initial model of the Sum-and-Product riddle is represented as

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2 ]++

[(b,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2 ]
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module SNP

where

import DEMO

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<y, x+y<=100]

numpairs = llength(pairs)

llength [] =0

llength (x:xs) = 1+ llength xs

ipairs = zip [0..numpairs-1] pairs

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2 ]++

[(b,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2 ]

fmrs1e = K a (Conj [Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

Neg (K b (Conj [Prop (P x),Prop (Q y)]))]| (x,y)<-pairs])

amrs1e = public (fmrs1e)

fmrp2e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K b (Conj [Prop (P x),Prop (Q y)]) ] )|(x,y)<-pairs]

amrp2e = public (fmrp2e)

fmrs3e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K a (Conj [Prop (P x),Prop (Q y)]) ] )|(x,y)<-pairs]

amrs3e = public (fmrs3e)

solution = showM (upds msnp [amrs1e, amrp2e, amrs3e])

Figure 2: The DEMO program SNP.hs. Comment lines have been removed.

Here, msnp is a multi-pointed epistemic model, that consists of a domain
[0..numpairs-1], a valuation function val, an accessibility relation function
acc, and [0..numpairs-1] points. As the points of the model are the entire do-
main, we may think of this initial epistemic state as the (not-pointed) epistemic
model underlying it.

The valuation function val maps each state in the domain to the subset of
atoms that are true in that state. This is different from Section 3, where the
valuation V was defined as a function mapping each atom to the set of states
where it is true. The correspondence q ∈ val(w) iff w ∈ V (q) is elementary. An
element (w,[P x, Q y]) in val means that in state w, atoms P x and Q y are
true. For example, given that (0,(2,3)) is in ipairs, P 2 and Q 3 are true in
state 0, where P 2 stands for ‘the smaller number is 2’ and Q 3 stands for ‘the
larger number is 3’. These same facts were described in the previous section by
x2 and y3, respectively, as that gave the closest match with the original problem
formulation. In DEMO, names of atoms must start with capital P,Q,R, but
the correspondence between names will be obvious.
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The function acc specifies the accessibility relations. Agent a represents Sum
and agent b represents Product. For (w,(x1,y1)) and (v,(x2,y2)) in ipairs,
if their sum is the same: x1+y1==x2+y2, then they cannot be distinguished by
Sum: (a,w,v) in acc; and if their product is the same: x1*y1==x2*y2, then
they cannot be distinguished by Product: (b,w,v) in acc. Function ++ is an
operation merging two lists.

Sum and Product’s announcements are modelled as singleton action models,
generated by the announced formula (precondition) ϕ and the operation public.
Consider KS¬

∨
(i,j)∈I KP (xi ∧ yj), expressing that Sum says: “I knew you

didn’t.” This is equivalent to KS

∧
(i,j)∈I ¬KP (xi ∧ yj). A conjunct ¬KP (xi ∧

yj) in that expression, for ‘Product does not know that the pair is (i, j)’, is
equivalent to (xi ∧ yj)→ ¬KP (xi ∧ yj).4 The latter is computationally cheaper
to check in the model, than the former: in all states but (i, j) of the model, the
latter requires a check on two booleans only, whereas the former requires a check
in each of those states of Product’s ignorance, that relates to his equivalence
class for that state, and that typically consists of several states.

This explains that the check on
∧

(i,j)∈I ¬KP (xi ∧ yj) can be replaced by
one on

∧
(i,j)∈I((xi∧ yj)→ ¬KP (xi∧ yj)). Using a model validity, the check on∨

(i,j)∈I KP (xi∧yj) (Product knows the numbers) can also be replaced, namely
by a check

∧
(i,j)∈I((xi ∧ yj) → KP (xi ∧ yj)).5 Using these observations, and

writing an implication ϕ → ψ as ¬ϕ ∨ ψ, the three problem announcements
ii, iii, and iv listed on page 11 are checked in DEMO by the formulas fmrs1e,
fmrp2e, and fmrs3e, respectively, as listed in Figure 2. The corresponding
singleton action models are obtained by applying the function public, namely
as amrs1e = public (fmrs1e), amrp2e = public (fmrp2e), and amrs3e =
public (fmrs3e). This is also shown in the figure.

Finally, we show a relevant part of DEMO interaction with this implemen-
tation. The complete (three-page) output of this interaction can be found on
www.cs.otago.ac.nz/staffpriv/hans/sumpro/.

The riddle is solved by updating the initial model msnp with the action
models corresponding to the three successive announcements:

*SNP> showM (upds msnp [amrs1e, amrp2e, amrs3e])
==> [0]
[0]
(0,[p4,q13])
(a,[[0]])
(b,[[0]])

This function showM displays a pointed epistemic model as:

==> [<points>]
4We use the S5-validity ¬Kϕ ↔ (ϕ → ¬Kϕ), that can be shown as follows: ¬Kϕ iff

(ϕ ∨ ¬ϕ) → ¬Kϕ iff (ϕ → ¬Kϕ) ∧ (¬ϕ → ¬Kϕ) iff (ϕ → ¬Kϕ) ∧ (Kϕ → ϕ) iff (in S5!)
(ϕ→ ¬Kϕ).

5We now use that ϕ∨ψ – where ∨ is exclusive disjunction – entails that ( Kϕ ∨ Kψ iff
(ϕ→ Kϕ) ∧ (ψ → Kψ) ).
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[<domain>]
[<valuation>]
[<accessibility relations represented as equivalence classes>]

The list [p4,q13] represents the facts P 4 and Q 13, i.e., the solution pair
(4, 13). Sum and Product have full knowledge (their access is the identity) on
this singleton domain consisting of state 0. That this state is named 0 is not a
coincidence: after each update, states are renumbered starting from 0.

For another example, (upds msnp [amrs1e,amrp2e]) represents the model
that results from Product’s announcement (iii) “Now I know the numbers.”
Part of the showM results for that model are

*SNP> showM (upds msnp [amrs1e,amrp2e])

==> [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

(...)

(0,[p2,q9])(1,[p2,q25])(2,[p2,q27])(3,[p3,q8])(4,[p3,q32])

(5,[p3,q38])(6,[p4,q7])(7,[p4,q13])(8,[p4,q19])(9,[p4,q23])

(...)

(a,[[0,3,6],[1,9,14,23,27,32,37,44,50],[2,10,17,24,28,38,45,46,51],[4

,11,18,29,33,39,47,55,60,65],[5,12,25,35,41,48,52,56,57,62,67,70,73],

[7],[8,22,36],[13,20,26,42,53,58,63,68,71,74,76,79,81],[15,19,30,34,4

0,61,66],[16,21,31,43,49,54,59,64,69,72,75,77,78,80,82,83,84,85]])

(b,[[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],

(...)

After two announcements 86 pairs (x, y) remain possible. All remaining states
are renumbered, from 0 to 85, of which part is shown. Product’s (b) access
consists of singleton sets only, of which part is shown. That should be obvious,
as he just announced that he knew the number pair. Sum’s (b) equivalence
class [0,3,6] is that for sum 11: note that (0,[p2,q9]), (3,[p3,q8]), and
(6,[p4,q7]) occur in the shown part of the valuation. Sum’s access has one
singleton equivalence class, namely [7]. That corresponds to the state for pair
(4, 13): see (7,[p4,q13]) in the valuation. Therefore, Sum can now truthfully
announce to know the pair of numbers, after which the singleton final epistemic
state (that was already displayed) results.

9 Other model checkers and DEMO programs

As mentioned in the introduction to the previous section, other model checkers
around are MCK [GvdM04], and MCMAS [RL04]. The question is whether
we could also implement this problem in those model checkers. For the latest
versions of these model checkers in both cases the answer appears to be ‘no’.

The current version of MCK is 0.2.0. In MCK, a state of the environ-
ment is an assignment to a set of variables declared in the environment section.
These variables are usually assumed to be partially accessible to the individual
agents, and agents could share some variables. The change of the state of the
multi-agent system is either made by agents or the environment, in the form
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of changing these variables. There are two ways to make such changes. One
is to send signals to the environment using the action construct by agents in
conjunction with the transitions construct by the environment, which provides
a way to describe how the environment variables are updated. The other is
a specialized form for actions from the perspective that environment variables
are shared variables, by providing read and write operations on those shared
variables. In both cases, we need guarded statements to make the change. For
example, a simple deterministic statement has the form:

if cond → C [otherwise → Co ] fi

where command C is eligible for execution only if the corresponding condition
cond evaluates to true in the current state. Otherwise, the command Co will
be executed. If we would like to model the Sum-and-Product problem in MCK,
the effect of a public announcement should be recorded in a variable which is
accessible to all agents. Suppose the effect of P ’s public announcement : “I
now know it” (KP (x, y)) is recorded in variable v. Then in a state just after
this announcement, the variable v will be set to True if KP (x, y) holds in the
previous state, and otherwise to False. Clearly, we need that statement in the
above epistemic form, with cond involving knowledge checking. Unfortunately,
even though in MCK we can check epistemic postconditions, the current version
of MCK does not support checking epistemic formulas as preconditions, as in
cond. This might possibly be related to inherent difficulties to incorporate
knowledge in cond, but an extension seems called for.

The latest MCMAS is version 0.7. The underlying theory has been developed
by Alessio Lomuscio. It can be seen as a continuation of his PhD work on
hypercube systems, which are a special class of interpreted systems [Lom99].
Similarly to MCK, MCMAS also does not support actions with knowledge-based
preconditions to transit from one global state to another global state.

Apart from the Sum-and-Product riddle we have implemented some of the other
riddles discussed in this paper in DEMO, such as the ‘Domiciliary’ problem in
Section 2.2. All these programs are mere variations of the one presented in this
paper, because the communications are always similar public announcements
of knowledge and ignorance in a two-agent system, whereas only the ‘starting
conditions’ – the number (or symbol) pairs initially allowed – vary from problem
to problem. For these programs, including full explanations, we refer to the
website www.cs.otago.ac.nz/staffpriv/hans/sumpro/.

10 Conclusions

We have modelled the Sum-and-Product problem in public announcement logic
and verified its properties in the epistemic model checker DEMO. The problem
can be represented in the traditional way by number pairs, so that Sum knows
their sum and Product their product, but also as an interpreted system with
(sum,product) pairs. Subject to the union of languages, the representations are
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bisimilar, and even isomorphic. We also analyzed which announcements made
towards a solution of the problem were unsuccessful updates – formulas that
become false because they are announced.

A final word on model checking such problems: originally, an analysis in-
volving elementary number theory and combinatorics was necessary to solve the
problem. Indeed, that was the whole fun of the problem. Solving it in a model
checker instead, wherein one can, in a way, simply state the problem in its orig-
inal epistemic formulation, hides all that combinatorial structure and makes it
appear almost trivial. Far from trying to show that the problem is therefore
actually trivial or uninteresting, this rather shows how powerful model check-
ing tools may be, when knowledge specifications are clear and simple but their
structural ramifications complex.
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