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What becomes true after arbitrary an-
nouncements
Philippe Balbiani, Hans van Ditmarsch1 , Andreas Herzig,
and Tiago De Lima2

abstract. Public announcement logic is an extension of multi-agent

epistemic logic with dynamic operators to model the informational con-

sequences of announcements to the entire group of agents. We propose
an extension of public announcement logic with a dynamic modal operator

that expresses what is true after arbitrary announcements. Intuitively, [!]ϕ

expresses that ϕ is true after an arbitrary announcement ψ. We show com-
pleteness for a Hilbert-style axiomatization of this logic, and also provide a

labelled tableau-calculus.

Keywords: public announcement logic; dynamic epistemics; tableau cal-
culus.

1 Introduction

One motivation to formalize the dynamics of knowledge is to character-
ize how truth or knowledge conditions can be realized by new information.
From that perspective, it seems unfortunate that in public announcement
logic PAL [12, 4, 17] it may come to pass that a true formula becomes false
because it is announced. The prime example is the new information ex-
pressed by the Moore-sentence ‘atom p is true and you (agent a) do not
know that’, formalized by p∧¬Kap [11, 7], but there are many other exam-
ples [16]. After the Moore-sentence is announced, you know that p is true,
so p ∧ ¬Kap is now false. Worse, no additional announcement or sequence
of announcements can make it true again. Also, the Moore-sentence cannot
become known. But, for example, true facts p can always become known.
The issues of what can become true and known are also known as reacha-
bility and knowability, respectively, and the ‘Fitch-paradox’ addresses the
problematic question whether what is true can become known. For example,
see van Benthem in [15] or, for further references, [1].

Consider an extension of public announcement logic wherein we can ex-
press what becomes true, whether known or not, without explicit reference

1Hans van Ditmarsch thanks the University of Otago for the support of his research
leave in Toulouse and much appreciates the hospitality of Irit.

2Supported by the Programme Alßan, the European Union Programme of High Level
Scholarships for Latin America, scholarship number E04D041703BR.
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to announcements realizing that. Let us work our way upwards from a con-
crete announcement. When p is true, it becomes known by announcing it.
Formally, in public announcement logic, p ∧ [!p]Kap. This is equivalent to

〈!p〉Kap

which stands for ‘the announcement of p can be made and after that the
agent knows p’. More abstractly this means that there is a announcement
ψ, namely ψ = p, that makes the agent know p, slightly more formal:

∃ψ : 〈!ψ〉Kap

We introduce a dynamic modal operator that expresses exactly that:

〈!〉Kap

Obviously, the truth of this expression depends on the model: p has to
be true. In case p is false, we can achieve 〈!〉Ka¬p instead. The formula
〈!〉(Kap ∨Ka¬p) is valid.

We overlooked a ‘detail’ of the semantics. The condition ‘〈!〉ϕ is true iff
there is a ψ such that 〈!ψ〉ϕ is true’ (for some state of the world in a Kripke
model) is not well-defined, because the announced formula ψ may then case
be the formula 〈!〉ϕ itself. We therefore need a syntactic restriction on
announcements replacing a 〈!〉 operator in a formula. We propose that such
announcements may not contain 〈!〉 operators. With that restriction, the
language is well-defined. The corresponding logic is called arbitrary public
announcement logic, or in short, arbitrary announcement logic. Some other
options for the truth condition for [!], resulting in different semantics for [!],
are discussed in the concluding section.

We provide a sound and complete axiomatization for arbitrary announce-
ment logic – though unfortunately with an infinitary derivation rule, and
also a sound and complete tableau calculus – although, for similar reasons,
without a decision procedure to determine derivability. As the calculus uses
a novel technique to label sequents with both the current state and the
history of announcements leading to that state, we first introduce it for
PAL, before generalizing it to arbitrary public announcement logic. That
restriction is, of course, decidable. The technique of using the history of an-
nouncements in the tableau calculus is not unlike the history that is recorded
in Lutz’ recent optimal reduction of public announcement logic to epistemic
logic [9].

In section 2 we define the logical language Lapal and its semantics. In sec-
tion 3 we provide a Hilbert-style axiomatization of arbitrary announcement
logic – in the proof, only crucial details are given in which it differs from
a standard axiomatization of public announcement logic without common
knowledge [17]. In section 4 we provide a tableau calculus for public an-
nouncement logic, and in section 5 we expand this to a tableau calculus for
arbitrary public announcement logic. Section 6 outlines alternative seman-
tics for the arbitrary announcement operator [!].
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2 Syntax and semantics

Assume a finite set of agents A and a countably infinite set of atoms P .

DEFINITION 1 (Language). The language Lapal of arbitrary public an-
nouncement logic is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [!ϕ]ϕ | [!]ϕ

where a ∈ A and p ∈ P . Additionally, Lpal is the language without inductive
construct [!]ϕ, Lel the language without as well [!ϕ]ϕ, and Lpl the language
without as well Kaϕ.

The languages Lpal, Lel, and Lpl are, of course, those of public announce-
ment logic, epistemic logic, and propositional logic, respectively.

For Kaϕ, read ‘agent a knows that ϕ’. For [!ϕ]ψ, read ‘after public
announcement of ϕ, ψ is true’. For [!]ψ, read ‘after every public announce-
ment, ψ is true’. Other propositional and epistemic connectives are defined
by usual abbreviations. The dual of Ka is K̂a, the dual of [!ϕ] is 〈!ϕ〉, and
the dual of [!] is 〈!〉. For K̂aϕ, read ‘agent a considers it possible that ϕ’,
for 〈!ϕ〉ψ, read ‘the announcement ϕ can be made and after that ψ is true’
and for 〈!〉ψ, read ‘there is an announcement after which ψ.’

DEFINITION 2 (Structures). An epistemic model M = 〈W,∼, V 〉 consists
of a domain W of (factual) states (or ‘worlds’), accessibility ∼ : A→ P(W×
W ), where each ∼ (a) is an equivalence relation, and a valuation V : P →
P(W ). For w ∈ W , (M,w) is an epistemic state (also known as a pointed
Kripke model).

For ∼ (a) we write ∼a, and for V (p) we write Vp. So, accessibility ∼
can be seen as a set of equivalence relations ∼a, and V as a set of valua-
tions Vp. Given two states w,w′ in the domain, w ∼a w′ means that w is
indistinguishable from w′ for agent a on the basis of its knowledge.

We adopt the standard rules for omission of parentheses in formulas and
we also delete them in representations of structures such as (M,w) whenever
convenient and unambiguous. We continue with the semantics.

DEFINITION 3. Assume an epistemic model M = 〈W,∼, V 〉. The in-
terpretation of an arbitrary ϕ ∈ Lapal is defined by induction. Note the
restriction to the language of PAL in the clause for [!]ϕ.

M,w |= p iff w ∈ Vp
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= Kaϕ iff for all u ∈W : w ∼a u implies M,u |= ϕ
M,w |= [!ϕ]ψ iff M,w |= ϕ implies M |ϕ, w |= ψ
M,w |= [!]ϕ iff for all ψ ∈ Lpal : M,w |= [!ψ]ϕ

In clause [!ϕ]ψ for public announcement, epistemic model
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M |ϕ = 〈W ′,∼′, V ′〉 is defined as

W ′ = {w′ ∈W | M,w′ |= ϕ}
∼′
a = ∼a ∩ (W ′ ×W ′)

V ′
p = Vp ∩W ′

Formula ϕ is valid in model M , notation M |= ϕ, iff for all w ∈W : M,w |=
ϕ. Formula ϕ is valid, notation |= ϕ, iff for all M (given the parameters A
and P ): M |= ϕ.

The dynamic modal operator [!ϕ] is interpreted as an epistemic state
transformer. Announcements are assumed to be truthful, and this is com-
monly known by all agents. Therefore, the model M |ϕ is the model M
restricted to all the states where ϕ is true, including access between states.
Similarly, the dynamic model operator [!] is interpreted as an epistemic state
transformer. Note that we have to restrict the announcements ψ in [!ψ]ϕ
to Lpal. Without such a (or other, see the final section) restriction the se-
mantics would not be well-defined, as [!]ϕ can itself be announced as well.
(The semantics is well-defined in the lexicographic order on Lapal such that
a formula in Lpal is less complex than any formula in Lapal containing at
least one occurrence of [!].) For the semantics of the dual operators, we have
that M,w |= 〈!〉ψ iff there is a ϕ ∈ Lpal such that M,w |= 〈!ϕ〉ψ. And we
have that M,w |= 〈!ϕ〉ψ iff M,w |= ϕ and M |ϕ, w |= ψ. Given a sequence
~ψ = (ψ1, . . . , ψk) of announcements, we write M |~ψ for M |ψ1 |...|ψk

.

EXAMPLE 4. A valid formula of the logic is 〈!〉(Kap ∨ Ka¬p). To prove
this, let (M,w) be arbitrary. Either M,w |= p or M,w |= ¬p. In the first
case, M,w |= 〈!〉(Kap ∨ Ka¬p) because M,w |= 〈!p〉(Kap ∨ Ka¬p) – the
latter is true because M,w |= p and M |p, w |= Kap; in the second case, we
analogously derive M,w |= 〈!〉(Kap ∨Ka¬p) because M,w |= 〈!¬p〉(Kap ∨
Ka¬p).1

We continue by listing some relevant validities.

PROPOSITION 5. Let, ϕ,ψ ∈ Lapal be arbitrary. Then

1. |= [!](ϕ ∧ ψ) ↔ ([!]ϕ ∧ [!]ψ)

2. |= [!]ϕ→ ϕ

3. |= [!]ϕ→ [!][!]ϕ

4. |= ϕ implies |= [!]ϕ

5. |= Ka[!]ϕ→ [!]Kaϕ (but not in the other direction)
1This example also nicely illustrates the order in which arbitrary objects come to light.

The meaning of |= 〈!〉ϕ is (i) ‘for all (M,w) there is a ψ such that M,w |= 〈!ψ〉ϕ’. This
is really different from (ii) ‘there is a ψ such that for all (M,w), M,w |= 〈!ψ〉ϕ’, which
might on first sight be appealing to the reader, when extrapolating from the incorrect
reading ‘there is a ψ such that |= 〈!ψ〉ϕ’ of |= 〈!〉ϕ. But, for example, there is no formula
ψ in the language such that 〈!ψ〉(Kap ∨Ka¬p) is valid: in other words, (i) may be true,
even when (ii) is false.
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Proof. See the appendix. �

The following proposition (for an arbitrary set of agents A) will be help-
ful to show that in the single-agent case every formula is equivalent to an
epistemic Lel -formula.

PROPOSITION 6. Let ϕ,ϕ0, . . . , ϕn ∈ Lpl, i.e., booleans, and ψ ∈ Lapal.

1. |= [!]ϕ↔ ϕ

2. |= [!]K̂aϕ↔ ϕ

3. |= [!]Kaϕ↔ Kaϕ

4. |= [!](ϕ ∨ ψ) ↔ (ϕ ∨ [!]ψ)

5. |= [!](K̂aϕ0∨Kaϕ1∨· · ·∨Kaϕn) ↔ (ϕ0∨Ka(ϕ0∨ϕ1)∨. . .∨Ka(ϕ0∨ϕn))

Proof. Left to the reader. �

Let A = {a}. A formula is in normal form when it is a conjunction of
disjunctions of the form ϕ ∨ K̂aϕ0 ∨Kaϕ1 ∨ . . . ∨Kaϕn. Every formula in
single-agent epistemic logic (K45 and therefore also in) S5 is equivalent to
a formula in normal form [10].

PROPOSITION 7. If there is only one agent, every formula in arbitrary
announcement logic is equivalent to a formula in epistemic logic.

Proof. By induction on the number of occurrences of [!]. Put the epistemic
formula in the scope of an innermost [!] in normal form. First, we distribute
[!] over the conjunction (proposition 5.1). We now get formulas of the form
[!](ϕ ∨ K̂aϕ0 ∨ Kaϕ1 ∨ · · · ∨ Kaϕn). These are reduced by application of
proposition 6.4 and 6.5 to formulas of form ϕ0∨Ka(ϕ0∨ϕ1)∨· · ·∨K(ϕ0∨ϕn).

�

3 Axiomatization and completeness

In this section we attack the problem of the complete axiomatization of
Lapal. Let ] be a new symbol. Following the line of reasoning suggested by
Goldblatt [5] we inductively define the necessity forms as follows (ϕ ∈ Lapal):

• ] is a necessity form,

• if ψ is a necessity form then (ϕ→ ψ) is a necessity form,

• if ψ is a necessity form then [!ϕ]ψ is a necessity form,

• if ψ is a necessity form then Kaψ is a necessity form.



6 Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago De Lima

all instantiations of propositional tautologies
Ka(ϕ→ ψ) → (Kaϕ→ Kaψ) distribution of knowledge over implication
Kaϕ→ ϕ truth
Kaϕ→ KaKaϕ positive introspection
¬Kaϕ→ Ka¬Kaϕ negative introspection
[!ϕ]p↔ (ϕ→ p) atomic permanence
[!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ) announcement and negation
[!ϕ](ψ ∧ χ) ↔ ([!ϕ]ψ ∧ [!ϕ]χ) announcement and conjunction
[!ϕ]Kaψ ↔ (ϕ→ Ka[!ϕ]ψ) announcement and knowledge
[!ϕ][!ψ]χ↔ [!(ϕ ∧ [!ϕ]ψ)]χ announcement composition
[!]ϕ→ [!ψ]ϕ arbitrary and specific announcement
From ϕ and ϕ→ ψ, infer ψ modus ponens
From ϕ, infer Kaϕ necessitation of knowledge
From ϕ, infer [!ψ]ϕ necessitation of announcement
From ϕ, infer [!]ϕ necessitation of arbitrary announcement
From ϕ([!χ]ψ) for all χ ∈ Lpal, infer ϕ([!]ψ) deriving arbitrary announcement / R([!])

Table 1. The axiomatization APAL

Note that each necessity form has a unique occurrence of ]. We write ϕ(ψ)
to denote a single occurrence of a formula ψ in a necessity form ϕ(]). This
notation is, for example, used in the derivation rule R([!]) of the axiomati-
zation APAL, now to follow.

DEFINITION 8. The axiomatization APAL is given in Table 1. A formula
is a theorem if it belongs to the least set of formulas containing all axioms
and closed under the rules. If ϕ is a theorem, we write ` ϕ.

All axioms and rules are sound. In particular, the rule R([!]) is correct
with respect to the semantics, i.e. if |= ϕ([!χ]ψ) for all χ ∈ Lpal, then
|= ϕ([!]ψ). In the above formulation, the rule R([!]) is infinitary. The
question lies open whether R([!]) can be replaced by a finitary inference
rule or by finitely many axioms.

EXAMPLE 9. For an example of derivation in APAL, using the axiom and
rule for [!], we show that the valid formula [!]ϕ → [!][!]ϕ is also a theorem.
Note that in step 4 of the derivation we use that [!]p → [!q]] is a necessity
form and that in step 5 of the derivation we use that [!]p→ ] is a necessity
form.

1. ` [!(q ∧ [!q]r)]p↔ [!q][!r]p announcement composition
2. ` [!]p→ [!(q ∧ [!q]r)]p arbitrary and specific announcement
3. ` [!]p→ [!q][!r]p 1, 2,propositionally
4. ` [!]p→ [!q][!]p 3, R([!])
5. ` [!]p→ [!][!]p 4, R([!])

The main effect of rule R([!]) is that it makes the canonical model (con-
sisting of all maximal consistent sets of formulas closed under the rule)
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standard for [!]. Let us see how. In the remainder of this section, most
proof details are omitted.

A set x of formulas is called a theory if it satisfies the following conditions:

• x contains the set of all theorems of Lapal;

• x is closed under modus ponens and R([!]).

Obviously the least theory is the set of all theorems and the largest theory
is the set of all formulas. The latter theory is called the trivial theory. A
theory x is said to be consistent if ⊥ 6∈ x. We shall say that a theory x is
maximal if for all formulas ϕ, ϕ ∈ x or ¬ϕ ∈ x. Let x be a set of formulas.
For all formulas ϕ, let x + ϕ = {ψ: ϕ → ψ ∈ x}. For all agents a, let
Kax = {ϕ: Kaϕ ∈ x}. For all formulas ϕ, let [!ϕ]x = {ψ: [!ϕ]ψ ∈ x}.
LEMMA 10. Let x be a theory, ϕ be a formula, and a be an agent. Then
x+ϕ, Kax and [!ϕ]x are theories. Moreover x+ϕ is consistent iff ¬ϕ 6∈ x.

Proof. The proof is based on the fact that x is closed under modus ponens
and R([!]). �

LEMMA 11. Let x be a consistent theory. There exists a maximal consistent
theory y such that x ⊆ y.

Proof. This is the Lindenbaum Lemma for the arbitrary announcement
logic. The proof can be done as in [5]. �

DEFINITION 12 (Canonical model). The canonical model of Lapal is the
structure Mc = 〈W,∼, V 〉 defined as follows:

• W is the set of all maximal consistent theories;

• For all agents a, ∼a is the binary (equivalence) relation on W defined
by x ∼a y iff Kax = Kay;

• For all atoms p, Vp is the subset of W defined by x ∈ Vp iff p ∈ x.

LEMMA 13 (Truth lemma). Let ϕ be a formula in Lapal. Then for all
maximal consistent theories x and for all finite sequences ~ψ = (ψ1, . . . , ψk)
of formulas in Lapal such that ψ1 ∈ x, [!ψ1]ψ2 ∈ x, . . ., [!ψ1] . . . [!ψk−1]ψk ∈
x:

Mc|~ψ, x |= ϕ iff [!ψ1] . . . [!ψk]ϕ ∈ x

Proof. The proof is by induction on ϕ. �

As a result we have:

THEOREM 14 (Soundness and completeness). Let ϕ be a formula. Then
ϕ is a theorem iff ϕ is valid.

Proof. Soundness is immediate, following the observations at the beginning
of this section. Completeness follows from Lemmas 10, 11, and 13. �
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4 A tableau method for public announcement logic

We present in this section an adequate proof method for public announce-
ment logic that uses tableaux. Exactly in the same way as all other tableau
methods, given a formula ϕ, it systematically tries to construct a model for
it. When it fails, ϕ is inconsistent and thus its negation is valid.

We use the common tableau representation in which formulas are pre-
fixed by a number that represents possible worlds in the model (similar to
[3, Chapter 8]). In addition, formulas are also prefixed by sequences of an-
nouncements corresponding to successive model restrictions. Given a finite
sequence of formulas ~ψ = (ψ1, . . . , ψk), for each 0 ≤ i ≤ k, the sequence
(ψ1, . . . , ψi) is noted ~ψi. The vector ~ψ0 = ε denotes the empty sequence.

DEFINITION 15. A labelled formula is a triple λ = (~ψk : n : ϕ) where

• ~ψk is a finite sequence (ψ1, . . . , ψk) of formulas in Lpal ;

• n ∈ N; and

• ϕ ∈ Lpal .

The part ~ψk : n is the label of the formula ϕ. It represents a possible world
n in the epistemic model that is successively restricted by the sequence of
formulas ~ψk.

DEFINITION 16. A skeleton is a ternary relation Σ ⊆ (A × N × N) that
represents the accessibility relations. A branch is a pair b = 〈Λ,Σ〉 where Λ
is a set of labelled formulas and Σ is a skeleton.

DEFINITION 17 (Tableau). A tableau is a set T i = {bi0, bi1, . . . } of branches.
A tableau T i+1 is obtained from a tableau T i if and only if T i+1 := (T i \
{bij})∪B for some bij ∈ T i and some finite set B of branches generated from
bij by one of the tableau rules defined below.

⊥: If {(~ψk : n : p), (~χl : n : ¬p)} ⊆ Λ, then
B = {〈Λ ∪ {(ε : n : ⊥)},Σ〉}.

¬: If (~ψk : n : ¬¬ϕ) ∈ Λ, then
B = {〈Λ ∪ {(~ψk : n : ϕ)},Σ〉}.

∧: If (~ψk : n : ϕ1 ∧ ϕ2) ∈ Λ, then
B = {〈Λ ∪ {(~ψk : n : ϕ1), (~ψk : n : ϕ2)},Σ〉}.

∨: If (~ψk : n : ¬(ϕ1 ∧ ϕ2)) ∈ Λ, then
B = {〈Λ ∪ {(~ψk : n : ¬ϕ1)},Σ〉, 〈Λ ∪ {(~ψk : n : ¬ϕ2)},Σ〉}.

K: If (~ψk : n : Kaϕ) ∈ Λ and (a, n, n′) ∈ Σ, then
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B = {〈Λ1,Σ〉, . . . 〈Λk+1,Σ〉}, where

Λ1 = Λ ∪ {(~ψ0 : n′ : ¬ψ1)}
Λ2 = Λ ∪ {(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ¬ψ2)}
Λ3 = Λ ∪ {(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ψ2), (~ψ2 : n′ : ¬ψ3)}

...
Λk = Λ ∪ {(~ψ0 : n′ : ψ1), . . . , (~ψk−2 : n′ : ψk−1), (~ψk−1 : n′ : ¬ψk)}
Λk+1 = Λ ∪ {(~ψ0 : n′ : ψ1), . . . , (~ψk−1 : n′ : ψk), (~ψk : n′ : ϕ)}.

T: If (~ψk : n : Kaϕ) ∈ Λ, then
B = {〈Λ ∪ {(~ψk : n : ϕ)},Σ〉}.

4: If (~ψk : n : Kaϕ) ∈ Λ and (a, n, n′) ∈ Σ, then
B = {〈Λ1,Σ〉, . . . 〈Λk+1,Σ〉}, where

Λ1 = Λ ∪ {(~ψ0 : n′ : ¬ψ1)}
Λ2 = Λ ∪ {(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ¬ψ2)}
Λ3 = Λ ∪ {(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ψ2), (~ψ2 : n′ : ¬ψ3)}

...
Λk = Λ ∪ {(~ψ0 : n′ : ψ1), . . . , (~ψk−2 : n′ : ψk−1), (~ψk−1 : n′ : ¬ψk)}
Λk+1 = Λ ∪ {(~ψ0 : n′ : ψ1), . . . , (~ψk−1 : n′ : ψk), (~ψk : n′ : Kaϕ)}.

5↑: If (~ψk : n : Kaϕ) ∈ Λ and (a, n′, n) ∈ Σ, then
B = {〈Λ1,Σ〉, . . . 〈Λk+1,Σ〉}, where

Λ1 = Λ ∪ {(~ψ0 : n′ : ¬ψ1)}
Λ2 = Λ ∪ {(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ¬ψ2)}
Λ3 = Λ ∪ {(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ψ2), (~ψ2 : n′ : ¬ψ3)}

...
Λk = Λ ∪ {(~ψ0 : n′ : ψ1), . . . , (~ψk−2 : n′ : ψk−1), (~ψk−1 : n′ : ¬ψk)}
Λk+1 = Λ ∪ {(~ψ0 : n′ : ψ1), . . . , (~ψk−1 : n′ : ψk), (~ψk : n′ : Kaϕ)}.

K̂: If (~ψk : n : ¬Kaϕ) ∈ Λ, then
B = {〈Λ ∪ {(~ψ0 : n′ : ψ1), . . . , (~ψk−1 : n′ : ψk), (~ψk : n′ : ¬ϕ)},Σ ∪
{(a, n, n′)}〉} for some n′ that does not appear in Λ.

[!ϕ]: If (~ψk : n : [!ϕ1]ϕ2) ∈ Λ, then
B = {〈Λ ∪ {(~ψk : n : ¬ϕ1)},Σ〉, 〈Λ ∪ {(~ψk : n : ϕ1), (~ψk, ϕ1 : n :
ϕ2)},Σ〉}.

〈!ϕ〉: If (~ψk : n : ¬[!ϕ1]ϕ2) ∈ Λ, then
B = {〈Λ ∪ {(~ψk : n : ϕ1), (~ψk, ϕ1 : n : ¬ϕ2)},Σ〉}.
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1. ε : 0 : ¬[!p ∧ ¬Kap]¬(p ∧ ¬Kap)
2. ε : 0 : p ∧ ¬Kap (1)
3. p ∧ ¬Kap : 0 : ¬¬(p ∧ ¬Kap) (1)
4. p ∧ ¬Kap : 0 : p ∧ ¬Kap (3)
5. p ∧ ¬Kap : 0 : p (4)
6. p ∧ ¬Kap : 0 : ¬Kap (4)
7. ε : 1 : p ∧ ¬Kap (6) (a, 0, 1) ∈ Σ
8. p ∧ ¬Kap : 1 : ¬p (6)
9. ε : 1 : p (7)
10. ε : 1 : ¬Kap (7)
11. ε : 1 : ⊥ (8, 9)

Figure 1. Closed tableau for the formula [!(p ∧ ¬Kap)]¬(p ∧ ¬Kap).

Given a formula ϕ ∈ Lpal , the tableau T 0 := {b00} := {〈{(ε : 0 : ϕ)}, ∅〉} is
the initial tableau for ϕ. A tableau for ϕ is a tableau that can be obtained
from the initial tableau for ϕ by successive applications of tableau rules.

DEFINITION 18. The branch b is closed iff (ε : n : ⊥) ∈ Λ for some n. The
branch b is open iff it is not closed. A tableau is closed iff all its branches
are closed. A tableau is open iff it has at least one open branch.

EXAMPLE 19. Consider the formula [!(p∧¬Kap)]¬(p∧¬Kap). Since it is
valid in PAL, its negation is not satisfiable. Therefore, under the hypothesis
that the method is complete, there exists a closed tableau for it, as shown
in figure 1.

DEFINITION 20. The branch b is satisfiable if and only if there exists an
epistemic structure M = 〈W,∼, V 〉 and a function f from N to W such that
for all (~ψk : n : ϕ) ∈ Λ

M |~ψ0 , f(n) |= ψ1 and
M |~ψ1 , f(n) |= ψ2 and

...
M |~ψk−1 , f(n) |= ψk and
M |~ψk , f(n) |= ϕ

and for all (a, n, n′) ∈ Σ, f(n) ∼a f(n′). In this case we say that b is
satisfiable via f .

A tableau is satisfiable if and only if it contains a satisfiable branch.

PROPOSITION 21. ϕ is valid if and only if there exists a closed tableau
for ¬ϕ.

Proof. This is a particular case of corollaries 25 and 27 in section 5. �

It should be possible to prove in a way similar to [3] and [6] that the
number of different labels in a branch is at most exponential in the size of
the input formula, establishing that our tableau method can be turned into
a decision procedure for PAL.
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5 A tableau method for arbitrary public
announcement logic

Now, we generalise the method given in section 4 to arbitrary announce-
ments. We reuse labelled formulas for Lapal as introduced in definition 15.

DEFINITION 22 (Tableau (continuation)). A tableau for the formula ϕ ∈
Lapal is defined as in Definition 17. The tableau rules are the same, plus
the following ones.

[!]: If (~ψk : n : [!]ϕ) ∈ Λ, then
B = {〈Λ ∪ {(~ψk : n : [!χ]ϕ)},Σ〉} for any χ ∈ Lpal .

〈!〉: If (~ψk : n : ¬[!]ϕ) ∈ Λ, then
B = {〈Λ∪{(~ψk : n : ¬[!p]ϕ)},Σ〉} for some p ∈ P that does not occur
in Λ.

These rules are similar to Smullyan’s tableau rules for closed first-order
formulas [13, 8]. They reflect that the operator [!] quantifies over announce-
ments. In tableau rule [!], this operator is eliminated by replacing it by an
arbitrary Lpal -formula. Tableau rule 〈!〉 is more curious though: instead of
replacing the operator by an announcement 〈!ψ〉 of a Lpal -formula ψ, we
replace it by an announcement of a new propositional letter. The intuitive
argument here is the following. Since this new propositional letter does not
occur in the branch, we are free to give it an arbitrary interpretation to rep-
resent a specific restriction in the model. In this way, we make the calculus
simpler because it is not necessary to make a ‘good choice’ at the moment
of the application of rule 〈!〉. The example below may help to clarify these
intuitions.

EXAMPLE 23. Consider the valid formula [!]Kap → [!][!]Kap. A closed
tableau for its negation is shown in figure 2.

PROPOSITION 24. If ϕ is satisfiable, then there is no closed tableau for
ϕ.

Proof. See the appendix. �

COROLLARY 25 (Soundness). If there is a closed tableau for ¬ϕ, then ϕ
is valid.

PROPOSITION 26. If there is no closed tableau for ϕ, then ϕ is satisfiable.

Proof. See the appendix. �

COROLLARY 27 (Completeness). If ϕ is valid, then there is a closed
tableau for ¬ϕ.

Let T be a closed tableau. Hence there is no infinite branch in T . Seeing
that T is finitely branching, König’s infinity lemma for trees implies that T
is finite. This leads immediately to the following corollary.
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1. ε : 0 : [!]Kap ∧ ¬[!][!]Kap
2. ε : 0 : [!]Kap (1)
3. ε : 0 : ¬[!][!]Kap (1)
4. ε : 0 : ¬[!q][!]Kap (3)
5. ε : 0 : q (4)
6. q : 0 : ¬[!]Kap (4)
7. q : 0 : ¬[!r]Kap (6)
8. q : 0 : r (7)
9. q, r : 0 : ¬Kap (7)
10. ε : 1 : q (9) (a, 0, 1) ∈ Σ
11. q : 1 : r (9)
12. q, r : 1 : ¬p (9)
13. ε : 0 : [!q]Kap (2)

14. ε : 0 : ¬q (13)
17. ε : 0 : ⊥ (5, 14)

15. ε : 0 : q (13)
16. q : 0 : Kap (13)

18. ε : 1 : ¬q (16)
21. ε : 1 : ⊥ (10, 18)

19. ε : 1 : q (16)
20. q : 1 : p (16)
22. ε : 1 : ⊥ (12, 20)

Figure 2. Closed tableau for the formula [!]Kap→ [!][!]Kap.

COROLLARY 28. The set of valid formulas of Lapal is recursively enumer-
able.

Proof. To see this, it suffices to consider a Turing machine TM that
enumerates all possible pairs (ϕ, T ) made up of a formula ϕ and a closed
tableau T . For each generated pair (ϕ, T ), TM checks whether T is a tableau
for ¬ϕ. When the checking process is finished, TM generates another pair,
performs another round of checking, and so on ad infinitum. �

6 Discussion and conclusion

We proposed an extension of public announcement logic with an operator [!]
that expresses what is true after arbitrary announcements. We proved sev-
eral validities involving that operator, gave a sound and complete infinitary
axiomatization, and a labelled tableau calculus, presented both for public
announcement logic and for arbitrary public announcement logic. Some
further issues in the logic, and in the tableau calculi, might be interesting
and fruitful to pursue.

Alternative semantics for arbitrary announcement. Currently,
the semantics states that [!]ϕ is true in some epistemic state iff [!ψ]ϕ is true
there for all ψ ∈ Lpal, i.e., formulas of public announcement logic, without
arbitrary announcement operators. As said, without some such restriction
the semantics would not be well-defined. An alternative semantics would
be to define that [!]ϕ is true in some epistemic state iff [!ψ]ϕ is true for all
ψ lower than [!]ϕ in a different suitable complexity order. What order? A
likely condition seems that [!ψ]ϕ < [!]ϕ if ψ < [!]ϕ. Such a semantics leads
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in a, we think, very promising direction: the truth of a formula [!]ϕ then
depends on the structure of ϕ (and the current epistemic state) only, in
other words: there can be no surprising, complex, announcements, realizing
ϕ. In fact, the most likely outcome is that the set of formulas less complex
than ϕ is finite, in which case we would have a validity [!]ϕ↔

∧
ψ∈cl(ϕ)[!ψ]ϕ,

where cl(ϕ) is the set of formulas simpler than ϕ – one may well think of
this set as a Fischer-Ladner sort of closure. (The intuitively more appealing
form of the validity is 〈!〉ϕ↔

∨
ψ∈cl(ϕ)〈!ψ〉ϕ.) The validity [!]ϕ→ [!ψ]ϕ (for

arbitrary formulas) then easily follows. We would then also have a decision
procedure to determine validity, the logic would be greatly simplified, etc2.

This may appear an unlikely outcome. But, to sharpen our intuitions,
consider the formula 〈!〉Kap. It is easy to conceive a model wherein by an-
nouncing q the agent learns p, so that we have 〈!q〉Kap. In which case there
is no relation between the achieved Kap and the announcement realizing it.
On the other hand, in the initial model p must have been true, so announc-
ing p would have achieved the same. Therefore 〈!p〉Kap. Now there is a
relation between the announcement and the postcondition!

World-based semantics. Another option for the truth condition for
[!] would be to quantify over subsets of the set of possible states, instead of
quantifying over formulas. This straightforwardly avoids syntactic problems
as the above. Formally, we would have that (given domain W of model M)

M,w |= [!]ϕ iff M |W ′ , w |= ϕ for all W ′ ⊆W such that w ∈W ′

This corresponds to one of the semantics for propositional quantifiers in
modal logic proposed by Fine [2]. In this alternative ‘world-based semantics’
arbitrary announcement no longer preserves bisimulation.

For a distinguishing example, consider the formula ϕ = (Kbp∧Kb¬Kap) →
[!](Kap → KbKap), and a four-state model M = 〈W,∼, V 〉 such that
W = {s1, s2, t1, t2}, ∼a= {〈s1, t1〉, 〈s2, t2〉}∗, ∼b= {〈s1, s2〉}∗ (where ∗ is
reflexive, symmetrical and transitive closure), and V (p) = {s1, s2}. Then
for the world-based semantics M, s1 6|= ϕ: M, s1 |= Kbp ∧ Kb¬Kap, but
M, s1 6|= [!](Kap → KbKap) because M |T , s1 6|= Kap → KbKap, where
T = {s1, s2, t2}. But: for the semantics presented in section 2, M, s1 |= ϕ
and M ′, s1 |= ϕ.
M is bisimilar to the two-state model M ′ = 〈{s1, t1},∼′, V ′〉 where

∼′
1= {〈s1, s1〉}, ∼′

2= {〈s1, t1〉}∗, and V ′(p) = {s1}, and M ′, s1 6|= ϕ.
Whereas using the semantics of definition 3 ϕ is true in both (M, s1) and (the
bisimilar) (M ′, s1). Clearly, also the logics would differ for the world-based
semantics.

2An alternative outcome is that cl(ϕ) as above is infinite, but that, instead, satisfia-
bility can be determined by a finite closure set. This suggests a completeness proof for
such a logic styled on similar completeness proofs for announcement logics with infini-
tary modal operators [17], such as common knowledge, and with a finite axiomatization
different from the infinitary one presented in Section 3. Note that in a (finite) canonical
model for 〈!〉ϕ the formula 〈!〉ϕ is equivalent to a boolean combination of formulas of
form 〈!ψ〉ϕ.
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A semantics that does not preserve bisimilarity under action execution is
obviously undesirable. (It can be easily shown that arbitrary announcement
preserves bisimilarity of structures with respect to the set of accessibility
relations ∼a for all agents). A different realization of Fine’s idea’s would be
only to require that all subsets in a bisimulation contraction are definable.
This would follow if all singletons in the contraction are definable. The
formula characterizing that may well be 〈!〉(ϕ → [!]ϕ) (iii). This formula
expresses that we can make an anouncement after which no announcement
has any further informative effect. If no announcement is informative, this
means that no actual model restriction can occur. This is only the case in
a singleton model. Therefore, (iii) expresses that an announcement can be
made to restrict arbitrary epistemic states to singletons, or, in other words,
that every epistemic state has a characteristic formula. The principle (iii)
is not valid for either of the two semantics we have discussed here.

Positive formulas. Given a preferred semantics, a suitable direction
of research may be the syntactic or semantic characterization of interest-
ing fragments of the logic. Consider the fragment ϕ ::= p|¬p|ϕ ∨ ϕ|ϕ ∧
ϕ|Kaϕ|[!¬ϕ]ϕ|[!]ϕ of the positive formulas. The positive formulas preserve
truth under arbitrary model restriction. Restricted to epistemic logic, this
was observed by van Benthem in [14]. Van Ditmarsch and Kooi extended
this in [16] to public announcement logic with clause [!¬ϕ]ϕ – note that
the truth of the announcement is a condition of its execution, which, when
seen as a disjunction, explains the negation in [!¬ϕ]. Surprisingly, we can
expand this fragment with [!]ϕ for arbitrary announcement logic (in the
case [!]ϕ of the inductive proof to show truth preservation, assuming the
opposite easily leads to a contradiction). It is also easy to see that for ev-
ery positive formula ϕ, ϕ → [!]ϕ is valid: this expresses truth preservation
after arbitrary announcement, i.e., arbitrary definable submodel restriction.
This principle may possibly also characterize the positive formulas. Note
that there is no corresponding principle in public announcement logic that
expresses truth preservation, although there we can express the notion of
success (announced formulas always remain true, as typically required in be-
lief revision) by a principle [!ϕ]ϕ. Preserved formulas are always successful:
ϕ→ [!]ϕ implies ϕ→ [!ϕ]ϕ, and ϕ→ [!ϕ]ϕ iff [!ϕ]ϕ.

Further extensions of the language. Along a common line in dy-
namic epistemics, one might expand the language with additional modal
operators, in particular with common knowledge, with assignments (ac-
tions that change the truth value of atomic propositions), and with actions
that are not public, such as private announcements. Thus, the notion of an
arbitrary public announcement, which can be seen as an epistemic action,
can be expanded by adding assignments to a more extensive action language
for planning. For the most expressive form of such a language our original
problem almost becomes trivial: in finite models all (satisfiable) formulas
are realizable in such a logic, or, more formally, given arbitrary finite (M,w)
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and satisfiable ϕ, there is an epistemic action α such that (M,w |= 〈α〉ϕ.
This follows from a recent unpublished result by van Ditmarsch and Kooi.

What is the modal logic of [!]? We have seen various schematic
validities involving only the operator [!], such as [!]ϕ→ ϕ and [!]ϕ→ [!][!]ϕ
(see proposition 5). Further note that we can ‘ground’ the notion of epis-
temic state transition, induced by the interpretation of [!], to a notion of
local accessibility between states in a model, by the expedient of ‘lifting’
individual accessibility w ∼a u to a state transition (M,w) ∼a (M,u), and
then seeing epistemic states as points in the larger model induced by such
state transitions. We then can ask ourselves the following two questions:
given the logical language ϕ ::= p|¬p|ϕ ∧ ϕ|[!]ϕ: What is that class of
models? What is the logic of [!] alone? This logic is at least S4 because
both [!]ϕ → ϕ and [!]ϕ → [!][!]ϕ are valid. In other respects, remark that
〈!〉ϕ ∧ 〈!〉ψ → ((〈!〉(ϕ ∧ 〈!〉ψ) ∨ (〈!〉(〈!〉ϕ ∧ ψ) is not valid. (To see this in
Lapal, replace ϕ by Kap ∧ ¬Kaq, and ψ by ¬Kap ∧Kaq.)

We conjecture that the McKinsey formula [!]〈!〉ϕ→ 〈!〉[!]ϕ is valid. This
schema expresses that a formula can change its truth value only finitely of-
ten as a result of a sequence of announcements. To see this correspondence,
suppose the schema is invalid. Then there are (M,w) and (a concrete for-
mula) ϕ such that M,w |= [!]〈!〉ϕ and M,w 6|= 〈!〉[!]ϕ, i.e., M,w |= [!]〈!〉ϕ (i)
andM,w |= [!]〈!〉¬ϕ (ii). If these are both true, the formula ϕ can change its
truth value infinitely often. Note that a sequence of announcements is also
an announcement, by the validity of [!ϕ][!ψ]χ↔ [!(ϕ ∧ [!ϕ]ψ)]χ. Therefore,
a true formula [!χ1]〈!χ2〉ϕ because of (i), gives us the requirement to falsify
ϕ after announcement of χ1 ∧ [!χ1]χ2 because of (ii), and so on, arbitrarily
often. It seems obvious that this cannot be, but we have no proof.

Along a similar line, we conjecture that the schemata ϕ→ [!](〈!〉ϕ→ ϕ)
as well as the slightly weaker ϕ→ ([!]〈!〉ϕ→ [!]ϕ) are valid. These formulas
express that a formula can change its truth value only once (instead of, for
‘McKinsey’, finitely often). To see this, note that the latter is equivalent
to (ϕ ∧ 〈!〉¬ϕ) → 〈!〉[!]¬ϕ, in other words: ‘if ϕ is true and we can make it
false, then we can guarantee that it remains false forever.’ If the McKinsey
formula [!]〈!〉ϕ → 〈!〉[!]ϕ is valid, it should therefore follow that these two
weaker principles are also valid.

Appendix

Proof of Proposition 5.

1. Obvious.

2. Assume M,w |= [!]ϕ. Then in particular, M,w |= [>]ϕ, i.e. (as
M,w |= >), M,w |= ϕ.

3. Let M and w ∈ M be arbitrary. Assume M,w |= 〈!〉〈!〉¬ϕ. Then
there are χ and χ′ such that M,w |= 〈!χ〉〈!χ′〉¬ϕ. Using the validity
(for arbitrary formulas) [!ϕ][!ϕ′]ϕ′′ ↔ [!(ϕ ∧ [!ϕ]ϕ′)]ϕ′′, we therefore
have M,w |= 〈!(χ ∧ [!χ]χ′)〉¬ϕ, from which follows M,w |= 〈!〉¬ϕ.
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4. Let M,w be arbitrary. We have to show that for arbitrary ψ ∈ Lpal:
M,w |= [!ψ]ϕ. From the assumption |= ϕ follows |= [!ψ]ϕ by necessi-
tation for [!ψ]. Therefore also M,w |= [!ψ]ϕ.

5. Let (M,w), ϕ ∈ Lpal, and u ∈ M |ϕ with u ∼a w arbitrary. We have
to prove that M |ψ, u |= ϕ. Because state u is also in M , from the
assumption M,w |= Ka[!]ϕ and w ∼a u also in M follows M,u |= [!]ϕ.
As ψ is true in u, M |ψ, u |= ϕ.

�

Proof of Proposition 24. We show that satisfiability of formulae is pre-
served by the tableau rules defined above. In other words, let T i be a
tableau for a given formula that contains a branch b = 〈Λ,Σ〉. We show
that if b is satisfiable in the sense of Definition 16, then the set of branches B
generated by any tableau rule defined above has also at least one satisfiable
branch.

• For rules ⊥, ¬, ∧ and ∨: Left to the reader.

• For rule K: If λ = (~ψk : n : Kaϕ) ∈ Λ and (a, n, n′) ∈ Σ, then B
contains all the branches bj = 〈Λj ,Σ〉 for 1 ≤ j ≤ k + 1 where
Λ1 = Λ ∪ {(~ψ0 : n′ : ¬ψ1)}
Λ2 = Λ ∪ {(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ¬ψ2)}
Λ3 = Λ ∪ {(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ψ2), (~ψ2 : n′ : ¬ψ3)}

...
Λk = Λ ∪ {(~ψ0 : n′ : ψ1), . . . , (~ψk−1 : n′ : ¬ψk)}
Λk+1 = Λ ∪ {(~ψ0 : n′ : ψ1), . . . , (~ψk−1 : n′ : ψk), (~ψk : n′ : ϕ)}.

By hypothesis, there exists an epistemic structure M = 〈W,∼, V 〉 and
a function f from N to W such that M |~ψk , f(n) |= Kaϕ. Then, for
all w ∈ W |~ψk , w ∈∼a (f(n)) implies M |~ψk , w |= ϕ. Then, one of the
following conditions holds.

M |~ψ0 , f(n′) |= ¬ψ1 or
M |~ψ1 , f(n′) |= ¬ψ2 or
M |~ψ2 , f(n′) |= ¬ψ3 or

...
M |~ψk−1 , f(n′) |= ¬ψk or
M |~ψk , f(n′) |= ϕ.

Therefore one of the branches bj is satisfiable.

• For rules T, 4 and 5↑: The argument is similar to that for rule K. We
also use the fact that ∼ is an equivalence relation.
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• For rule K̂: If (~ψk : n : ¬Kaϕ) ∈ Λ, then B contains only one branch
b1 = 〈Λ1,Σ1〉 such that

Λ1 = Λ ∪ {(~ψ0 : n′ : ψ1), . . . , (~ψk−1 : n′ : ψk), (~ψk : n′ : ¬ϕ)}
Σ1 = Σ ∪ {(a, n, n′)}

for some n′ that does not occur in Λ.
By hypothesis, there exists an epistemic structure M = 〈W,∼, V 〉 and
a function f from N to W such that

M |~ψ0 , f(n) |= ψ1 and
...
M |~ψk−1 , f(n) |= ψk and
M |~ψk , f(n) |= ¬Kaϕ

Then, there exists w ∈W |~ψk such that w ∈∼a (f(n)) and M |~ψk , w |=
¬ϕ. We thus consider the function f ′ from N to W defined as follows.

f ′(n) := f(n) for all n that occurs in Λ
f ′(n′) := w

Therefore, b1 is satisfiable.

• For rule [!ϕ]: If (~ψk : n : [!ϕ1]ϕ2) ∈ Λ, then B contains the branches
b1 = 〈Λ ∪ {(~ψk : n : ¬ϕ1)},Σ〉 and b2 = 〈Λ ∪ {(~ψk : n : ϕ1), (~ψk, ϕ1 :
n : ϕ2)},Σ〉. Seeing that M |~ψk , f(n) |= [!ϕ1]ϕ2 iff M |~ψk , f(n) |= ¬ϕ1

or M |~ψk |ϕ1 , f(n) |= ϕ2, thus b1 is satisfiable or b2 is satisfiable.

• For rule 〈!ϕ〉: If (~ψk : n : ¬[!ϕ1]ϕ2) ∈ Λ, then B contains only one
branch b1 = 〈Λ ∪ {(~ψk : n : ϕ1), (~ψk, ϕ1 : n : ¬ϕ2)},Σ〉. Seeing that
M |~ψk , f(n) |= ¬[!ϕ1]ϕ2 iff M |~ψk , f(n) |= ϕ1 and M |~ψk |ϕ1 , f(n) |=
¬ϕ2, thus b1 is satisfiable.

• For rule [!]: If (~ψk : n : [!]ϕ) ∈ Λ, then B contains only one branch
b1 = 〈Λ ∪ {(~ψk : n : [!χ]ϕ)},Σ〉 for some χ ∈ Lpal . Seeing that
M |~ψk , f(n) |= [!]ϕ iff M |~ψk , f(n) |= [!χ]ϕ for all χ ∈ Lpal , thus b1 is
satisfiable.

• For rule 〈!〉: If (~ψk : n : ¬[!]ϕ) ∈ Λ, then B contains only one brance
b1 = 〈Λ ∪ {(~ψk : n : ¬[!p]ϕ)},Σ〉 for some p ∈ P that does not occur
in Λ. Since M |~ψk , f(n) |= ¬[!]ϕ, then there exists a formula χ ∈ Lpal

such that M |~ψk , f(n) |= ¬[!χ]ϕ. Let M ′ = 〈W,∼, V ′〉 be the epistemic
structure defined as follows.

– V ′(p′) := V (p′) if p′ is different fromp p; and

– V ′(p) := {w ∈W : M |~ψk , w |= χ}.

Now we have that M |~ψk , f(n) |= ¬[!p]ϕ. Therefore, b1 is satisfiable.
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�

Proof of Proposition 26. We prove completeness of the tableau method
proceeding by induction on the structure of formulae of Lapal . For that
reason, we need some definitions.

DEFINITION 29. The tableau T i is saturated if and only if all applicable
tableau rules have been applied at least once. More precisely, we say that
T i is saturated if and only if T i is saturated under the tableau rules.

This implies, for example, that if (Λ,Σ) ∈ T i and (~ψ : n : Kaϕ) ∈ Λ then
(~ψ : n : ϕ) ∈ Λ.

DEFINITION 30. Let λ = (~ψk : n : ϕ) be a labelled formula. The weight
of λ, ‖λ‖, is the number of occurrences of the symbol [!] in ~ψk and ϕ. The
length of λ, |λ|, is inductively defined as follows.

• |p| := 0;

• |¬ϕ| := |ϕ|+ 1;

• |ϕ1 ∧ ϕ2| := |ϕ1|+ |ϕ2|+ 1;

• |Kaϕ| := |ϕ|+ 1;

• |[!ϕ1]ϕ2| := |ϕ1|+ |ϕ2|+ 2;

• |[!]ϕ| := |ϕ|+ 2;

• |(~ψk : n : ϕ)| := |ψ1|+ . . .+ |ψk|+ k + |ϕ|.

And the size of λ is the ordered pair size(λ) := (‖λ‖, |λ|).
Let size(λ1) = (x1, y1) and size(λ2) = (x2, y2). Then size of λ1 is less

than size of λ2, in symbols size(λ1) < size(λ2), if and only if

• x1 < x2; or

• x1 = x2 and y1 < y2.

It is clear that the relation ‘<’ is a well-founded order.
We prove that if a saturated tableau for a given formula ϕ is open, then

ϕ is satisfiable. We prove this by using the open saturated tableau for the
formula ϕ to construct an epistemic structure that satisfies it.

Suppose that Tω is an open saturated tableau for ϕ. Then, it contains
at least one open branch b = 〈Λ,Σ〉. We use this branch to construct an
epistemic structure M = 〈W,∼, V 〉 as follows.

• W := {n ∈ N : n occurs in Λ};

• ∼a:= symmetric, reflexive and transitive closure of {(n, n′) : (a, n, n′) ∈
Σ};

• V (p) := {n : (~ψk : n : p) ∈ Λ for some ~ψk}; and
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We also define f(n) := n for all n occurring in Λ.
Clearly, W is a non-empty set, ∼a is an equivalence relation, V (p) assigns

a subset of W to each proposition that appears on the tableau. If (a, n, n′) ∈
Σ, then f(n′) ∈∼a (f(n)). Thus, we now show, by induction on the size of
λ, that for all labelled formulae λ = (~ψk : n : ϕ) ∈ Λ, we have P(λ) that is
to say

M |~ψ0 , f(n) |= ψ1 and
...

M |~ψk−1 , f(n) |= ψk and
M |~ψk , f(n) |= ϕ

• The base case, where ϕ is an atom and cases where ϕ = ¬¬ϕ1, ϕ =
ϕ1 ∧ ϕ2 and ϕ = ¬(ϕ1 ∧ ϕ2) are left to the reader.

• For ϕ = Kaϕ1: Then, by the fact that rules K, 4, 5↑ and T have been
applied as many times as possible, for all n′ such that (n, n′) ∈∼a, Λ
contains at least one of the following sets of labelled formulae.

{(~ψ0 : n′ : ¬ψ1)};
{(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ¬ψ2)};
{(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ψ2), (~ψ2 : n′ : ¬ψ3)};
...
{(~ψ0, n′ : ψ1), . . . , (~ψk−1 : n′ : ¬ψk)};
{(~ψ0, n′ : ψ1), . . . , (~ψk−1 : n′ : ψk), (~ψk : n′ : ϕ1)}.

The size of each of these labelled formulae is less than the size of λ.
By Induction Hypothesis, for all n′ such that (n, n′) ∈∼a,

M |~ψ0 , f(n′) |= ¬ψ1 or
...

M | ~ψk−1 , f(n′) |= ¬ψk or
M |~ψk , f(n′) |= ϕ1

Then M |~ψk , f(n) |= ϕ. Therefore, P(λ) holds.

• For ϕ = ¬Kaϕ1: Then, by the fact that rule K̂a has been applied, Σ
contains (a, n, n′) and Λ contains

(~ψ0 : n′ : ψ1), (~ψ1 : n′ : ψ2), . . . , (~ψk−1 : n′ : ψk), (~ψk : n′ : ¬ϕ1).

The size of each of these labelled formulae is less than the size of λ.
By Induction Hypothesis, for some n′ ∈∼a (n)

M |~ψ0 , f(n′) |= ψ1 and
...
M |~ψk−1 , f(n′) |= ψk and
M |~ψk , f(n′) |= ¬ϕ1
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Then M~ψk , f(n) |= ϕ. Therefore, P(λ) holds.

• For ϕ = [!ϕ1]ϕ2: Then, by the fact that rule [!ϕ] has been applied, Λ
contains

(~ψk : n : ¬ϕ1)
or both
(~ψk : n : ϕ1) and (~ψk, ϕ1 : n : ϕ2).

The size of each of these labelled formulae is less than the size of λ. By
Induction Hypothesis, M |~ψk , f(n) |= ¬ϕ1, or both M |~ψk , f(n) |= ϕ1

and M |~ψk |ϕ1 , f(n) |= ϕ2. Then M |~ψk , f(n) |= ϕ. Therefore, P(λ)
holds.

• For ϕ = ¬[!ϕ1]ϕ2: Then, by the fact that rule 〈!ϕ〉 has been applied,
Λ contains

(~ψk : n : ϕ1) and (~ψk, ϕ1 : n : ¬ϕ2).

The size of each of these labelled formulae is less than the size of λ.
By Induction Hypothesis, M |~ψk , f(n) |= ϕ1 andM |~ψk |ϕ1 , f(n) |= ¬ϕ2.
Therefore, M |~ψk , f(n) |= ϕ. Therefore, P(λ) holds.

• For ϕ = [!]ϕ1: Then, by the fact that rule [!] has been applied as many
times as possible, Λ contains

(~ψk : n : [!χ]ϕ1) for all χ ∈ Lpal .

As χ ∈ Lpal , the size of each of these labelled formulae is (x−1, z) for
some z ∈ N. Then, the size of each of them is less than the size of λ.
By Induction Hypothesis, M |~ψk , f(n) |= [!χ]ϕ1 for all χ ∈ Lpal . Then
M |~ψk , f(n) |= ϕ. Therefore, P(λ) holds.

• For ϕ = ¬[!]ϕ1: Then, by the fact that rule 〈!〉 has been applied, Λ
contains

(~ψk : n : ¬[!p]ϕ1) for some p ∈ P.

The size of this labelled formula is less than the size of λ. By In-
duction Hypothesis, M |~ψk , f(n) |= ¬[!p]ϕ1 for some p ∈ P . Then
M |~ψk , f(n) |= ϕ. Therefore, P(λ) holds.

�
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