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Abstract

Precise pitch is important to musicians. We created algorithms for real-time

pitch detection that generalise well over a range of single ‘voiced’ musical

instruments. A high pitch detection accuracy is achieved whilst maintain-

ing a fast response using a special normalisation of the autocorrelation

(SNAC) function and its windowed version, WSNAC. Incremental versions

of these functions provide pitch values updated at every input sample. A

robust octave detection is achieved through a modified cepstrum, utilising

properties of human pitch perception and putting the pitch of the current

frame within the context of its full note duration. The algorithms have

been tested thoroughly both with synthetic waveforms and sounds from

real instruments. A method for detecting note changes using only pitch is

also presented.

Furthermore, we describe a real-time method to determine vibrato param-

eters - higher level information of pitch variations, including the envelopes

of vibrato speed, height, phase and centre offset. Some novel ways of visu-

alising the pitch and vibrato information are presented.

Our project ‘Tartini’ provides music students, teachers, performers and

researchers with new visual tools to help them learn their art, refine their

technique and advance their fields.

ii



Acknowledgements

I would like to thank the following people:

• Geoff Wyvill for creating an environment for knowledge to thrive.

• Don Warrington for your advice and encouragement.

• Professional musicians Kevin Lefohn (violin) and Judy Bellingham

(voice) for numerous discussions and providing us with samples of

good sound.

• Stuart Miller, Rob Ebbers, Maarten van Sambeek for the contributions

in creating some of Tartini’s widgets.

• Damon Simpson, Robert Visser, Mike Phillips, Ignas Kukenys, Damon

Smith, JP, Yaoyao Wang, Arthur Melissen, Natalie Zhao, and all the

people at the Graphics Lab for all the advice, fun, laughter and great

times shared.

• Alexis Angelidis for the C++ tips and the inspiration.

• Brendan McCane for the words of wisdom, the encouragement and

always leaving the smell of coffee in the air.

• Sui-Ling Ming-Wong for keeping the lab in order.

• Nathan Rountree for the Latex thesis writing template, good general

advice and sharing some musical insights.

• The University of Otago Music Department String class of 2006 for

working together for a workshop.

• The Duck (lab canteen), and Countdown for being open 24/7.

• My mum and dad.

Thank you all.

iii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Limit of scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6
2.1 What is Pitch? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 MIDI note numbering . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Seebeck’s Siren . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Virtual Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Pitch Detection History . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Time Domain Pitch Algorithms . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Simple Feature-based Methods . . . . . . . . . . . . . . . . . . . 11
2.3.2 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Square Difference Function (SDF) . . . . . . . . . . . . . . . . . 17
2.3.4 Average Magnitude Difference Function (AMDF) . . . . . . . . 18

2.4 Frequency Domain Pitch Algorithms . . . . . . . . . . . . . . . . . . . 19
2.4.1 Spectrum Peak Methods . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Phase Vocoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Harmonic Product Spectrum . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Subharmonic-to-Harmonic Ratio . . . . . . . . . . . . . . . . . . 25
2.4.5 Autocorrelation via FFT . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Other Pitch algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 Cepstrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.3 Linear Predictive Coding (LPC) . . . . . . . . . . . . . . . . . . 33

3 Investigation 34
3.1 Goals and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Pitch Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Pitch range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Responsiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Investigation of some Existing Techniques . . . . . . . . . . . . . . . . 38

3.3.1 SDF vs Autocorrelation . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Calculation of the Square Difference Function . . . . . . . . . . 41

iv



3.3.3 Square Difference Function via Successive Approximation . . . . 41
3.3.4 Square Difference Function via Autocorrelation . . . . . . . . . 42
3.3.5 Summary of ACF and SDF properties . . . . . . . . . . . . . . 43

4 A New Approach 45
4.1 Special Normalisation of the Autocorrelation (SNAC) Function . . . . . 45
4.2 Windowed SNAC Function . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Crosscorrelation via FFT . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Combined Windowing Functions . . . . . . . . . . . . . . . . . . 49

4.3 Parabolic Peak Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Clarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Experiments - The Autocorrelation Family 53
5.1 Stationary Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Frequency Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Linear Frequency Ramp . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Frequency Modulation, or Vibrato . . . . . . . . . . . . . . . . . 64

5.3 Amplitude Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Linear Amplitude Ramp . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Amplitude Step . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Additive Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Choosing the Octave 85
6.1 Measuring Accuracy of Peak Picking . . . . . . . . . . . . . . . . . . . 85
6.2 Can the Fundamental Frequency and the Pitch Frequency be Different? 88

6.2.1 Pitch Perception . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Outer/Middle Ear Filtering . . . . . . . . . . . . . . . . . . . . 90

6.3 Peak Picking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1 Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Using the Cepstrum to choose the Periodic Peak . . . . . . . . . . . . . 99
6.4.1 The Modified Cepstrum . . . . . . . . . . . . . . . . . . . . . . 101

7 Putting the Pitch in Context 105
7.1 Median Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Combining Lag Domain Peaks . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.1 Aggregate Lag Domain (ALD) . . . . . . . . . . . . . . . . . . . 108
7.2.2 Warped Aggregate Lag Domain (WALD) . . . . . . . . . . . . . 110
7.2.3 Real-time Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Note Onset Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.1 Detecting Note Changes using Pitch . . . . . . . . . . . . . . . 116
7.3.2 Back-Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.3 Forward-Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 118

v



8 Further Optimisations 119
8.1 Choosing the Window Size . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2 Incremental SNAC Function Calculation . . . . . . . . . . . . . . . . . 121
8.3 Complex Moving-Average (CMA) Filter . . . . . . . . . . . . . . . . . 122
8.4 Incremental WSNAC Calculation . . . . . . . . . . . . . . . . . . . . . 127

9 Vibrato Analysis 129
9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.3 Prony Spectral Line Estimation . . . . . . . . . . . . . . . . . . . . . . 131

9.3.1 Single Sine Wave Case . . . . . . . . . . . . . . . . . . . . . . . 132
9.3.2 Estimation Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.3.3 Allowing a Vertical Offset . . . . . . . . . . . . . . . . . . . . . 134

9.4 Pitch Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10 Implementation 136
10.1 Tartini’s Algorithm Outline . . . . . . . . . . . . . . . . . . . . . . . . 137

10.1.1 Finding the Frequency and Amplitude of Harmonics . . . . . . . 139
10.2 Scales and Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.3 User Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.3.1 File List Widget . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.3.2 Pitch Contour Widget . . . . . . . . . . . . . . . . . . . . . . . 144
10.3.3 Chromatic Tuner Widget . . . . . . . . . . . . . . . . . . . . . . 147
10.3.4 Vibrato Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.3.5 Pitch Compass Widget . . . . . . . . . . . . . . . . . . . . . . . 149
10.3.6 Harmonic Track Widget . . . . . . . . . . . . . . . . . . . . . . 150
10.3.7 Musical Score Widget . . . . . . . . . . . . . . . . . . . . . . . 151
10.3.8 Other Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11 Conclusion 154

A Pitch Conversion Table 163

B Equal-Loudness Filter Coefficients 167

C Detailed Results Tables 169

D Glossary 178

vi



List of Tables

6.1 Pitch octave errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 With middle/outer ear filtering . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Peak Picking Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4 Cepstrum octave estimate results . . . . . . . . . . . . . . . . . . . . . 100
6.5 Modified Cepstrum results with changing constant . . . . . . . . . . . . 103
6.6 Modified cepstrum results with changing scalar . . . . . . . . . . . . . 104

7.1 Periodic errors for modified cepstrum with median smoothing . . . . . 107
7.2 Octave estimate errors using combined context . . . . . . . . . . . . . . 109
7.3 Octave estimate errors using warped context . . . . . . . . . . . . . . . 112
7.4 Octave estimate errors using warped context, with reverberation . . . . 114

10.1 Summary of scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.2 Summary of tuning systems . . . . . . . . . . . . . . . . . . . . . . . . 143

A.1 Pitch conversion table . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.1 Experiment 9a results . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
C.2 Experiment 9b results . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
C.3 Experiment 10 results . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
C.4 Experiment 11 results . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
C.5 Experiment 12 results . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.6 Experiment 13 results . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
C.7 Experiment 14 results . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C.8 Experiment 15 & 16 results . . . . . . . . . . . . . . . . . . . . . . . . 176
C.9 Experiment 17 results . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

vii



List of Figures

2.1 Virtual pitch example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Helmholtz resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 An impulse train diagram . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Type-I vs type-II autocorrelation . . . . . . . . . . . . . . . . . . . . . 14
2.5 Autocorrelation example . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Hamming window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Centre clipping example . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Rectangle window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Sinc function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 Frequency plot of common windowing functions . . . . . . . . . . . . . 22
2.11 Hanning function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.12 Harmonic Product Spectrum example . . . . . . . . . . . . . . . . . . . 25
2.13 Basic model for voiced speech sounds . . . . . . . . . . . . . . . . . . . 28
2.14 An example of a male speaker saying the vowel ‘A’ . . . . . . . . . . . 28
2.15 Spectrum analysis of a male speaker saying the vowel ‘A’ . . . . . . . . 29
2.16 Cepstrum analysis of a male speaker saying the vowel ‘A’ . . . . . . . . 30
2.17 Wavelet transform diagram . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Sinusoids with different phase . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Autocorrelation plot of the sinusoids . . . . . . . . . . . . . . . . . . . 39
3.3 Square difference function plot of the sinusoids . . . . . . . . . . . . . . 40

4.1 Combining two parts of the Hann function . . . . . . . . . . . . . . . . 50
4.2 Net result of combined windows . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Comparison of autocorrelation-type methods on a sine wave . . . . . . 55
5.2 Comparison of autocorrelation-type methods on a complicated waveform 57
5.3 Constant sine wave vs sine wave frequency ramp . . . . . . . . . . . . . 59
5.4 The SNAC function of a changing sine wave . . . . . . . . . . . . . . . 60
5.5 Accuracy of sine wave’s during a linear frequency ramp . . . . . . . . . 61
5.6 A 110 Hz constant waveform vs ramp . . . . . . . . . . . . . . . . . . . 62
5.7 A 440 Hz constant waveform vs ramp . . . . . . . . . . . . . . . . . . . 63
5.8 A 1760 Hz constant waveform vs ramp . . . . . . . . . . . . . . . . . . 63
5.9 Accuracy of complicated waveform’s during a linear frequency ramp . . 64
5.10 Accuracy of autocorrelation-type functions during vibrato . . . . . . . . 66
5.11 Accuracy of autocorrelation-type functions at finding pitch on different

vibrato widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



5.12 Accuracy of autocorrelation-type functions on vibrato at different win-
dow sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.13 Amplitude ramp function example . . . . . . . . . . . . . . . . . . . . . 75
5.14 Testing sine waves with linear amplitude ramps . . . . . . . . . . . . . 76
5.15 Testing complicated waveforms with linear amplitude ramps . . . . . . 77
5.16 Amplitude step function example . . . . . . . . . . . . . . . . . . . . . 78
5.17 Testing sine waves with an amplitude step function . . . . . . . . . . . 79
5.18 Testing complicated waveforms with an amplitude step function . . . . 81
5.19 Testing accuracy with added white noise . . . . . . . . . . . . . . . . . 82

6.1 Fundamental frequency vs pitch frequency example . . . . . . . . . . . 89
6.2 Equal-Loudness Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Equal-Loudness Attenuation Filter . . . . . . . . . . . . . . . . . . . . 92
6.4 SNAC function of a violin segment . . . . . . . . . . . . . . . . . . . . 94
6.5 SNAC function from strong 2nd harmonic . . . . . . . . . . . . . . . . . 96
6.6 SNAC function showing primary-peaks . . . . . . . . . . . . . . . . . . 97
6.7 SNAC function example . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.8 Log power spectrum of a flute . . . . . . . . . . . . . . . . . . . . . . . 101
6.9 log(1 + sx) comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Warped vs non-warped Aggregate Lag Domain example . . . . . . . . . 112
7.2 Vibrato drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.1 Sine wave fitting errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.1 File List widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.2 Pitch Contour widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.3 Chromatic Tuner widget . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.4 Vibrato widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.5 Pitch Compass widget . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.6 Harmonic Track widget . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.7 Harmonic Track widget with vibrato . . . . . . . . . . . . . . . . . . . 151
10.8 Musical Score widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

ix



Chapter 1

Introduction

Pitch detection is a fundamental problem in a number of fields, such as speech recogni-

tion, Music Information Retrieval (MIR) and automated score writing and has become

useful in new areas recently, such as computer games like “SingStar” [Sony Computer

Entertainment Europe], and singing tools, such as “Sing and See” [CantOvation Ltd],

“Melodyne” [Celemony Software] and Antares “Auto-Tune 5” [Ant, 2007]. It is also

used in wave to MIDI converters, such as “Digital Ear” [Epinoisis Software].

Research suggests that real-time visual feedback applied to singing enhances cog-

nitive development and skills learning [Callaghan, Thorpe, and van Doorn, 2004]. The

findings of Wilson, Lee, Callaghan, and Thorpe [2007] indicate that a learner singer

whose training is a hybrid of traditional teaching methods and real-time visual feed-

back should make better progress in pitch accuracy than those taught by traditional

means only.

This project attempts to extend existing methods of pitch detection for the purpose

of accuracy, robustness and responsiveness across a range of musical instruments. It

then endeavours to use these pitch methods to make visual feedback tools for musicians.

These tools are intended to provide objective information about the aspects of one’s

playing in order to aid a teacher. That is the system is designed to show people what

they are playing, and not how to play. It is likely that the learning of other musical

instruments will benefit in a similar way to that of the singing voice. These tools will

form a basis for more general musical pedagogical research in the future.

1



1.1 Motivation

These days a lot of computer music research is dedicated to making music, or manipu-

lating music to make new music. However, one of the goals of this research is instead of

using a computer to try to replace the musician’s instruments, let us turn the computer

into a tool to help people playing ‘real’ instruments. These tools should provide instant

feedback to aid a musician’s learning, and refinement of sound production. There is a

kind of beauty in the live performance of real instruments, that people will always be

drawn to.

Musicians use primarily what they hear as direct feedback to help them adjust and

correct what they are playing. Often what the musicians hear is not always the same

as what the audience hears. Singers for example, can hear their own voice through

internal vibrations, and violinists who hold their violin close to their ear can hear other

close-proximity sounds.

Having an objective ‘listener’ who can show you important parameters about the

sound you produce, is like a navigation system to a pilot; for example, even though a

pilot may be able to see the ground, an altimeter is still useful. Moreover, a musician

has numerous things to concentrate on at the same time, such as pitch, volume and

timing, making it possible for unsatisfactory aspects of their sound to slip by without

their noticing.

Often certain parameters can be judged better by one sense than another. When

listening to music one can often lose track of the overall volume level of the sound. By

looking at a volume meter one can quickly get an accurate reading of this parameter.

A similar thing can happen with pitch. For example, a reference pitch is often kept

in the musician’s head which can sometimes drift. Even though the musical intervals

at any moment throughout the song may be correct, the absolute pitch of the notes

has changed. This error may only become obvious when playing with others, or with a

teacher; however, a pitch tool can enable pupil’s to detect pitch drift when practicing

at home.

The idea of a visual feedback system is not to stop the user from listening to

the sound - as this is still primarily the best source of feedback, but to simply add

another sensory channel to aid learning and understanding. A fast visual feedback tool

can allow for a new kind of experimentation, where a user can see how variations in

playing affect the pitch.

This thesis looks at how to find certain parameters of a sound, and how to display

2



them in a useful way. This thesis is primarily concerned with the parameter of musical

pitch. Several different ways to present the information are investigated. Some existing

visual feedback tools, such as guitar tuners, have room for improvement. These devices

can often take a significant part of a second to respond, and only show pitch information

in a limited way.

1.2 Limit of scope

Music often contains sounds from a collection of instruments, with notes played together

at the same time. Although there is research in the area of polyphonic analysis, this

work deals with a single note being played at a given time. That is, the sound has only

one ‘voice’. This problem alone is sufficiently complex and we see plenty of room for

the improvement of existing techniques.

We also see single voice analysis as being the most useful in practice, as it directs

both computer and user to the point of interest in the sound, thus removing any

ambiguities that can arise from multiple voices. However, we are concerned with finding

the parameters of a voice with efficiency, precision and certainty, so it can be used in

real world environments such as teaching. The focus is primarily on string, woodwind

and brass instruments, but other instruments such as the human voice are also handled.

A good tool not only does something well, but does something useful. Depending

on experience, people can have different expectations for a tool. It is difficult to prove

that a visualisation tool is helpful in learning without a thorough psychological study.

Proving the usefulness of these tools is beyond the scope of this thesis. We rely on our

own judgement, and discussions with numerous other musicians.

1.3 Contributions

This section summaries the main contributions of this thesis into nine points.

• We have developed a special normalisation of the autocorrelation (SNAC) func-

tion which improves the accuracy of measuring the short-time periodicity of a

signal over existing autocorrelation methods.

• We have extended the SNAC function for use with certain windowing functions.

This windowed SNAC (WSNAC) function improves the accuracy of measur-
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ing short-time periodicity on non-stationary signals over existing autocorrelation

methods.

• We have developed a modified cepstrum and peak picking method which has a

high rate of detecting peaks that correspond to the perceived pitch.

• We have developed a method which improves the peak error rate further by

utilising the context of notes as a whole. This is called the warped aggregate lag

domain (WALD) method.

• We have developed a simple technique for using pitch to detect note changes.

This is intended to be used in conjunction with other methods.

• We have developed an incremental algorithm for both the SNAC and WSNAC

functions, allowing them to efficiently calculate a series of consecutive pitch esti-

mates.

• We have developed an efficient algorithm for a smoothed moving-average filter,

called the complex moving-average (CMA) filter. This technique allows a large

smoothing window to be applied very quickly to almost anything.

• We have developed a method for estimating the musical parameters of vibrato

over a short-time, including the vibrato’s speed, height, phase and centre offset.

Using this method the shape of a vibrato’s envelope can be found as it changes

throughout the duration of a note.

• We have developed an application called ‘Tartini’ that implements these tech-

niques into a tool for musicians and made it freely available.

1.4 Thesis overview

Chapter 2 defines what we mean by pitch, and reviews existing algorithms that can

be used to detect it. An investigation into the properties of two of the algorithms, the

autocorrelation and the square difference function, is detailed in Chapter 3. Chapter 4

develops new variations of the autocorrelation function, called the SNAC and WSNAC

functions, and a series of experiments are performed on these in Chapter 5 to test

their pitch accuracy. Chapter 6 investigates how to determine, from a small sound

segment, the correct musical octave which corresponds to what a person would hear.

From this a peak picking algorithm is developed. This peak picking is used in the

4



SNAC function as well as a newly described modified cepstrum method. The peak

picking algorithm is developed further in Chapter 7 by using the context of a whole

musical note in its decisions. Chapter 8 describes some optimisations of the algorithms,

including a technique for incrementally calculating the SNAC and WSNAC functions,

and the more general CMA filter. Chapter 9 shows how to use the pitch information to

calculate vibrato parameters. Chapter 10 discusses the implementation of Tartini, the

application created during this project, and how the information obtained in previous

chapters can be displayed. Numerous widgets are shown which present the data in

various ways. Finally, a conclusion is drawn in Chapter 11 which summarises the goals

and achievements of this work.

A glossary is provided in Appendix D.
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Chapter 2

Background

Pitch is an important parameter of a musical note that a musician has control over.

This chapter describes what pitch is, from the discovery of its relationship to frequency,

and the first attempts to detect pitch using scientific means. Section 2.2 introduces

modern signal processing techniques for pitch detection, covering a range of different

pitch algorithms including time domain, frequency domain and other techniques.

2.1 What is Pitch?

Pitch is a perceptive quality that describes the highness or lowness of a sound. It is

related to the frequencies contained in the signal. Increasing the frequency causes an

increase in perceived pitch.

In this thesis the pitch frequency, Fp, is defined as the frequency of a pure sine

wave which has the same perceived pitch as the sound of interest. In comparison, the

fundamental frequency, F0, is defined as the inverse of the pitch period length, P0,

where the pitch period is the smallest repeating unit of a signal. For a harmonic signal

this is the lowest frequency in the harmonic series.

The pitch frequency and the fundamental frequency often coincide and are assumed

to be the same for most purposes. However, from Chapter 6 these assumptions are

lifted, and the differences investigated in order to improve the pitch detection rate.

Today there is a fairly universal standard for choosing a reference pitch when tuning

an instrument. The A above middle C is tuned to 440 Hz. Tuning forks are often tuned

to this frequency, allowing a musician to listen and tune to it. Moreover, since the

introduction of the quartz crystal, electronic oscillators can be made to great accuracy

and used for tuning as well. However, using an A of 440 Hz has not always been the
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standard. Pipe organs throughout the ages were made with A’s tuned from 374 to

567 Hz [Helmholtz, 1912]. Handel’s tuning fork from the early 1700’s was reported to

vibrate at 422.5 Hz and was more or less the standard for two centuries. [Rossing, 1990].

This is the standard for which Haydn, Mozart, Bach and Beethoven composed, meaning

that their masterpieces are often played nearly a semitone higher than intended. The

pitch has risen over the years with musicians wanting to increase the brightness in the

sound.

2.1.1 MIDI note numbering

The Musical Instrument Digital Interface, or MIDI, is an industry-standard protocol

which defines a system for numbering the regular notes. In MIDI each semitone on

the equal-tempered scale is considered a step of 1 unit. A MIDI note number can be

calculated using:

n = 69 + 12 log2(f/440) (2.1)

where f is the frequency and n is the resulting MIDI note number. The MIDI note

number 69 represents a middle ‘A’ at 440 Hz. This commonly used system is adopted

throughout this thesis. Note that n can take on any real number to represent a pitch

between the regular note pitches. A table of conversions between common pitches and

their MIDI note numbers is given in Appendix A as a useful reference. Note that other

tuning systems also exist and a discusson of these is given in Section 10.2.

2.1.2 Seebeck’s Siren

Seebeck first showed that the pitch of a note is related to the frequency of sound

when he constructed a siren which controlled the number of puffs of air per second

[Helmholtz, 1912]. This was done using a disc that rotated at a known speed, with a

number of holes in it evenly spaced just inside its rim. As the disc rotated the holes

passed over a pipe blowing air, in a systematic fashion. It was found that the pitch of

the sound produced was related only to the number of holes that passed over the pipe

in a given time, and not to the size of the holes, or the amount of air pushed through

the pipe.

Seebeck’s siren was used to show that doubling of the frequency of the sound,

created an increase in pitch by one octave. He also found relationships between other

intervals on the musical scale. Musical intervals are discussed in detail in Section 10.2

with a range of different tuning methods covered.
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Another interesting discovery was that even when the holes had unequal spacing

the same pitch resulted. This indicates that some kind of frequency averaging was

happening somewhere.

2.1.3 Virtual Pitch

A signal need not have any energy components at the fundamental frequency, F0. The

fundamental frequency can be deduced from the other frequency components provided

that they are integer multiples of F0. This phenomanon is referred to as ‘virtual pitch’

or ‘pitch of the missing fundamental’.

Figure 2.1 shows an example of a virtual pitch. Although there is no energy at

200 Hz, it is still the fundamental frequency because its frequency is deduced from the

spacing between the harmonics - as this defines the overall frequency of the repeating

waveform. Harmonics are defined as frequencies which are of an integer multiple of

the fundamental frequency. Therefore, in this example the fundamental frequency is

200 Hz.
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Figure 2.1: An example of a sound with a virtual pitch. The harmonics are all a multiple

of 200 Hz, thus giving a fundamental frequency of 200 Hz even though the amplitude of this

component is zero.

Plomp [1967] has shown that for complex tones with a fundamental frequency, F0,

below 200 Hz the pitch is mainly determined by the fourth and fifth harmonics. As

the fundamental frequency increases, there is a decrease in the number of harmonics

that dominate the pitch determination. When F0 reaches 2500 Hz or above, only the

fundamental frequency is used in determining the pitch [Rossing, 1990].
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A model using “all-order interspike-interval distribution for neural spike trains”

accounts for a wide variety of psychological pitch phenomena [Cedolin and Delgutte,

2005]. These include pitch of the missing fundamental, the pitch shift of in-harmonic

tones, pitch ambiguity, the pitch equivalence of stimuli with similar periodicity, the

relative phase invariance of pitch, and, to some extent, the dominance of low-frequency

harmonics in pitch. These periodicity cues, which are reflected in neural phase locking,

i.e. the firing of neurons preferentially at a certain phase of an amplitude-modulated

stimulus, can be extracted by an autocorrelation-type mechanism, which is mathemat-

ically equivalent to an all-order interspike-interval distribution for neural spike trains

[Cedolin and Delgutte, 2005]. Autocorrelation is discussed in Section 2.3.2.

2.2 Pitch Detection History

The first attempt actively to detect pitch appears to be that of Helmholtz with his

resonators. Helmholtz discovered in the 1860s a way of detecting frequency using

a resonator [Helmholtz, 1912]. A resonator is typically made of glass or brass, and

spherical in shape, and consists of a narrow neck opening, such as the example in

Figure 2.2. This device, like a mass on a spring, has a particular frequency to which it

resonates, called the resonant frequency. When a tone consisting of that frequency is

played nearby the resonator, it resonates producing a sound reinforcing that frequency.

This reinforcement frequency can be heard when the resonator is held near one’s ear,

allowing even an untrained ear to detect if the given frequency is present or not. The

resonant frequency of a resonator, is based on the following formula:

f =
v

2π

√
a

V l
, (2.2)

where a is the area of the neck cross-section, l is the length of the neck, V is the inner

volume of the resonator, and v is the speed of sound.

A whole series of resonators could be made, each of a different size, one for each note

of the scale. Helmholtz used the resonators to confirm that a complex tone consists of

a series of distinct frequencies. These component frequencies are call partial tones, or

partials. He was able to show by experiment that some instruments, such as strings

produce partial tones which are harmonic, whereas other instruments such as bells and

rods, produce in-harmonic partial tones.

On a stringed instrument, such as violin, there are three main parameters that

affect pitch [Serway, 1996].
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Figure 2.2: A brass Helmholtz resonator, from Max Kohl made around 1890-1900. Photo-

graph by user brian0918, www.wikipedia.org.

1. The length of string, L.

2. The tension force of the string, T .

3. The density, or mass per unit length, of the string, µ.

The fundamental frequency, F0 is approximately given by:

F0 =
1

2L

√
T

µ
(2.3)

Guiseppe Tartini reported that in 1714 he discovered ‘terzi suoni’, Italian for ‘third

sounds’ [Wood, 1944]. He found that if two notes are played together on a violin with

fundamental frequencies of a simple ratio, such as 3:2, then a third note may be heard.

The fundamental frequency of this third tone is equal to the difference between the

fundamental frequencies of the first two tones. Tartini used this third tone to recognise

correct pitch intervals.

To help us understand this, let us consider two notes with fundamental frequencies

that are almost the same; for example 440 Hz and 442 Hz. Only a single tone will be

heard that beats (in amplitude) at 2 Hz, the difference frequency. As this difference

in frequency is increased to about 15 Hz the beating sound turns into a roughness,

after which the two distinct tones are heard. Note that this is because the ear can now

resolve each of the frequency components separately. After the difference becomes well

over 20 Hz what was beating now becomes a third tone, although it may be very weak
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relative to the first two tones. The Tartni-tone becomes stronger and even audible

when the frequencies of the two notes form a low ratio. For example, a 440 Hz and 660

Hz tone have a ratio of 2:3, giving a Tartini-tone of 220 Hz. Tartini used this scientific

principle as a tool to help musicians play correct intervals. Moreover, our software is

named after him, as we too strive to make tools for musicians using science.

2.3 Time Domain Pitch Algorithms

Time domain algorithms process the data in its raw form as it is usually read from

a sound card - a series of uniformly spaced samples representing the movement of a

waveform over time. For example 44100 samples per second is a common recording

speed. In this thesis each input sample, xt, is assumed to be a real number in the range

-1 to 1 inclusive, with its value representing the height of the waveform at time t.

This section sumarises time domain pitch algorithms, from simple feature-based

methods to autocorrelation, the square difference function and the average magnitude

difference function (AMDF).

2.3.1 Simple Feature-based Methods

Let us start off with some of the simplest ways of finding pitch, such as the zero-crossing

method. In this method, the times at which the signal crosses from negative to positive

are stored. Then the difference between consecutive crossings times is used as the

period. This simple technique starts to fail once the signal contains harmonics other

than the fundamental, as they can cause multiple zero-crossing per cycle. However, if

the time between zero-crossings is stored for a number of occurrences, a simple pattern

matching approach can be used to find similar groups of crossings. The time between

the groups is used as the period. Cooper and Ng [1994] extend this idea to involve

other landmark points between the zero-crossings which also need to match well.

Another method is the parallel processing technique [Gold and Rabiner, 1969].

Firstly the signal is filtered with a lowpass filter, and then a series of impuse trains

are generated in parallel, i.e. functions containing a series of spikes which are zero

elsewhere. Each impulse train is created using a distinct peak-difference operator. They

define six such operators such as ‘an impulse equal to the peak amplitude at the location

of each peak’, and ‘an impulse equal to the difference between the peak amplitude and

the preceding valley amplitude that occurs at each peak’, and others. When an impuse

of sufficient amplitude is detected in an impuse train, a constant amplitude level is
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held for a short blanking time interval; which then decays exponentially. When a new

impulse reaches over this level it is considered as a detection and the process repeats.

Note that during the blanking interval no detections are allowed. The time between

each detection gives a pitch period estimate for each impuse train. The estimates from

all impulse trains are combined to give an overall pitch period estimate. Note that the

rate of decay and blanking interval are dependent upon the most recent estimates of

pitch period. Figure 2.3 shows an example impulse train and the changing detection

level.

Figure 2.3: An impulse train showing the blanking interval and exponential decay of the

detection level.

2.3.2 Autocorrelation

The autocorrelation function (ACF), or just autocorrelation, takes an input function,

xt, and cross-correlates it with itself; that is each element is multiplied by a shifted

version of xt, and the results summed to get a single autocorrelation value. The general

discrete-time autocorrelation, r(τ), can be written as

r(τ) =
∞∑

j=−∞

xjxj+τ . (2.4)

If a signal is periodic with period p, then xj = xj+p, and the autocorrelation will have

maxima at multiples of p where the function matches itself i.e. at τ = kp, where k is

an integer. Note: r(τ) always has a maximum at τ = 0.

In practice, the short-time autocorrelation function is used when applying it to

actual data, as the frequency of a musical note is not typically held steady forever.

The short-time autocorrelation function acts only on a short sequence from within the

data, called a ‘window’. The size of the window is usually kept small so the frequencies
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within it are approximately stationary. However, for fast changing frequencies this

approximation becomes less accurate. In contrast, the window should be large enough

to contain at least two periods of the waveform in order correlate the waveform fully.

There are a two main ways of defining autocorrelation. We will refer to them as

type-I and type-II. When not specified we are referring to type-II.

We define the ACF type-I of a discrete window sequence xt as:

r(τ) =

W/2−1∑

j=0

xjxj+τ , 0 ≤ τ ≤ W/2 (2.5)

where r(τ) is the autocorrelation function of lag τ calculated using the current window

of size W . Here the the summation always contains the same number of terms, W/2,

and has a maximum delay of τ = W/2. The “effective centre”, tc, of the type-I

autocorrelation moves with τ as can be seen in Figure 2.4(a). Details of the effective

centre are discussed more in Section 3.3.5. The type-I autocorrelation can be used

effectively on a section of stationary signal, that is a signal that is not changing over

time, but keeps repeating within the window.

We define the ACF type-II as:

r′(τ) =
W−1−τ∑

j=0

xjxj+τ , 0 ≤ τ < W (2.6)

In this definition the number of terms in the summation decreases with increasing

values of τ . This has a tapering effect on the autocorrelation result, i.e. the values

tend linearly down toward zero at τ = W . The effective centre, t′c, of the type-II

autocorrelation is stationary, making it more effective to use on non-stationary signals.

Figure 2.4(b) shows a diagram to help explain the type-II autocorrelation.

Figure 2.5 shows an example output of the type-I and type-II autocorrelations from

a window of data taken from a violin. Note that if an autocorrelation type-II is carried

out after first zero-padding the data to double the window size, the result is the same

as that from a type-I, for 0 ≤ τ ≤ W/2.

To account for the tapering effect of the type-II autocorrelation, a common solution

is to introduce a scaling term. This is called the unbiased autocorrelation, and is given

by

r′U(τ) =
W

W − τ

W−1−τ∑

j=0

xjxj+τ , 0 ≤ τ < W (2.7)
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(a) Type-I

(b) Type-II

Figure 2.4: A digram showing the difference between the type-I and type-II autocorrelation.

Large instabilities can appear as τ approaches W , so it is common to only use the

values of τ up to W/2. The function r′(τ) attains a maximum at τ = 0 which is

proportional to the total energy contained in the data window. This zero-lag value can

be used to normalise the autocorrelation i.e. divide all values by r′(0), so they are in

the range -1 to 1.

Windowing functions can be applied to the data before autocorrelation, concen-

trating stronger weightings at the centre of the window, reducing the “edge effects”

caused by sudden starting and stopping of correlation at either end. This allows for a

smoother transition as the window is moved. The Hamming window function is often

used. The Hamming window coefficients are computed using

wn = 0.53836 − 0.46164 cos(
2πn

W − 1
), 0 ≤ n < W, (2.8)

with the function being zero outside the range. Figure 2.6 shows an example Hamming

window with W = 1000. To apply a windowing function, it is multiplied element-

wise by the data window, shaping the data’s ends closer toward zero. The windowed

autocorrelation, r′Win, is therefore defined as:

r′Win(τ) =
W−1−τ∑

j=0

wjxjwj+τxj+τ . (2.9)
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(a) A window of size W = 1024 taken from a violin recording
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(b) An autocorrelation of type-I
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(c) An autocorrelation of type-II

Figure 2.5: A piece of violin data, (a), and two types of autocorrelation performed on it,

(b) and (c). Type-II in (c) has a linear tapering effect.

Note that there should be the same number of windowing function coefficients, w, as

the window size, W . The equation is generally more useful in the unbiased form. The

windowed unbiased autocorrelation, r′WinUnbiased, is defined as:

r′WinUnbiased(τ) =
W

(W − τ)

W−1−τ∑

j=0

wjxjwj+τxj+τ . (2.10)

This can be also be normalised by dividing the result by r′Win(0).

Once the autocorrelation has been performed the index of the maximum is found

and used as the fundamental period estimate (in samples). This is then divided into the

sampling rate to get a fundamental frequency value of the pitch. In the lag domain there

are often lots of maxima due to the good correlation at two periods, three periods and

so on. These maxima can be very similar in height, making it possible for an incorrect

maxima to be selected. The unbiasing of the type-II autocorrelation is often left out
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Figure 2.6: A Hamming window of size 1000, often used as a windowing function applied

during autocorrelation.

when choosing the maximum, to allow the natural linear decay to give preference to

the earlier periods, as with simple sounds, it is often the first maxima that is wanted.

However, choosing the correct peak is considered a bit of a black art, and is discussed

in more detail in Section 6.3.

Autocorrelation is good for detecting perfectly periodic segments within a signal,

however, real instruments and voices do not create perfectly periodic signals. There

are usually fluctuations of some sort, such as frequency or amplitude variations; for

example, during vibrato or tremolo. Section 3.3 investigates how these variations affect

the autocorrelation. For more information on autocorrelation see Rabiner [1977].

Centre clipping

Consistently picking the correct peak from an autocorrelation can be difficult. In speech

recognition it is common to pre-process the signal by “flattening” the spectrum. The

objective here is to minimise the effects of the vocal tract transfer function, bringing

each harmonic closer to the same level, and hence enhancing the vocal source. One

method of flattening is centre clipping [Sondhi, 1968]. This involves a non-linear trans-

formation to remove the centre of the signal, leaving the major peaks. First a clipping

level, CL, is defined as a fixed percentage of the maximum amplitude of the signal

window. Then the following function is applied:

y(t) =





0 for |x(t)| ≤ CL

x(t) − CL for x(t) > CL

x(t) + CL for x(t) < −CL.

(2.11)

Figure 2.7 gives an example of centre clipping using a fixed percentage of 30%, the

value used by Sondhi [1968]. The resulting autocorrelation contains considerably fewer

extraneous peaks, reducing the confusion when choosing the peak of interest.
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(a) The original segment of speech
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(b) The centre clipped speech

Figure 2.7: An example of centre clipping on a speech waveform.

Another variation on this theme is the 3 level centre clipper, for use on more

restricted hardware, in which the following function is used:

y(t) =





0 for |x(t)| ≤ CL

1 for x(t) > CL

−1 for x(t) < −CL.

(2.12)

Here the output is -1, 0, or 1, allowing for a greatly simplified autocorrelation calcula-

tion in hardware. This method is purely for computational efficiency and can degrade

the result a little from the above method.

2.3.3 Square Difference Function (SDF)

The idea for using the square difference function1 (SDF) is that if a signal is pseudo-

periodic then any two adjacent periods of the waveform are similar in shape. So if

the waveform is shifted by one period and compared to its original self, then most of

the peaks and troughs will line up well. If one simply takes the differences from one

waveform to the other and then sums them up, the result is not useful, as some values

1also called the average square difference function (ASDF) when divided by the number of terms
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are positive and some negative, tending to cancel each other out. This could be dealt

with by using the absolute value of the difference, as discussed in Section 2.3.4, however

it is more common to sum the square of the differences, where each term contributes

a non negative amount to the total. When the waveform is shifted by an amount, τ ,

that is not the period the differences will become greater, and cause an increased sum.

Whereas, when τ equals the period it will tend to a minimum.

Analogous to the autocorrelation in section 2.3.2, we define two types of discrete-

signal square difference functions. The SDF of type-I is defined as:

d(τ) =

W/2−1∑

j=0

(xj − xj+τ )
2, 0 ≤ τ ≤ W/2, (2.13)

and the SDF type-II is defined as:

d′(τ) =
W−1−τ∑

j=0

(xj − xj+τ )
2, 0 ≤ τ < W. (2.14)

Like the type-II ACF, the type-II SDF has a decreasing number of summation terms

as τ increases. In both types of SDF, minima occur when τ is a multiple of the period,

whereas in the ACFs maxima occurred. However, the exact position of these maxima

and minima do not always coincide. These differences are discussed in detail in Section

3.3.

When using the type-II SDF it is common to divide d′(τ) by the number of terms,

W − τ , as a method of counteracting the tapering effect. However, this can introduce

artifacts, such as sudden jumps when large changes in the waveform pass out the edge

of the window. A new normalisation method is introduced in section 4.1 that provides

a more stable correlation function which works well even with a window containing

just two periods of a waveform.

For more information on the SDF see de Cheveign and Kawahara [2002] and Ja-

covitti and Scarano [1993].

2.3.4 Average Magnitude Difference Function (AMDF)

The average magnitude difference function (AMDF) is similar to both the autocorre-

lation and the square difference function. The AMDF is defined as

γ(τ) =
1

W

W/2−1∑

j=0

|xj − xj+τ |, 0 ≤ τ ≤ W/2, (2.15)
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although often the 1
W

is left out if all you are interested in is the index of the minimum.

The motivation here is that no multiplications are used, so this measure of the degree

to which data is periodic is well suited to special purpose hardware. However, it still

acts similarly to the SDF, producing zeros at multiples of the period for a periodic

signal, and non-zero otherwise. Here the larger differences are not penalised as harshly

as in the SDF. For more information on AMDF see Ross, Shaffer, Cohen, Freudberg,

and Manley [1974].

2.4 Frequency Domain Pitch Algorithms

Frequency domain algorithms do not investigate properties of the raw signal directly,

but instead first pre-process the raw, time domain data, transforming it into the fre-

quency space. This is done using the Fourier transform. The following starts with a

mathematical definition of the Fourier transform, and develops it into a form useful for

signal processing.

The continuous Fourier transform is defined as

X(f) =

∫
∞

−∞

x(t)e−2πiftdt, f, t ∈ R, (2.16)

where f is the frequency. The capital X denotes the Fourier transform of x. The

Fourier transform breaks a function, x(t), up into its sinusoidal components, i.e. the

amplitude and phase of sine waves on a continuous frequency axis that contribute to

the function.

In practice, we do not always have a continuous function, we have a sequence of

measurements from this function called samples. These samples are denoted xt. A

discrete version of the Fourier transform (DFT) can be used in this case. This can be

written as

Xf =
∞∑

t=−∞

xte
−2πift, f, t ∈ Z. (2.17)

Here the function need only be sampled at discrete regular steps. For example, the

input from a sound card/microphone which takes measurements of air pressure every

1/44100th of a second is sufficient.

In practice, a discrete Fourier transform cannot be done on an infinite sequence of

samples. However, if a sequence is periodic, such that it repeats after fixed number of

samples, W , i.e.

xt = xt+W , −∞ < t < ∞ (2.18)
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then the whole infinite sequence can be reproduced from a single period. A DFT can

be performed on this single period, with a window of size W to produce an exact

representation of the periodic sequence. This is done as follows:

Xf =
W−1∑

t=0

xte
−2πi ft

W . (2.19)

Xf are referred to as the Fourier coefficients, and are in general complex for real

sequences. An efficient calculation of the DFT called the fast Fourier transform, or

FFT [Cooley and Tukey, 1965], made the use of the DFT popular for signal processing,

as it reduced the computation complexity from O(W 2) to O(W log(W )).

The original sequence can be reproduced from the Fourier coefficients using the

inverse DFT:

xt =
1

W

W−1∑

f=0

Xfe
2πi ft

W . (2.20)

Note that the DFT and the inverse DFT are almost the same, a useful property.

Let us instead consider a sequence, xt, of finite length that is zero outside the

interval 0 ≤ t < W . This is done by multiplying the sequence by a rectangular

windowing function

rectangle(x) =

{
1 for 0 ≤ x < W

0 otherwise,
(2.21)

as shown in figure 2.8 with window size W = 1000. This sequence now has the property

of being localised in time. This small contiguous section of the data is called a window,

and has a given size, W , which is the number of samples it contains in its sequence.

The window refers to data being used in a given computation. The window is a view of

a given segment of data and in practice will be moved across the data with a given hop

size2. The hop size is the number of samples a window is moved to the right between

consecutive frames. Frames are indexes that refer to window positions, and usually

follow something of the form window position = frame ∗ hop size.

If a window is taken and interpreted as if it is a periodic sequence, as in Equation

2.18, then Equation 2.19 can be applied to determine the Fourier coefficients. The

coefficients contain enough information to reproduce the periodic sequence. Taking

only the interval 0 ≤ t < W and treating the rest as zeros, we have recovered our finite

sequence back. This shows that a sequence of length W can be exactly represented by

2Also called a jump or step size
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Figure 2.8: A rectangle window of size 1000. This is multiplied by a sequence to zero out

everything outside the window.

its Fourier coefficients. But it cannot be used to describe the original signal outside

this window.

The Fourier coefficients tell us the amplitude and phase of each sinusoid to add

together to reproduce the finite sequence. However, these coefficients are not a true

representation of the spectrum because of the rectangular window applied to the se-

quence. The coefficients represent the spectrum convolved with a sinc function. Note

that

sinc(x) =

{
1 for x = 0

sin(πx)/x otherwise.
(2.22)
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Figure 2.9: The sinc function.

Figure 2.9 shows the sinc function, which is the Fourier transform of a rectangular

window. Notice that all integer positions of the sinc function have a value of 0, except

at f = 0 where it has a value of 1. This means that if the sequence contains a sine

wave that has a whole number of periods in the window, it is represented by only one

Fourier coefficient. Sine waves without a whole number of periods get scattered or
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leaked across a range of coefficients, for example, sinc positions ... -2.5, -1.5, -0.5, 0.5,

1.5, 2.5 ... for a sine wave with 6.5 periods in the window. This leaking of spectral

coefficients into their neighbours is often referred to as “edge effects”, as it is caused

by the hard cutoff shape of the rectangle window function. Moreover, the Fourier

coefficients are also referred to as frequency ‘bins’, as any nearby frequencies also fall

into the coefficient’s value.

Many different windowing functions have been devised to help smooth this hard

edge, with the aim of producing a Fourier transform with less spectral leakage. The

spectral leakage is often measured in terms of the main-lobe width and side-lobe atten-

uation. Harris [1978] discusses the properties of many different windowing functions

in some depth, and their effect on spectral leakage. Figure 2.10 shows a normalised

frequency plot of the Fourier transforms of some common windowing functions. Note

that the sinc function becomes the blue line in the logarithmic plot. It can be seen

that the rectangular window has a narrow main-lobe which is good, but poor side-lobe

attenuation which makes it difficult to separate real peaks from side-lobe peaks in the

spectral domain. The other two spectral curves shown, the Hamming and Hanning

window functions, have wider main-lobes but better side-lobe attenuation.
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Figure 2.10: A normalised frequency plot of some common windowing functions.

The Hanning window function, shown in Figure 2.11, is common in analysis-synthesis

methods, as it reduces the height of the side lobes significantly while still allowing for

easy reconstruction of the original signal. Reconstruction is done by using a number

of 50% overlapping analysis windows, i.e. a W/2 hop size. Note that applying a win-

dowing function to the sequence and then performing a DFT is also referred to as a

short-time Fourier transform (STFT).

The STFT generates a spectrum estimate, but, in order to determine exactly what
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Figure 2.11: The Hanning function with a window size of W = 1000.

the frequency components of interest are, further processing is required. Rodet [1997]

contains a good summary of techniques which can be used to obtain spectral compo-

nents of interest. The following discusses some spectrum peak methods and how a

pitch frequency can be drawn from this.

2.4.1 Spectrum Peak Methods

Because the DFT produces coefficients for integer multiples of a given base frequency,

any frequencies which fall in between these require further processing to find. The

following discusses a variety of methods that have been used to estimate the spectrum

peaks and combine them together to determine the pitch frequency. Note that a single

spectral component is referred to as a partial.

McLeod and Wyvill [2003] use the property that the Fourier transform of a Gaussian-

like window gives a Gaussian-like spectrum, and that the logarithm of a Gaussian is

a parabola. Thus, if a STFT is performed using a Gaussian-like window and the log-

arithm of the coefficients is taken, a parabola can be fitted using 3 values about a

local maximum coefficient to yield its centre. This centre represents the frequency and

amplitude of the partial in the original signal. However, if multiple partials are close

together they can interfere to reduce the validity of the assumptions made. Once the

frequency and amplitude of all the peaks are found, the frequency, f , with the highest

peak amplitude is assumed to be a multiple of the pitch frequency, and a voting scheme

is used to determine which harmonic, h, it is. Each possible choice of harmonic gains

votes based on the distances between peaks. If the distance from one peak to another

is close to f/h the votes for h being the correct harmonic increase by the square of

the constituent amplitudes (in decibels, dB). Note that all combinations of peaks are
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compared.

Parabolic fitting techniques are also discussed in Keiler and Marchand [2002] along

with the related triangle algorithm [Althoff, Keiler, and Zölzer, 1999], in which the

windowing function is chosen so that a triangular shape is produced in the Fourier

domain. Thus making the interpolation simpler.

Dziubiński and Kostek [2004] employ an artificial neural network (ANN) to find

the frequency of the highest peak, with the same 3 neighbourhood coefficients used as

input. The system was trained with synthetic data. A complicated weighting of energy

components is used to determine which harmonic the peak represents.

A similar method by Mitre, Queiroz, and Faria [2006] uses what they call a state-of-

the-art sinusoidal estimator. This includes a fundamental frequency refinement stage

which considers the frequency estimates of all partials in the harmonic series. All these

partials are used to generate a weighted average of each local fundamental estimate.

2.4.2 Phase Vocoder

The basic idea of phase vocoder methods, discussed in Keiler and Marchand [2002] and

Götzen, Bernardini, and Arfib [2000], is to use the change in phase of frequency bins

between two successive STFT’s to find the partials accurately. Only the local maxima

in the STFT coefficients are of interest. The expected phase advance over the given

hop size is known for a given frequency bin. The measured phase difference from this

expected value can be used to determine the offset from the frequency bin, and hence

the frequency of the partial.

Signal derivatives are used to improve the precision in Marchand [1998, 2001]. This

takes advantage of the property that a sine wave’s derivative is another sine wave of

the same frequency, although its phase and amplitude may differ.

2.4.3 Harmonic Product Spectrum

The harmonic product spectrum (HPS) is a method for choosing which peak in the

frequency domain represents the fundamental frequency. The basic idea is that if the

input signal contains harmonic components then it should form peaks in the frequency

domain positioned along integer multiples of the fundamental frequency. Hence if the

signal is compressed by an integer factor i, then the ith harmonic will align with the

fundamental frequency of the original signal.

The HPS involves three steps: calculating the spectrum, downsampling and mul-
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Figure 2.12: An example frequency spectrum, S1, being downsampled by a factor 2, 3 and

4 for HPS. A rectangle highlights the peaks aligned with the fundamental.

tiplication. The frequency spectrum, S1, is calculated using the STFT. S1 is then

downsampled by a factor of two using re-sampling to give S2, i.e. resulting in a fre-

quency domain that is compressed to half its length. The second harmonic peak in

S2 should now align with the first harmonic peak in S1. Similarly, S3 is created by

downsampling S1 by a factor of three, in which the third harmonic peak should align

with the first harmonic peak in S1. This patten continues with Si being equal to S1

downsampled by a factor of i, with i ranging up to the number of desired harmonics

to compare. Figure 2.12 shows an example of a function and its compressed versions.

The resulting spectra are multiplied together and should result in a maximum peak

which corresponds to the fundamental frequency.

One of the limitations of HPS is that it does not perform well with small input

windows, i.e. a window containing only two or three periods. Hence, it is limited by

the resolution in the frequency domain because peaks can get lost in the graininess of

the discrete frequency bins. Increasing the length of STFT, so that the peaks can be

kept separated improves the result, at the cost of losing time resolution.

2.4.4 Subharmonic-to-Harmonic Ratio

Sun [2000, 2002] discuss a method for choosing the pitch’s correct octave, in speech,

based on a ratio between subharmonics and harmonics. The sum of harmonic amplitude
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is defined as:

SH =
N∑

n=1

X(nF0) (2.23)

where N is the maximum number of harmonics to be considered, and X(f) denotes

the interpolated STFT coefficients, and F0 denotes a proposed fundamental frequency.

The sum of subharmonic amplitude is defined as:

SS =
N∑

n=1

X((n − 1

2
)F0). (2.24)

The subharmonic-to-harmonic ratio (SHR) is obtained using:

SHR =
SS

SH
. (2.25)

As the ratio increases above a certain threshold, the resultant pitch is chosen to be

one octave lower than the frequency defined by F0. However, the algorithm is modified

to use a logarithmic frequency axis, as this causes higher harmonics to become closer

and eventually merge together. This effect is similar to the way critical bands within

the human auditory system have a larger bandwidth at higher frequencies, and hence,

the human inability to resolve individual harmonics at higher frequencies. The linear

to logarithmic transformation of the frequency axis, described in Hermes [1988], is

performed using cubic-spline interpolation of the spectrum. They found that using 48

points per octave was sufficient to prevent any undersampling of peaks (on a 256-point

FFT) for most speech-processing purposes.

2.4.5 Autocorrelation via FFT

Although the autocorrelation method is considered a time domain method (Section

2.3.2), frequency domain transformations can be used for computational efficiency.

Using properties from the Wiener-Khinchin theorem [Weisstein, 2006b], the compu-

tation of large autocorrelations can be reduced significantly using the FFT method

[Rabiner and Schafer, 1978]. An FFT is first carried out on the window to obtain the

power spectral density and then the autocorrelation is computed as the inverse FFT

of the power spectral density. To avoid aliasing caused by the terms wrapping around

one end and into the other, the data is zero-padded by the number of output terms

desired, p. In our case p is usually W/2. The basic algorithm given a window size, W ,

is as follows:

• Zero-pad the data with p zeros, i.e. put p zero’s on the end of the array.
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• Compute a FFT of size W + p.

• Calculate the squared magnitude of each complex term (giving the power spectral

density).

• Compute an inverse FFT to obtain the autocorrelation (type-II).

Note that the result is the same as that from Equation 2.6.

2.5 Other Pitch algorithms

This section discusses other pitch algorithms which are not easily categorised into time

or frequency methods. These include the cepstrum, wavelet, and linear predictive

coding (LPC) methods.

2.5.1 Cepstrum

The ‘cepstrum’ is defined as the power spectrum of the logarithm of the power spectrum

of a signal. Originally the idea came from Bogert, Healy, and Tukey [1963] when

analysing banding in spectrograms of seismic signals. The concept was quickly taken up

by the speech processing community where Noll [1967] first used the cepstrum for pitch

determination. They found short-term cepstrum analysis was required, i.e. repeatedly

doing cepstrum analysis on small segments of data, typically around 40ms, to cope

with the changes in the speech signal.

The basic idea of the cepstrum is that a voiced signal, x(t), is produced from a

source signal, s(t), that has been convolved with a filter with an impulse response h(t).

This can be shown as:

x(t) = s(t) ∗ h(t), (2.26)

where ∗ denotes convolution. Figure 2.13 shows this basic model for how voiced sounds

are produced in speech. Here the source signal, s(t), is generated by the vocal chords.

The vocal tract acts as a filter, h(t), on this signal, and the measured signal, x(t), is

the recorded sound. Given only x(t), the original h(t) and s(t) can be found, given that

their log spectrum has a curve which varies at different known rates. The separation

is achieved through linear filtering of the inverse Fourier transform of the log spectrum

of the signal, i.e. the cepstrum of the signal. This idea is shown in the following.
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Figure 2.13: Basic model for how voiced speech sounds are produced.

Figure 2.14(a) shows part of the waveform from a male speaker saying the vowel

‘A’. A Hamming window is applied in order to reduce spectral leakage: Figure 2.14(b).

Then the FFT of x(t) is calculated, giving X(f).
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(a) The original waveform.
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(b) With a Hamming window applied, as indicated by the dotted lines.

Figure 2.14: An example of a male speaker saying the vowel ‘A’

Using the properties of the convolution theorem [Weisstein, 2006a], a convolution
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(a) The spectrogram of the signal, i.e. the log magnitude of X(f).
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(b) The components of vocal source, S, and vocal tract filter, H, which add to gether to give the

spectrogram above.

Figure 2.15: Spectrum analysis of a male speaker saying the vowel ‘A’
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Figure 2.16: The cepstrum, i.e. an FFT of the spectrogram, of a male speaker saying the

vowel ‘A’. The peak around 400 indicates the fundamental period, and the dotted line at 150

indicates the split value used to generate S and H in Figure 2.15(b).

in the time domain is equivalent to a multiplication in the frequency domain, so

X(f) = S(f)H(f), (2.27)

where S(f) and H(f) indicate the Fourier transforms of s(t) and h(t) respectively.

Taking the logarithm of both sides of Equation 2.27 gives

log(X(f)) = log(S(f)H(f)) (2.28)

= log(S(f)) + log(H(f)). (2.29)

Note that the operation which combines the terms, has been reduced from a convolu-

tion, in Equation 2.26, to an addition. Figure 2.15(a) shows the spectrum, log(X(f)),

of our example. It can be seen that there are a lot of small peaks closely spaced along

the spectrum. These frequencies are the harmonics that occur at regular intervals of

the fundamental frequency. These peaks are produced primarily from the vocal source,

s(t). However, the overall shape of the spectrogram is governed by the vocal tract

filter, h(t). These spectrogram curves vary at different rates, so we can can take an

FFT of the spectrogram to analyse this. The FFT of the spectrogram is referred to

as the cepstrum, and has the units of ‘quefrency’. The low quefrency values, or slow

varying components of the spectrogram’s shape are assumed to correspond to H(f),

and high quefrency values to S(f). Figure 2.16 shows our example in the cepstrum

domain, in which a quefrency-split value can be set, at which our high/low pass filters
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cross. This can be done by zeroing out the values to the left and right of the split

respectively. Figure 2.15(b) used a split value of 150, and shows the spectrograms of

the two components, each generated using an inverse FFT.

The fundamental period of the original waveform corresponds to the index of the

maximum in the cepstrum domain that lies after the split value. In our example the

maximum has a quefrency of 403 samples. At the sample rate of 44100 Hz, this gives

a fundamental frequency of 109.4 Hz.

One of the problems with using the cepstrum is deciding where the split value

should be placed. It should always be before the fundamental period, but if you do

not know where the fundamental period is this becomes one of those chicken and egg

games - to choose the split point you need the period, but to choose the period you

need the split point.

In general the cepstrum requires a complex-logarithm and a complex-FFT. However,

for pitch detection purposes we are not interested in the phase information, so only

the magnitude is required. Often the power spectrum, |X(f)|2, is used directly saving

a square root operation as follows,

log(|X(f)|2) = 2 log(|X(f)|) = 2(log(|S(f)|) + log(|H(f)|)), (2.30)

as this just produces a scaling effect, which does not affect the positions of maxima.

2.5.2 Wavelets

Unlike the Fourier transform which has a fixed bandwith and time resolution, the

wavelet transform changes its time resolution at different frequencies, having an in-

creasing filter bandwidth at higher frequencies. The result is series of constant ‘Q’

filters, in which the bandwidth of each filter is proportional to its centre frequency.

A ‘mother wavelet’ is a like a template function from which scaled and translated

‘daughter wavelets’ are made. A wavelet basis that maintains the orthogonal property

allows for perfect reconstruction of the original signal from data the same length. A

detailed introduction to wavelets can be found in Vetterli and Herley [1992].

Wavelet transforms have some advantages over the Fourier transform in such things

as audio and image compression [Joint Photographic Experts Group, 2000], as the

multi-resolution nature of it maps well to certain perceptual properties.

The discrete wavelet transform can be calculated by repeatedly applying an M -

channel filter bank on its lowpass output [Nguyen, 1995]. Decimation occurs after each
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step to remove redundant information. Often a two-channel filter is used with a 50%

lowpass/highpass combination.

Figure 2.17: A discrete wavelet transform which recursively uses a two-channel filter bank.

The relative sizes of the output blocks compared with the input data block are shown at the

bottom.

Figure 2.17 shows a diagram of how a two-channel filter bank can be used recur-

sively to perform a wavelet transform. L and H represent a low and high pass filter

respectively, with ↓ 2 indicating a decimation by a factor of 2, i.e. the removal of every

second output value. Note that the highpass filter is typically a quadrature mirror filter

(QMF) of the lowpass filter. Notice that out1 contains frequencies from the top half

of the frequency spectrum and is half the size of the input, whereas out2 contains only

a quarter of the frequency spectrum and is a quarter of the size of the input. Hence,

the time resolution is inversely proportional to the frequency resolution and adheres

to the properties of the uncertainty principle, i.e. the product of the uncertainties in

time and frequency are constrained by a lower bound.

The largest wavelet coefficients correspond to the points of excitation in a voiced

signal, and are the most coherent over multiple filter channels, i.e. patterns of high

peaks that are similar between channels, although scaled to different sampling rates.

The distance between consecutive excitations within a filter channel can be used to

give a pitch period estimate. Wavelet-based pitch detectors are discused in Fitch and

Shabana [1999] and Griebel [1999].
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2.5.3 Linear Predictive Coding (LPC)

Linear predictive coding (LPC), is a common method used in the speech recognition

community, and is described well in Rabiner and Schafer [1978]. The basic idea is that

a new speech sample can be approximated using a linear combination of the past p

speech samples from a small finite time interval, i.e.,

x̃t =

p∑

k=1

αkxt−k, (2.31)

where αk are the prediction coefficients and x̃t is an estimate of the function at time t.

The input from voiced speech signals, x, is considered as an impulse train, i.e. a

bunch of spikes spaced by the pitch period, which is convolved with a time-varying

digital filter. This filter describes the parameters of the vocal tract transfer function.

These filter parameters are assumed to vary slowly with time.

A by-product of the LPC analysis is the generation of an error signal, et, describing

the difference between the estimated value and the actual value, shown by

et = xt − x̃t. (2.32)

This error signal typically contains large values at the beginning of each pitch period.

Simply finding the distance between these peaks can yield the pitch period. However,

the LPC error signal is often used in conjunction with autocorrelation analysis to find

these more reliably.

The maximum likelihood pitch estimation method is related to LPC, estimating

the parameters of a speech signal in white, Gaussian noise. A nice summary of this

can be found in Griebel [1999].
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Chapter 3

Investigation

Pitch detection algorithms (PDAs) have been around for a long time, and as can be

seen in the literature review, there is a large number of them. There is no one algorithm

that works best in all situations. Results will vary depending on the type of input, the

amount of data that can be used at any given time, and the speed requirements.

When choosing to develop an algorithm, it is important to keep in mind the moti-

vation and identify the goals and constraints which the algorithm will be expected to

work under.

This chapter describes the goals and constraints specific to the objectives of this

thesis in Section 3.1, before delving into an investigation and comparison of two existing

techniques, the square difference function and autocorrelation, to see where they can

be improved.

3.1 Goals and Constraints

We start by defining more precisely the goals of the project, which are discussed and

used to guide the algorithm design thoughout the chapter. These are as follows:

• Firstly, the algorithm should give accurate pitch results for a variety of typical

user input; preferably as accurately as a person can hear or distinguish in playing

(Section 3.1.1).

• Secondly, the algorithm should cover the pitch range of common musical instru-

ments, such as string, brass and woodwind instruments (Section 3.1.2). This also

affects the typical sample rate that will be required.
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• Thirdly, the system should be responsive. That is, the delay between the input

to and the output of the algorithm should be kept to a minimum.

• Lastly, the algorithm should be real-time and capable of on-line processing. That

is, it should be computationally efficient enough that the processing speed on a

typical machine can keep up with the incoming data as the person is playing or

singing.

The first three goals are discussed in Sections 3.1.1, 3.1.2 and 3.2 respectively. The

last goal is discussed within the algorithm investigation in Section 3.3

One of the main concerns of a PDA for our purpose, is the range of pitch that it

can detect. Section 3.1.2 discusses the typical musical instruments that are expected

for the system, and hence the pitch range the algorithm will be required to cover.

Section 3.1.2 also looks at the use of filtering and how it can influence the sample

rate required in the input. The other main concern is the accuracy of a PDA. Section

3.1.1 looks at how accurately humans can hear, and what accuracy we hope to expect

from a machine.

3.1.1 Pitch Accuracy

The goal in this thesis is to make a tool that gives accurate feedback to the user on

how they are varying the pitch within or between notes. Ultimately, any small change

that can be heard by a good musician should be picked up by the algorithm and shown

in an objective manner to the user. The following discusses more quantitatively what

that entails.

The just noticeable difference (JND) is a measurement of the smallest change in

a sensation that humans can perceive. For pitch perception the JND varies slightly

depending on the frequency, sound level and duration of a tone, and suddenness of the

change. However, from 1000 to 4000 Hz, the JND is approximately 0.5 percent of the

pure tone frequency [Rossing, 1990]. That is to say humans can hear a pitch change of

8 cents1 in a pure tone, although for complex tones it is possible for smaller differences

to be perceived.

When it comes to playing notes together with other notes, for example in chords,

or harmonising with others, small differences in pitch can be perceived, often through

beating effects of harmonics, or increased roughness to the sound. For example, the

difference between the just scale major-3rd and an even tempered major-3rd is 13.7

11 cent = 1/100th of a semitone
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cents and the difference between the just scale 5th and an equal tempered 5th is 2.0 cents.

Note that scales and tuning are discussed in Section 10.2. Experienced musicians who

play instruments in multiple temperaments can learn to play these pitches distinctively

differently, and these differences can be perceived, often by how well they fit or do not

fit to another instrument, such as the piano. It is therefore important that these small

differences in pitch can be detected by the system as accurately as possible, preferably

down to a couple of cents wherever possible.

3.1.2 Pitch range

The goal of the thesis is to make a system that handles a large range of musical

instruments, including string, brass and woodwind. Musical instruments can cover

a large range of pitch. For example, the lowest note on a double bass is an E1, at

41.2 Hz, with notes commonly ranging up to 3 octaves. This contrasts with the the

piccolo which ranges 3 octaves from C5, taking it as high as C8, at 4186 Hz, with of

course many instruments in between. This defines a frequency range that spans 100

fold, or about 7 octaves. However, the singing voice and most string, wind and brass

instruments themselves span at most 3 or 4 octaves. Therefore, an algorithm that can

cover a pitch range of 3 or 4 octaves at any given time is entirely satisfactory, provided

this range can be moved for different instruments, for example, letting the user select

the position of the pitch range, within the total 7-8 octave range.

It is worth noting that this large frequency range used in music makes for a slightly

different problem than that found in speech recognition. Speech is mostly spoken in

the chest register, a small range of the singing pitch range. Because of this, speech

recognition algorithms often assume only a small range of pitch, and may apply filters

to the signal to simplify the detection. However, the goal in this thesis is to cover

the larger frequency range of musical instruments, so algorithms from this field cannot

always be applied in the same fashion.

Sample Rate

Unlike speech signals, lowpass filtering and down-sampling cannot typically be used on

musical signals. As a result the computational cost is higher, making efficiency very

important.

In normal speech the range of fundamental frequencies between speakers is fairly

small, compared to the range of fundamental frequencies of musical instruments. Over
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a large collection of individual speakers, the range can vary from as low as 40 Hz

from a low pitch male, to about 500 Hz in a high pitch female or child [Rabiner and

Schafer, 1978]. However, during normal speech, a single person’s pitch range is less

that one octave [Rossing, 1990]. A lot of speech recognition methods filter out the high

frequencies in a signal using a lowpass filter prior to analysis, on the basis that the

pitch is within this low range. However, for musical signals in general, a much larger

range of pitch can occur, so the luxury of lowpass filtering and down-sampling cannot

be applied. One must consider the full range of frequencies when looking for musical

pitch.

The range of frequencies from 20 Hz to 20000 Hz is considered to cover most people’s

hearing capability. Musical instruments often contain harmonics which can extend up

to the high end of this range. It is known that even high harmonics can influence the

pitch of a note. It is therefore important to keep a sample rate sufficient to retain all

the sound information thoughout the pitch analysis process. From using the sampling

theorem [Rabiner and Schafer, 1978], a sample rate of more that twice the highest

frequency is required to maintain all the frequency data. So thoughout this project, a

sampling rate of 44100 Hz was used for exactly these reasons. This is a higher sampling

rate than that typically used in speech recognition.

The consequences of maintaining a high sample rate are an increase the computa-

tion cost of certain tasks, making the efficiency of the algorithms an important con-

sideration. So, the efficiency of different algorithms will be discussed throughout this

chapter.

Although filtering for down-sampling purposes will not be used, there are some

types of filtering that can be very useful. Section 6.2.2 discusses some filters that are

used to approximate the sound attenuation throughout the outer and middle ear.

3.2 Responsiveness

One of the goals of this thesis is to be able to follow fast variations in pitch that can

happen within a note, such as that during vibrato. Ideally, an algorithm would give an

instantaneous pitch of a waveform from a single sample. However, in practice a certain

window size is needed.

Typically there is a time/frequency trade off, with larger window sizes giving a

higher pitch accuracy, but less time resolution; that is to say any changes in pitch

within the window are lost. In contrast a small window gives higher time resolution,
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but a less accurate frequency measure. Frequency domain techniques can work on

arbitrary frequency components, generally requiring 3-5 periods of the waveform to

accurately separate out the frequency components. However, because this thesis is

only concerned with harmonically related waveforms, certain time domain techniques

such as autocorrelation and SDF prove more useful, with an ability to get a pitch

estimate with as few as 2 periods of a waveform.

Vibrato can commonly vary at speeds of up to 12 cycles per second, and reach a

full semitone in width. In order to trace out this changing pitch, particularly at lower

pitches, being able to find the pitch in the smallest window size possible becomes of

primary concern.

3.3 Investigation of some Existing Techniques

This section compares two fairly successful techniques, that cover some of the desired

traits for our algorithm. The differences are investigated between the SDF and au-

tocorrelation, followed by examining some computational complexities involved in the

algorithms, and ways to speed up the computation.

The SDF (described in section 2.3.3) has some nice properties. For each lag value,

τ , the waveform is compared to shifted version of itself and a squared error calculated,

that is the sum of the squared differences. When the waveform is repeating it causes

minima to occur in the lag domain at multiples of the repeat size. Therefore, finding

minima in the lag domain gives us information about where the waveform repeats

itself, and hence the period. However, in real sounds the waveforms usually do not

repeat exactly, but tend to change shape over time, with different harmonics in the

signal changing in amplitude at different rates. Real sounds are often referred to as

quasi-periodic because over a short time they are approximately periodic. Even with

a quasi-periodic signal, the lag domain will produce minima at the most periodic-like

values, although, because they do not match exactly will have a non-zero error.

3.3.1 SDF vs Autocorrelation

There are subtle differences between the SDF and the autocorrelation. Apart from one

giving minima where the other gives maxima, there are differences between exactly

where these turning points occur. These differences are small when a window contains

a large number of periods; however, if the the window contains only a few periods of a
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waveform, the differences between the output of the SDF and autocorrelation become

significant.

Let us take a look at a simple example to help us understand why. Figure 3.1 shows

a window that contains 2.25 periods of a sinusoid, and a series of phase shifted versions.

Comparing the results of the autocorrelation in Figure 3.2 and the SDF in Figure 3.3, it

can be seen that the SDF minima align at a constant value, τ = 910, across all phases

of the input, however, the autocorrelation maxima range between τ = 909 and 925.

This inconsistency is due to the varying amounts contributed by partial waveforms at

different phases.
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Figure 3.1: A window containing sinusoids with different starting phases (0, π
8 , 2π

8 , 3π
8 , 4π

8 ).

Each sinusoid has 2.25 periods within the window.
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Figure 3.2: An autocorrelation plot of the sinusoids from Figure 3.1. Here the circled

maxima do not line up, and give a period estimate which varies with the phase.

This is the nature of the autocorrelation, which requires a whole number of periods

in a window to balance out the different phase related summations. Autocorrelation
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Figure 3.3: A square difference function plot of the sinusoids from Figure 3.1. Here all the

minima lie at the same value of τ , giving a stable estimate accurate to the nearest whole

number.

without a windowing function can lead to an inaccurate period estimation when there

is not a whole number of periods in a window.

Autocorrelation can be used to determine the period accurately only if there are a

whole number of periods in the window. However, since the period is initially unknown,

choosing the correct window size based on the period size becomes a chicken and egg

problem, requiring the period in order to choose a window size in order to find the

period.

A windowing function, such as a Hanning window, can be applied in order to reduce

the edge effects. However, this generally requires a larger window size to achieve the

same resolution, adding extra computational cost. The windowed and non-windowed

autocorrelation are compared experimentally in Chapter 5.

In contrast to the autocorrelation, the SDF outputs stable minima, given any frac-

tional number of periods in the window, making it suitable for using in a pitch detec-

tion scheme using small windows, and without windowing. One can, without any prior

knowledge of phase, take a window from anywhere within a signal and use the SDF to

get a good idea of the period.
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3.3.2 Calculation of the Square Difference Function

The straight calculation of the SDF on a window is (from Equation 2.14),

d′(τ) =
W−1−τ∑

j=0

(xj − xj+τ )
2, 0 ≤ τ < W. (3.1)

It has a time complexity of O(N2), where N is the size of the initial window. With

a 44.1 kHz sampling rate with window sizes of say 1024 or 2048, and hop size of half

a window it is almost feasible for today’s average processor (say 3 GHz) to keep up.

However this would leave little processor time for anything else. In this chapter we

discuss ways of reducing the time complexity of this calculation.

3.3.3 Square Difference Function via Successive Approxima-

tion

For pitch detection purposes, only the indices of the smallest minima from the SDF

are of interest. The computation required can be reduced by removing some of the

more redundant calculations from SDF. The calculations of d′(τ) which are not near

minima become redundant so have no need to be calculated fully. The question be-

comes how to tell which values of d′(τ) to calculate fully. A strategy was developed as

follows:

1: repeat

2: Estimate values of d′(τ), using only a subset of indices j in Equation 3.1

3: Keep about half the remaining τ , with values most likely to be at global minima

- for example the τ where d′(τ) is less than the mean or median of d′

4: until there remains few enough τ values to fully calculate all d′(τ) quickly

5: Calculate d′(τ) fully for these remaining τ

How do we choose the subset of xj values to approximate d′(τ) in line 2 above?

One simple method is to use every kth value of x, where k starts out being quite large,

and is reduced during further iterations of the first two steps. However, this causes any

frequencies above k/2 to be aliased, bringing false minima, but still retaining original

minima. False positives are acceptable, as keeping non-minima is fine. False negatives

are unacceptable though: the τ value of the global minimum must not be allowed to

be removed from the set.

Another possibility is to choose xj values at random to try to remove any systematic

sampling effects. However, the initially chosen xj values do not guarantee the sum of
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square differences of τ with the smallest global minima are below the chosen cut-off.

It will get most of them most of the time, but it is not always reliable.

It appears that the global minima cannot be guaranteed; by trying hard enough a

case can typically be constructed that will cause the true global minima to be lost.

After futher investigation, the discovery of a computationally efficient method for

calculating the full SDF came about, removing the need to approximate the important

τ . The SDF can be calculated via an autocorrelation in Fourier space, explained

in section 3.3.4. This allows all the SDF coefficients to be calculated efficiently and

allows the smallest minima to be chosen reliably - leaving this successive approximation

method quite redundant.

3.3.4 Square Difference Function via Autocorrelation

The square difference function can be calculated more efficiently than the direct O(W 2)

calculation, by utilising the autocorrelation via FFT method (section 2.4.5). The

following shows how to take the SDF from Equation 3.1, and break it up into parts,

which can be calculated more efficiently on their own, and then combined together. At

the same time, the following equations give us a direct relationship between the SDF

and autocorrelation. This relationship is:

d′(τ) =
W−τ−1∑

j=0

(xj − xj+τ )
2 (3.2)

=
W−τ−1∑

j=0

(x2
j + x2

j+τ ) − 2
W−τ−1∑

j=0

xjxj+τ (3.3)

= m′(τ) − 2r′(τ), (3.4)

where m′ describes the lefthand summation term and r′ describes the autocorrelation

term (see equation 2.6). This is a very useful relationship. From here it can be seen

that m′ can be calculated incrementally as follows:

1. Calculate m′(0) by doing the summation.

2. Repeatedly calculate the rest or the terms using

m′(τ) = m′(τ − 1) − x2
τ−1 − x2

W−τ . (3.5)

Calculating, all the m′ terms is therefore linear in W . The calculation of r′ term is

O(W log(W )) using the autocorrelation via FFT technique from Section 2.4.5.
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This method is reliable because it is calculating the full SDF, and does not have the

possibility of missing the global minimum like the successive approximation method.

Some small rounding errors can be introduced from the FFT, especially with low pre-

cision numbers, however using 32 bit floating point appears sufficient for our purpose,

where the sound data is originally 8 or 16 bit.

3.3.5 Summary of ACF and SDF properties

The following compares properties from the different forms of the ACF and SDF, keep-

ing in mind the possibility of designing a new transformation function that combines

the good properties from both.

In the type-I ACF from Equation 2.5 there are a fixed number of terms, in which

the shifted part moves to the right each step. We define the ‘effective centre’, tc(τ), as

the average in time of all the terms’ positions in the summation. That is

tc(τ) =
1

W/2

W/2−1∑

j=0

1

2

[
j + (j + τ)

]
(3.6)

=
1

4
W +

τ − 1

2
(3.7)

The effective centre of the type-I ACF moves with different values of τ . In order to

compare these ACF values together sensibly, one needs to make the assumption that

the period is stationary across the window.

In contrast, the type-II ACF has an effective centre, t′c(τ), that is constant, for a

given W, across all values of τ , giving a kind of symmetry to the transformation. That

is

t′c(τ) =
1

(W − τ)

W−1−τ∑

j=0

1

2

[
j + (j + τ)

]
(3.8)

=
W − 1

2
(3.9)

This symmetry property maximises cancellations caused by frequency deviations on

opposite sides of t′c within the window, making a direct comparison of ACF values

more robust, without having to consider their position in time. Also, with symmetry,

it makes more sense to be able to interpolate between the results of different τ , to

estimate fractional periods, as the results will be at the same centre point in time. It

would be nice if any new transformation function also featured this property.

One advantage of SDF over the ACF is that it does not suffer so strongly from edge

effects, that is to say it does not require a whole number of periods in the window in
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order to operate effectively, whereas the ACF does. This allows smaller window sizes

to be used, while maintaining accuracy, resulting in a higher time resolution. It would

be desireable if a new transformation function didn’t suffer too much from edge effects.

A problem with SDF is making a useful normalisation. Even if it is divided by

the sum of squares of the window, there is no sense of a centre. Whereas the ACF

has a concept of positive matches and negative matches, with a zero line indicating no

correlation, which can be of great help when choosing which peak corresponds to the

fundamental period.

Section 4.1 introduces a transformation function that mantains most of these nice

properties.
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Chapter 4

A New Approach

From the previous chapter a conflict in features has emerged between two of the most

well suited algorithms. The SDF has stable minima, as it can work well in a window

containing a fractional number of periods. But the autocorrelation, has the advantage

of a zero centre-reference, which is very beneficial when deciding which maxima are

significant. Is it possible to combine the stability from one algorithm, with the zero

reference property of the other, and at the same time provide a sensible normalisation?

This chapter develops a new algorithm in Section 4.1 based on these two algorithms,

that combines these nice properties. The algorithm is then extended to allow windowing

in Section 4.2, before Section 4.3 discusses a simple interpolation technique to find the

position of the output’s peak to less than a sample. Another useful property of the

SNAC function, called the clarity measure, is mentioned in Section 4.4. Note that

Sections 5.2 - 5.4 describe thorough testing on these new algorithms, comparing them

to the existing algorithms, through a series of systematic experiments.

4.1 Special Normalisation of the Autocorrelation

(SNAC) Function

The autocorrelation described in Equation 2.6 has a tapering effect. Section 2.3.2

discusses the unbiased autocorrelation as a method for removing the tapering effect,

and also a method for normalising values between -1 and 1, in which the result is

divided by r′(0). Combining those two ideas gives

r′Unbiased(τ) =
W

(W − τ)r′(0)

W−1−τ∑

j=0

xjxj+τ . (4.1)
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In this equation the dividing factor is a certain proportion, 0 < W−τ
W

≤ 1, of the total

energy in the window, r′(0). This may seem reasonable; however, for a given value of

τ this does not accurately reflect the highest possible correlation. It is assuming that

the total energy is uniformly distributed across the window, which is by no means the

case.

We propose a new method of normalisation in which the energy of the terms involved

in the summation, at a given τ are used directly to give the denominator. The specially-

normalised autocorrelation function, or SNAC1 function, is defined as follows:

n′(τ) =

2
W−1−τ∑

j=0

xjxj+τ

W−1−τ∑

j=0

(x2
j + x2

j+τ )

(4.2)

=
2r′(τ)

m′(τ)
. (4.3)

In this equation, the special-normalisation term, m′(τ)/2, takes on the maximum

correlation that can occur in r′(τ) for any given value of τ . Here is a simple proof of

this. If xa and xb are real numbers, then

(xa − xb)
2 ≥ 0, so (4.4)

x2
a − 2xaxb + x2

b ≥ 0, and (4.5)

x2
a + x2

b ≥ 2xaxb, and therefore (4.6)
W−1−τ∑

j=0

(x2
j + x2

j+τ ) ≥ 2
W−1−τ∑

j=0

xjxj+τ , (4.7)

because if it is true for each term in the sum, then it is also true for the whole sum.

And in a similar fashion the negative is proved,

(xa + xb)
2 ≥ 0, so (4.8)

x2
a + 2xaxb + x2

b ≥ 0, and (4.9)

x2
a + x2

b ≥ −2xaxb, and therefore (4.10)
W−1−τ∑

j=0

(x2
j + x2

j+τ ) ≥ −2
W−1−τ∑

j=0

xjxj+τ . (4.11)

Combining Equation 4.7 and Equation 4.11 it is true that

W−1−τ∑

j=0

(x2
j + x2

j+τ ) ≥ |2
W−1−τ∑

j=0

xjxj+τ |. (4.12)

1pronounced ‘snack’
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This guarantees Equation 4.2 to be in the range −1 ≤ n′(τ) ≤ 1, a desired property.

If there is no correlation between the signal and itself shifted by τ , the autocorre-

lation part on the top of the Equation 4.2 becomes zero, making the whole equation

zero also. It follows then that the original zero centre reference still remains from the

autocorrelation property. In contrast, if there is perfect correlation between the signal

and itself shifted by τ , meaning all values of xj = xj+τ , then the summations on the

top and bottom of Equation 4.2 both become

2
W−1−τ∑

j=0

x2
J , (4.13)

making the result a perfect 1. This is a great improvement over the normalised unbiased

autocorrelation, in Equation 4.1, which does not guarantee this property to be true.

Next, the SNAC function is shown to be similar to SDF, and hence certain prop-

erties of stability are carried over. If a minimum is found to be zero in the SDF, then

a maximum will occur at the same lag term, τ , in the SNAC function. Using the

relationship between the autocorrelation and SDF found in Section 3.3.4, an equiva-

lence between the SNAC function and an SDF that is normalised in a similar fashion

is made. Firstly, rearranging Equation 3.4 gives

2r′(τ) = m′(τ) − d′(τ). (4.14)

Then substituting in Equation 4.3 gives

n′(τ) =
m′(τ) − d′(τ)

m′(τ)
(4.15)

= 1 − d′(τ)

m′(τ)
. (4.16)

This result shows the SNAC function is equivalent to one minus an SDF that is divided

by m′(τ). Equation 4.16 has also been dubbed the normalised SDF, or NSDF [McLeod

and Wyvill, 2005], as it is a way of normalising the SDF to make it more like an

autocorrelation. However, in this thesis we will refer to n′(τ) as the SNAC function,

as it is easier to pronounce.

So far, we have shown that the SNAC function has taken on certain properties

from both the autocorrelation and the SDF. Firstly, the zero centre reference from the

autocorrelation remains, which will prove to be very useful in the next stage of choosing

the desired peak. Secondly, certain peaks are guaranteed to be aligned with those from

the SDF, providing peak stability. Thirdly, the normalisation of the autocorrelation

has improved, allowing each evaluation of τ to utilise the range -1 to 1, providing a

well defined, rock solid vertical scale allowing thresholds to be confidently set.
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4.2 Windowed SNAC Function

Although the SNAC function works well without the need of a windowing function,

maybe there is still some benefit in windowing anyway. This section discusses the ques-

tion of “how do we window the SNAC function?” and “how do we do it efficiently?”.

Whereas, the question of whether it is beneficial to window or not, is left until Chapter

5, where experiments are performed to compare the different methods.

Trying to window the SNAC function complicates the algorithm, breaking the cur-

rent speed optimisation. To calculate the windowed SNAC (WSNAC) function by

summation is an order O(W 2) process, where W is the window size. However, the

following introduces a fast method for calculating the WSNAC function, in a time

complexity of order O(W log W ), which can be used for real-time analysis.

To explain how this comes about, let us first look at windowing the square dif-

ference function. We cannot simply multiply x by the windowing function and take

the SDF using Equation 3.2, as is the case for autocorrelation. This would cause the

repeating peaks and troughs to change in height with respect to each other, resulting

in large square difference error terms. However, one can multiply the result of a square

difference term by the constituent window parts, giving a stronger weighting to the

central difference values. The windowed square difference function, d′(τ), is defined as:

d̂′(τ) =
W−τ−1∑

j=0

[
wjwj+τ (xj − xj+τ )

2
]
. (4.17)

Note that the hat above the d indicates the windowed version.

This has a two part windowing function, which is discussed in Section 4.2.2.

Now let us expand Equation 4.17 out in a similar fashion as Equation 3.3, giving

us:

d̂′(τ) =
W−τ−1∑

j=0

[
wjwj+τ (x

2
j + x2

j+τ )
]
− 2

W−τ−1∑

j=0

(wjwj+τxjxj+τ ) (4.18)

= m̂′(τ) − 2r̂′(τ) (4.19)

The right-hand summation becomes r̂′(τ), a windowed autocorrelation which can be

solved in order O(W log(W )) using the Fourier domain technique described in Section

2.4.5. The m̂ is a little bit trickier, but if we break m̂′ up as follows:

m̂′(τ) =
W−τ−1∑

j=0

(x2
jwj · wj+τ ) +

W−τ−1∑

j=0

(x2
j+τwj+τ · wj), (4.20)
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then each summation can be expressed as a crosscorrelation (Section 4.2.1). Note that

the · just indicates the grouping of multiplication. The terms in j and j + τ can be

grouped separately within each summation. It turns out that both the first and second

summation can be calculated as different terms in a single crosscorrelation of va with

vb, where va ∈ x2
jwj, and vb ∈ wj.

The WSNAC function, n̂′(τ), can therefore be defined in a similar way to Equa-

tion 4.3, in terms of r̂′(τ) and m̂′(τ), giving

n̂′(τ) =
2r̂′(τ)

m̂′(τ)
. (4.21)

The whole range of τ values can be calculated efficiently using the method described

above. However, the result is equivalent to the full form of the WSNAC function shown

as follows:

n̂′(τ) =

2
W−τ−1∑

j=0

(wjwj+τxjxj+τ )

W−τ−1∑

j=0

[
wjwj+τ (x

2
j + x2

j+τ )
] (4.22)

4.2.1 Crosscorrelation via FFT

The crosscorrelation can be calculated in the Fourier domain in a similar way to the

autocorrelation described in Section 2.4.5. The algorithm differs, giving the following:

• Zero-pad both va and vb with p zeros.

• Compute the FFT, Va of va, and Vb of vb, using size W + p.

• Multiply together the magnitudes of each complex term. i.e. Vab(k) = |Va| · |Vb|.

• Compute an inverse FFT of Vab to obtain the crosscorrelation (type-II) of va and

vb.

Note that the autocorrelation is just a special case of crosscorrelation, when va = vb.

4.2.2 Combined Windowing Functions

Taking a look back at the WSNAC function in Equation 4.17, the windowing function is

made up of two parts, wj and wj+τ . Interaction between the two parts of the windowing

function is interesting, as the net result is a windowing function that changes shape
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between different values of τ , but keeps the same category of shape. For this, w is

chosen to be a Hann window,

wj = 0.5(1 − cos(
2πj

W − 1
)), 0 ≤ j < W (4.23)

= sin2(
πj

W − 1
). (4.24)

This second equation can be found using the double angle trigonometric property and

is more useful for descriptive purposes. Let us investigate the result of this function as

used in Equation 4.17. The net windowing result of wjwj+τ when τ = 0 is the Hann

function squared. At τ = W/2 we get the left half of the Hann function multiplied

by the right half of the Hann function, which is just the Hann function divided by

four. Moreover, when 0 < τ < W/2, the resulting shape is somewhere between a Hann

function and a Hann function squared. Figure 4.1 shows an example of the combined

windowing effect using a mid-range τ value.
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Figure 4.1: The combined windowing effect of the left part of the Hann window multiplied

by the right part, with W = 1024, and τ = 384.

Figure 4.2 shows us how the combined windowing function changes in shape as τ

varies between 0 and W/2. It varies between a sin4(θ) shape and a sin2(θ) shape.

The resulting effect of this, is that when detecting larger period sizes a slightly

stronger weight will be applied to the central values than when detecting smaller pe-

riods. This may not appear an ideal effect, but does not seem to have any negative

effects on the period detection. The benefits of the speed increase gained by using this

technique make it worthwhile.
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Figure 4.2: The combined windowing effect over changing τ , with W = 1024.

In comparison to the Hann window, a Sine window can also be used with a similar

effect. Here the sine window is defined as

wj = sin(
πj

W − 1
). (4.25)

Using the sine window, the combined window results range between a sin2(θ) shape

and a sin(θ) shape. This allows for a larger portion of the data to be utilised in the

window, while maintaining a smooth edge drop off, so no sharp discontinuities occur

at edges.

The accuracy of the WSNAC function for pitch detection is compared to the SNAC

function and other autocorrelation-type function in Chapter 5, through a number of

experiments.

4.3 Parabolic Peak Interpolation

Currently, τ values in the autocorrelation-type functions are restricted to integers,

corresponding to the time steps of the original sound sample. However, a higher degree

of accuracy in the positions of a peak is desirable. Therefore, a parabola is fitted to a

peak, because it makes a good approximation to a localised curve at the top and gives

a fast, stable and accurate way to find the real-valued position of a peak.

A parabola is constructed for a peak using the highest local value of n′(τ) and its

two neighbours. The 2D-coordinate of the parabola maximum is found, with the x

coordinate giving a real τ value for a primary-peak’s lag, and the y coordinate giving

a real value for the function n′(τ) at that point. It should be noted that a n′(τ) value

slightly greater than one is actually possible for the real-valued peak using the parabola

technique.
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4.4 Clarity Measure

We have found that not only is the x-coordinate of a SNAC or WSNAC peak useful

for finding the pitch, but the y-coordinate of a peak is also a useful property which

is used later in Section 10.3.2. We call this value the clarity measure as it describes

how coherent the sound of a note is. If a signal contains a more accurately repeating

waveform, then it is clearer. This is similar to the term ‘voiced’ used in speech recog-

nition. Clarity is independent of the amplitude or harmonic structure of the signal. As

a signal becomes more noise-like, its clarity decreases toward zero. The value of the

clarity measure is simply equal to the height of the chosen peak.
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Chapter 5

Experiments - The Autocorrelation

Family

In this chapter, the two new methods introduced, the SNAC function, and the WSNAC

function, are put to the test along with other standard functions from the autocorre-

lation family. Because these functions are all similar in nature, direct comparison can

be performed to measure their accuracy, across a range of different inputs.

The goal is to measure how accurate each of the methods is at detecting pitch

in a fair and consistent manner. Therefore, all methods have the same parabolic

peak interpolation algorithm used to measure the period of the pitch as described in

Section 4.3. For now, it is assumed that exactly which peak to measure is known.

The experiments in this chapter contain signals which are generated mathematically.

This allows for all the parameters to be fully controlled, and provides certainty in the

accuracy measure, as the desired output is always known. Note that this chapter is

concerned only with finding the frequencies of the peaks. The problem of how and

when these relate to the pitch frequency is discussed in Chapters 6 and 7.

The experiments were designed to reflect the types of changes in sound that are most

common when playing a musical instrument. Section 5.1 discusses stationary signals,

i.e. that of a constant musical tone, while Section 5.2 discusses changing the input’s

frequency, such as that during vibrato or glissando. Section 5.3 discusses changing

the input’s amplitude, such as that during note onset and note release, and tremolo.

Some basic tests of the input signal buried in noise are discussed in Section 5.4, with

a summary of all the experiments in Section 5.5.
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5.1 Stationary Signal

Experiments were carried out to compare the accuracy of some conventional functions

in the autocorrelation-type family. The functions compared are the autocorrelation

as described in Equation 2.6, the unbiased autocorrelation as described in Equation

4.1, and the windowed unbiased autocorrelation as described in 2.10. These were all

used with standard normalisation. Using standard normalisation does not change the

position of the peaks at all, and hence the same result will be given with or without

it. Also note that a Hamming window was used for the windowed unbiased autocor-

relation. Moreover, the two new functions, the SNAC function, and the WSNAC, are

also compared to the others.

Experiment 1a: Sine wave.

Firstly, a small segment of a sine wave was sampled at known frequency. Then

each of the autocorrelation-type functions were used to transform the data into lag

space, and the top of appropriate peak was found using the technique described in

Section 4.3. The error was taken as the absolute difference from the measured MIDI

number and the original sine wave’s MIDI number. For each given frequency, the

sine wave was started at a number of different phases, and the maximum error and

average error graphed. Figure 5.1 shows this measured error of sine waves at different

frequencies, ranging from MIDI numbers 41.5 to 101.5 at intervals of 0.1, covering a

5 octave range1. Appendix A contains a useful reference for converting between pitch

names, MIDI numbers and frequencies. You should be aware that a linear increase in

the MIDI number, corresponds with an exponential increase in frequency; that is an

increase of 12 semitones is a doubling of the fundamental frequency.

To generate Figure 5.1, window sizes of 1024 samples were used and a sample rate

of 44100 Hz, and hence MIDI number 41.5 is chosen as the bottom of the range, as this

produces just over 2 periods in the window. The period can be found with less than

2 periods - using autocorrelation-type methods, however, the reliability of finding the

correct period in the waveform drops off quickly, as there can be no guarantee that just

because part of the waveform correlates, that the rest of it does too. However using

fewer than 2 periods can be useful at certain times, if other information is known.

Note that the vertical axis is in cents and is not proportional to the frequency error,

but is relative to input value, i.e. a 1 cent error at MIDI note number 80 is greater in

frequency than a 1 cent error at MIDI note number 50; however, it is the error in cents

1Refer to Equation 2.1 to convert MIDI numbers to frequency
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Figure 5.1: A comparison of autocorrelation-type methods for pitch accuracy on a sine wave

input at different frequencies. The vertical axis indicates the measured error from original

MIDI number. A solid line indicates the maximum error across different phases of the given

frequency, whereas a dotted line indicates the average error.
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that is important to pitch perception.

Looking at the results, the autocorrelation, unbiased autocorrelation and windowed

unbiased autocorrelation, all have large errors, especially to the left of the graph which

corresponds to a smaller number of periods of the sine wave in the input window.

The windowed unbiased autocorrelation starts off with the highest error, but by MIDI

number 72, has improved over the autocorrelation and unbiased autocorrelation; this

is around 12 periods within the input window. Also, the autocorrelation and unbiased

autocorrelation have sharp dips along them. These dips correspond to MIDI numbers

that produce a window containing a whole number of periods. The unbiased autocor-

relation shows great results in the dips, but suffers elsewhere. However, the error from

the SNAC function barely even registers on the graph, with its error being less that

0.04 cents up until MIDI number 90, and creeps up to 0.25 cents around MIDI number

100. Thus, the SNAC function is far superior for use on static sine waves. Moreover,

the WSNAC function performs the second best, with a small error at the lower MIDI

numbers making its results promising.

Experiment 1b: Complicated waveform

This experiment is conducted in a similar fashion to Experiment 1a. However, this

time a more complicated waveform is used instead of a single sine wave. The waveform

contains a series of sine waves added together; each having a different frequency and

amplitude. The frequency of these sine waves, are F0, 2F0, 3F0 and 4F0, forming the

first four harmonics of the fundamental frequency. The amplitudes of these frequencies

are 0.4, 0.7, 0.3 and 0.5. Note that this function is used repeatedly in later experiments

and its shape is shown later in Figure 5.6a. The results of the autocorrelation-type

methods on this more complicated waveform are shown in Figure 5.2a. A magnified

view of the results of the SNAC function are shown in 5.2b for clarity.

The windowed unbiased autocorrelation struggles to find any sensible result before

MIDI note 49, but after that has a stable error curve compared to autocorrelation

and Unbiased Autocorrelation which are affected significantly by the shape of the

input waveform. Again, the SNAC function performs much better than the other

three methods, with almost no error up until about MIDI number 85, where the error

acquired from calculating the peak in the lag domain takes over. Again the WSNAC

function performs second best, with significant errors only kicking in at very low MIDI

numbers.

We should not draw conclusions too quickly, since in real music, the signals are often

changing. This section has only looked at stationary periodic sequences, i.e. where the
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(a) The results from all autocorrelation types.
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(b) A magnified view of the SNAC function results.

Figure 5.2: A comparison of autocorrelation-type methods on finding the pitch of a compli-

cated waveform at different frequencies. Only the maximum error across the different phases

at each given frequency are shown.
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frequency and waveform shape have remained constant. However, stationary signals do

make a good basic test case, because if the algorithm does not work well on stationary

signals, then it is not much use to us. The two new functions have achieved well so

far, but the next few sections will put them to tougher tests.

5.2 Frequency Changes

So far we have assumed the frequency of the waveform has not been changing within

the window. The following looks at what happens to the autocorrelation-type functions

on an input with changing frequency, investigating with both a simple sine wave, and

a more complicated waveform shape. Firstly, Section 5.2.1 looks at how the algorithms

deal with a linear frequency change, such as that during glissando. Secondly, Section

5.2.2 looks at frequency modulation, such as what happens when a musician plays

vibrato.

Putting things in perspective here for a moment, if we were only concerned with

finding the frequency of a varying sine waves, there are other methods that could

be used to greater accuracy, such as Prony’s method discussed later in Section 9.3.

However, the reason for all this effort is because the autocorrelation-type methods can

be used for the more general problem of any waveform shape. These methods can help

us find the fundamental frequency within any data window, and hence the pitch.

5.2.1 Linear Frequency Ramp

Firstly, Figure 5.3 compares the shape of a constant frequency sine wave of 440 Hz,

with a sine wave changing linearly in frequency from 427.3 Hz to 452.7 Hz. In this

example the frequency ramp takes place within a window size of 1024 samples. Notice

how the blue line starts with a larger period than the red, but ends with a smaller

period. Moreover, the frequency and hence the period are the same at the centre.

To put this into a musical context, this frequency ramp constitutes a one semitone

change in 1/40th of a second. The goal here is to represent the upper bound of a

typical fast pitch change, as a tough test to get an idea of how the algorithms respond.

Moreover, when the algorithm is applied to real sounds the behaviour can be expected

to fall within these bounds.

Figure 5.4(b) shows the SNAC function of the constant 440 Hz sine wave in red

dashed lines, and the SNAC function of the changing frequency in blue solid line. It

can be seen that the 5th peak, at τ = 502, of the blue curve has dropped to 0.96.
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Figure 5.3: A constant sine wave, in the red dashed line, compared to a linear frequency

ramped sine wave, in the blue solid line.

However, even under phase variation all the peaks remain well aligned. That is to say,

a linear frequency change has SNAC function peaks at the same lag as the constant

frequency of that at the centre of the window, with only a small error. These errors are

discussed in Experiment 2. To summarise, if the input has a linear frequency ramp,

the maxima in the SNAC function appear at multiples of the centre frequency.

Figures 5.4(a) and (c) show what happens to the SNAC function of sine-wave-ramps

with different centre frequencies. Figure 5.4(c) goes 2 octaves higher to 1760 Hz, while

maintaining a one semitone range. At this higher frequency the peak drop off becomes

more accentuated with the 5th peak, at τ = 125, dropping to 0.89. However, the first

peak, at τ = 25, the one of interest is still 0.99, and mantains correct alignment. In

contrast Figure 5.4(a) goes 2 octaves lower to 110 Hz, while maintaining a one semitone

range. Only one peak can be seen at this lower frequency, which is hardly affected by

the linear frequency change. Note that a peak at τ = 0 is always present with a value

of 1, and is of no use - the peaks at τ > 0 are the ones that matter.

In music, the size of a semitone, in hertz, is related to where the interval occurs, as

decribed in Equation 2.1. In general to move from a given note, with frequency fs, to

the note one semitone higher, with frequency fs+1, the following formula can be used2

fs+1 = fs ∗ 12
√

2. (5.1)

It can be seen that no matter what the initial frequency, changing it by a given number

of semitones only scales the frequency by a fixed ratio. Moreover, the period also scales

by a fixed ratio, i.e. one over the frequency ratio, and hence the SNAC function is scaled

(horizontally) by a fixed ratio. Therefore, at higher input frequencies, more peaks are

seen in its SNAC function making the decay caused by phase cancellation more visible.

This can be seen in Figure 5.4(c). The phase cancellation is caused because as the n′(τ)

2This is on the even tempered scale. For other scales refer to Section 10.2.
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(a) Centre frequency, 110 Hz
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(b) Centre frequency, 440 Hz
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(c) Centre frequency, 1760 Hz

Figure 5.4: The resulting SNAC function, from a sine wave changing linearly in frequency

across one semitone in less than 1/40th of a second (solid blue line), compared with the SNAC

function from a sine wave of constant centre frequency (red dotted line). In each graph the

input to the SNAC function has a different sine wave centre frequency.

values of higher peaks are calculated, the phase alignment at the edges of the window

become further offset (although they will eventually loop around). This misalignment

decreases the amplitude of the peaks with higher τ positions. Moreover, the positions of

the peaks can become slightly misaligned, because the left-hand side of the correlation

does not balance perfectly with the right-hand side when there is a frequency ramp.

Because the phase misalignment is most prominent at the edges of the window, the use

of a windowing function can have the effect of reducing the contribution from the edges.

Experiment 2 shows us how significant an effect this has on the different algorithms.
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Experiment 2a: Sine wave with linear frequency ramp.

In this experiment our attention is turned to comparing error rates of the different

autocorrelation-type methods on linear frequency ramps. Note that the error is the

difference between the frequency found and the centre-frequency of the ramp, as this is

the frequency at the effective centre, t′c, of the window, and is of interest to us. In the

same way Figure 5.1 compared constant frequencies, Figure 5.5 shows a comparison

between the SNAC function, unbiased autocorrelation and autocorrelation, windowed

unbiased autocorrelation and WSNAC function, using inputs that have a linear fre-

quency ramp. Note that a linear frequency ramp is not linear in the MIDI note number,

however the ramp is set such that the total frequency change across the duration of the

window is equal to one semitone. Also note that the fundamental period was found

using the same peak picking method across all algorithms, described in Section 6.3.
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Figure 5.5: The accuracy of different autocorrelation-type algorithms in finding pitch on

sine waves during a linear frequency ramp. The error is measured from the centre-frequency

of the ramp. The freqency has been ramped one semitone about the centre frequency of each

input window.

Figure 5.5 shows the SNAC and WSNAC functions to have significantly smaller

errors than the other three, with the SNAC function keeping an error below 2.5 cents.

However, it can be seen that the SNAC function has taken on a ripple effect like that of

the unbiased autocorrelation, as it too is affected by whether there is a whole number
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of periods or not when there is a frequency ramp. On the other hand the WSNAC

function is more consistent than the SNAC function, at the expense of not having as

small an error at the worst cases.

Experiment 2b: Complicated waveform with linear frequency ramp.

Let us now look at how a more complicated waveform is affected by a frequency

ramp. Figures 5.6 through 5.8 each consist of 2 parts. Part (a) of each figure shows a

waveform at constant frequency (red dotted line), and a ramped frequency (blue solid

line). The frequency ramp covers a one semitone change over the 1024 sample window.

Part (b) of each figure shows the corresponding SNAC function. Notice how the peaks

drop off faster in Figure 5.8(b) with the higher frequency being ramped. However, the

first peaks are still strong here.
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(a) A waveform at constant frequency (red dotted line) vs a waveform with a frequency ramp
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(b) The SNAC function of (a)

Figure 5.6: A 110 Hz constant waveform vs ramp

This experiment is the same as Experiment 2a, but differs only that the compli-

cated waveform shape from Experiment 1b is used instead of a sine wave as input.

Figure 5.9 shows the results with one such waveform shape. The exact shape of input

waveform has a large effect on the output from all the functions. However, in general

the SNAC function performs around a factor of two better than the others at lower

MIDI numbers. The WSNAC function, besides exhibiting some acceptable errors at
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(a) A waveform at constant frequency (red dotted line) vs a waveform with a frequency ramp
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(b) The SNAC function of (a)

Figure 5.7: A 440 Hz constant waveform vs ramp
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(a) A waveform at constant frequency (red dotted line) vs a waveform with a frequency ramp
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(b) The SNAC function of (a)

Figure 5.8: A 1760 Hz constant waveform vs ramp
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low MIDI notes, performs exceedingly well from MIDI note 48 onwards. Moreover, the

windowed unbiased autocorrelation does not even form a peak to measure, for MIDI

notes below 48.
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Figure 5.9: The accuracy of different autocorrelation-type algorithms in finding pitch on

complicated waveforms during a linear frequency ramp. The error is measured from the

centre-frequency of the ramp. The freqency has been ramped one semitone about the centre

frequency of each input window.

5.2.2 Frequency Modulation, or Vibrato

A linear frequency ramp can be a good approximation to sliding pitch changes such as

that during glissando. However, this next experiment looks at how well the different

algorithms cope with rapid ‘curved’ changes in pitch, such as that during vibrato. A

vibrato typically has a sinusoidal like pitch variation, which to a good approximation

can be considered a sinusoidal like frequency modulation with variations of less than a

couple of semitones.

Experiment 3: Vibrato

To test the error rates of the different autocorrelation-type algorithms, an experi-

ment was set up in which the input was made with a one-semitone-wide vibrato. Again,

there are two parts to this experiment: Part A, in which a sine wave is used, and Part
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B, in which the more complicated waveform is used. The vibrato speed for both parts

of the experiment is 5 Hz, a typical vibrato speed. A range of base frequencies were

tested, ranging from MIDI number 45 to 93; a four octave range. To find the error

at each base frequency, a 0.5 second sound stream was generated using the specified

parameters at a 44100 Hz sample rate. Then for a given algorithm, a sliding window

of size 1024 samples was used across the whole stream, with a step size of one. Note

that the stream was made large enough for the window to fall on all possible positions

along the vibrato. The average and maximum error from the stream is kept. The

results of Experiment 3, Part A are shown in Figure 5.10(a), and Part B in (b). The

autocorrelations are not shown to remove clutter.

Figure 5.10(a) and (b) are very similar in nature. Interestingly the more complicated

waveform resulted in smaller errors (note the different scales on the vertical axis of the

two plots). This is due the higher harmonics causing narrower peaks in the lag domain,

making it harder for the maxima to be dragged off to the side by other component

influences, in all techniques.

Looking across both graphs, the windowed unbiased autocorrelation, performs poorly

at lower MIDI numbers, but becomes very good by around MIDI number 65 or 70, cor-

responding to about 8 to 12 periods in the window. The unbiased autocorrelation and

the SNAC function, both have maximum errors which are about twice the mean errors,

indicating a bit of variation in the error measurements between different steps of the

vibrato analysis. In comparison, the windowed unbiased autocorrelation is relatively

stable. The SNAC function, even though it is subject to variation depending on the

waveform shape, performs better than existing algorithms at the lower MIDI numbers

(less than about 65), and does not perform much worse at MIDI numbers above that.

Moreover, the WSNAC function performs exceptionally well overall, with the smallest

error everywhere, except where it is surpassed by the SNAC function at very low MIDI

numbers.

Recall, the goals of this thesis include trying to maximise the time resolution as

well as pitch accuracy of the pitch algorithm. It can be seen from these results that

the SNAC and WSNAC functions can give a higher pitch accuracy than the other

autocorrelation-type methods with fewer periods of input signal. This will prove valu-

able indeed.
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(a) Using a sine wave input with vibrato
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(b) Using a complicated waveform input with vibrato

Figure 5.10: A comparison between autocorrelation-type methods at finding pitch with

vibrato input. Here the input has a 5 Hz vibrato one semitone wide.
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Changing vibrato width

In Experiment 3, a vibrato width of one semitone was used, which was pretty reason-

able. However, this next experiment is to see how the errors vary over different vibrato

widths. We would expect a wider vibrato to cause greater errors on all methods, with

the error curve scaling approximately linearly with the vibrato width.

Experiment 4: Changing vibrato width.

This experiment was performed in the same way as Experiment 3, except three

different vibrato widths were used: 2 semitones, 1 semitone and 0.5 semitones. To

minimise clutter, Figure 5.11 shows only the maximum error, at a given MIDI number,

i.e. the error from the worst case position of the window in the vibrato sound stream.

Figure 5.11 shows the result of the changing vibrato width, with (a) using a sine wave

waveform input, and (b) the complicated waveform input.

Investigating Figure 5.11 it can be seen that windowed unbiased autocorrelation is

very consistent between the different vibrato widths, although its average increase in

error is only a few times smaller than the SNAC function, it looks insignificant because

the error rate is already high. Also, this error curve does not scale linearly, however, the

small increase from the ‘no vibrato error’ curve is approximately linear. The unbiased

autocorrelation has quite a lot of variation, but does have a general trend of increasing

its error as the vibrato width is increased. The SNAC function increases approximately

linearly as the vibrato width is increased, as expected, and tends toward zero as the

vibrato width tends to zero. Moreover, the WSNAC function, like the window unbiased

autocorrelation, remains very consistent between the different vibrato widths, with only

a very small, approximately linear, increase from the ‘no vibrato error’ curve.

Comparing Figure 5.11(a) and (b), the windowed unbiased autocorrelation de-

creases its error with the increased waveform complexity. This seems to be because the

steepness of the waveform shape overpowers the windowing function curvature more in

the lag domain, thus dragging the first peak closer to the correct place. Any fine scale

errors that may exist are buried within the larger error. In contrast, the SNAC function

increases its error a little, which seems to be because the narrower waveform peaks do

not align as well to the desired period at this fine scale, and because the frequency

change is not linear, the misalignments on either side of the window do not cancel very

well. Hence the first peak tends to get dragged away from the correct place. The exact

shape of the SNAC function curve can vary somewhat with different waveform shapes.

However, in general it still has lower error rates that the other autocorrelation-type
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(a) Using a sine wave input with vibrato
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(b) Using the complicated waveform input with vibrato

Figure 5.11: A comparison between autocorrelation-type methods at finding pitch on input

containing different vibrato widths. Here all the inputs had a 5 Hz vibrato, and a window

size of 1024 samples was used with a 44100 kHz sample rate.

68



methods at lower MIDI numbers. However, as the vibrato width extends far beyond

two semitones, the point at which the error curves cross over will tend further left.

In music a vibrato wider than two semitones is uncommon, so use of the SNAC

function on general music is still desirable. However, use of the SNAC function for

other frequency analysis tasks that involve fast ‘relative frequency’ changes may not

be suitable. Nevertheless, the WSNAC function proves the best function so far, coping

well with any width of vibrato.

Where are the greatest vibrato errors?

From investigating which step locations were causing the greatest errors, it appears

that the greatest errors occur at the frequency maxima and minima of the vibrato,

with this error pulling the result toward the centre pitch of the vibrato. This agrees

with what could be expected, and is consistent with the idea that a linear frequency

approximation does not describe the frequency curve very well.

Changing the window size

The next experiment tries to test our theory that using a shorter window size will

improve the linear approximation to the vibrato curve, and hence reduce the errors on

these signals that vary in pitch.

Experiment 5: Changing the window size.

This experiment is again similar to Experiment 3, except this time a range of

different window sizes are used. To reduce clutter, each algorithm has its results

plotted on a separate graph. The results are shown in Figure 5.12 (a) - (h); again each

test is performed with the two sets of input: sine waves and complicated waveforms.

Note that all the graphs are set to the same scale to allow for easy comparison.

However, the window size can only be shortened reliably provided there will be

at least 2 periods within the shortened size, otherwise the the algorithm can become

unstable. This effectively will reduce the range of MIDI numbers we are able to find

by 12 each time the window size is halved3. This can cause the fundamental’s peak

to move out of the lag domain analysis, and the wrong peak or no peak to be chosen.

This is shown in the graphs by error values leaping off the top of the scale.

It can be seen for the SNAC and WSNAC functions that as the window size is

decreased the accuracy increases, at frequencies for which results can be found. How-

3There are 12 MIDI numbers one octave
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(a) SNAC function; sine wave input
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(b) SNAC function; complicated waveform input
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(c) WSNAC function; sine wave input
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(d) WSNAC function; complicated waveform input
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(e) Unbiased autocorrelation; sine wave input
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(f) Unbiased autocorrelation; complicated waveform input
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(g) Windowed unbiased autocorrelation; sine wave input
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(h) Windowed unbiased autocorrelation; complicated waveform input

Figure 5.12: A comparison between autocorrelation-type methods at finding pitch using

varying window sizes in the analysis. Here the input has a 5 Hz vibrato, and a vibrato width

of 1 semitone was used on a 44100 kHz sample rate.
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ever, the WSNAC takes about 12 MIDI numbers (twice the number of periods) from

the first reading to achieve the same error as the window size twice as long, whereas

the SNAC function achieves this straight away. This supports the idea that having a

smaller window size improves the linear approximation of the pitch curve.

The results of the other algorithms do not necessarily support this idea, but this

seems to be due to the reduction in the implicit errors of the algorithms as the window

size is increased. Because the change in implicit errors is large, it seems to override the

improvement in the pitch curve approximation.

In summary, the graphs show that the SNAC function can be used with a good

time resolution and good frequency resolution at the same time. However, in order to

choose the window size appropriate for minimising the error, one needs to have an idea

of what the frequency is. Otherwise, if a window is chosen that is too small, then the

possibility of finding a larger period is lost. Our method of dealing with this is to first

use a bigger window to get an approximate fundamental frequency, and then perform

the analysis again with a more optimal window size for improved accuracy. This is

discussed in more detail in Section 8.1.

5.3 Amplitude Changes

The frequency of a waveform is not the only parameter that can be changing throughout

the course of a window. The following experiments look at how amplitude changes in

the signal affect the pitch detection accuracy of the autocorrelation-type algorithms.

Again, linear ramps are investigated first, however this time it is the amplitude is that

is increasing. It is worth noting the symmetry of the autocorrelation-type methods

used here, meaning that reversing the input has no effect. Therefore any testing of

an increasing linear ramp is the same as testing a decreasing linear ramp with the

waveform reversed.

Trying to construct sensible experiments to test how amplitudes change in real

music is a little tricky. For example, at the beginning of a note, the note onset, the

amplitude of the sound can go from almost zero, up to a high value in only a few

samples. This case is called the amplitude step, and is discussed in Section 5.3.2.

5.3.1 Linear Amplitude Ramp

Throughout the duration of a musical note, amplitude variations come about in typical

usage, such as tremolo, crescendo and the decaying of a released note. These amplitude
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changes can be approximated by a set of linear amplitude ramps over a series of short

time intervals.

Experiment 6a: Sine wave with linear amplitude ramp.

This experiment takes a series of sine waves that vary linearly in amplitude across

the window. The amplitude ramps are tested at different levels of steepness, and the

effect on the autocorrelation-type algorithms’ ability to correctly determine pitch is

measured. Figure 5.13 shows an example of a sine wave with a linear amplitude ramp

that is used as input to the experiments.
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Figure 5.13: An example of a linear amplitude ramp function applied to a 660 Hz sine

wave. This ramp ranges from 0 to 1 across the window. Note that the vertical axis represents

the relative pressure of the sound wave.

A series of different linear amplitude ramps were tested, each with a different steep-

ness. The ramps are described by their beginning amplitude and ending amplitude.

The ramps tested is this experiment were 0 to 1, 0.25 to 1, 0.5 to 1, 0.75 to 1 and 1

to 1. The results are shown in Figure 5.14. Note that the last test case is in fact the

stationary signal case giving the same result as Figure 5.1. As in Experiment 1, for

each frequency tested, the sine waves are generated at a series of different phases, and

the pitch is calculated using the parabolic peak method, and only the maximum pitch

error is shown. A window size of 1024 was used and a sample rate of 44100 Hz, hence

the number of cycles of the waveform within the window’s ramp increases from 2.05 at

MIDI note 41.2 to 65.63 at MIDI note 101.2.

The results in Figure 5.14 show that as the steepness increased from flat, at 1 to

1, to the most steep, at 0 to 1, the errors increased slightly for all methods, with the

unwindowed methods being affected the most. The SNAC function is affected the most,

going from almost no error to an error of 21 cents at MIDI note 50; almost matching that

of the windowed unbiased autocorrelation. The WSNAC function, although worsening,

remains the best across the full range, showing that it has great ability to determine
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(a) Ramp from 0 to 1
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(b) Ramp from 0.25 to 1

40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

E
rr

or
 (

ce
nt

s)

MIDI number

 

 
SNAC
Unbiased Autocorrelation
Autocorrelation
Windowed Unbiased Autocorrelation
WSNAC

(c) Ramp from 0.5 to 1
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(d) Ramp from 0.75 to 1

40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

E
rr

or
 (

ce
nt

s)

MIDI number

 

 
SNAC
Unbiased Autocorrelation
Autocorrelation
Windowed Unbiased Autocorrelation
WSNAC

(e) Ramp from 1 to 1

Figure 5.14: The pitch errors measured using different autocorrelation-type methods on

sine waves with different linear amplitude ramps and varying input frequencies.

pitch even in the presence of a changing amplitude.

Experiment 6b: Complicated waveform with linear amplitude ramp.

This experiment is the same as Experiment 6a, except the more complicated wave-

form is used. The results are shown in Figure 5.15. Note that the vertical scale used

in these graphs is different from the previous figure.

Comparing Figures 5.14 and 5.15, the overall error remains lower for the compli-

cated waveform than for the sine wave as discussed in Section 5.2.2, due to the higher
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(a) Ramp from 0 to 1
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(b) Ramp from 0.25 to 1
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(c) Ramp from 0.5 to 1
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(d) Ramp from 0.75 to 1
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(e) Ramp from 1 to 1

Figure 5.15: The pitch errors measured using different autocorrelation-type methods on

complicated waveforms with different linear amplitude ramps and varying input frequencies.

frequency components creating narrower peaks in the lag domain. The graphs in Fig-

ure 5.15 show the usual peaks in the non-windowed methods caused by the non-integer

number of periods within the input window. Moreover, the difference in error between

the peak and troughs becomes quite significant. However, for the SNAC function, this

only starts taking effect at a 0.25 to 1 ramp steepness. In contrast, the WSNAC func-

tion stays relatively smooth, and it has the most consistently low error rate for this

complicated waveform.
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5.3.2 Amplitude Step

Experiment 7a: Sine wave with amplitude step.

This experiment tests how well the different autocorrelation-type algorithms deal

with an amplitude step. That is, a segment of sound with zero amplitude (no volume),

that instantaneously jumps to sound of a constant amplitude level. This is to simulate

a fast note onset. The test here is to see how long the algorithms take to respond

to give an accurate reading of the new note pitch. Because all algorithms here are

estimating the pitch at the centre of the window, the step at 50% of the way through

the window, is the point at which we should first possibly expect to get a sensible pitch

reading. Figure 5.16 shows an example of a step at 50% and a step at 25% and how it

applies to a sine wave.
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(a) A step at 50%, amplitude graph

0 100 200 300 400 500 600 700 800 900 1000

−1

−0.5

0

0.5

1

A
m

pl
itu

de

Time (samples)

(b) A 440 Hz sine wave with a step at 50%
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(c) A step at 25%, amplitude graph
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(d) A 660 Hz sine wave with a step at 25%

Figure 5.16: An example of an amplitude step function. The steps here are at 50% and

25% of the way through the window.

Figure 5.17 shows the results of the amplitude step experiments. Note the change

in vertical scale between plots. The step positions tested are 50%, 37.5%, 25%, 12.5%

and 0%. Note that having the step at 0% means that the signal takes up the whole

window and has become the stationary signal case, so is the same as in Figure 5.1.

The first thing to notice is the errors get much larger for all methods as the step

approaches 50%, with errors ranging up to 400 cents. Whereas, with a step at 0% the

largest error is around 90 cents. Both windowed methods perform worst with the step

at 50%, although the non-windowed methods do not perform much better. However,
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(a) Step at 50%
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(b) Step at 37.5%
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(c) Step at 25%
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(d) Step at 12.5%
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(e) Step at 0%

Figure 5.17: The pitch errors measured using different autocorrelation-type methods on

sine waves with different step positions and varying input frequencies.

with a step at 12.5%, the WSNAC can still be classified the best method. As usual

the the errors are smaller at higher MIDI numbers, as there are more periods of the

waveform in the window.

Experiment 7b: Complicated waveform with amplitude step.

This experiment is the same as Experiment 7a, except the more complicated wave-

form shape is used for input. The results are shown in Figure 5.18. These plots are

quite chaotic, and will vary greatly depending on the exact nature of the waveform
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shape. In general low MIDI numbers with steps of 37.5% or greater produce large

errors for all methods. The only sign of stability and low errors with the step at 12.5%

comes from the WSNAC function; however with the step at 25% it too performs poorly.

In comparison, the SNAC function’s performance appears to be one of the worst with

the step at 12.5%.

With the step at 50%, any MIDI numbers less than 52 contain less than two periods

of actual signal, so it can be expected that the error can just fluctuate wildly, as there

is no stability down there. It can be seen that all methods get an error around 400

cents at some point around MIDI number 44.

The conclusion to be drawn from the amplitude step experiments is that the win-

dow should be made up of around 85% waveform before the low MIDI numbers can

consistently achieve low errors using any method. In that case, the WSNAC function

performs the best. From another perspective, a delay of 35% of the window size is

required before a reasonable pitch value can be determined at the start of a fast onset

note. For example, on the 1024 sized window used here with a 44100 Hz sample rate,

the first 0.008 seconds of the note could not be assigned an accurate pitch measurement.

Of course, a human cannot instantaneously detect the pitch of a note, either. Ross-

ing [1990] states that a pitch can be determined in times as short as 0.003 seconds for

tones that have a slow onset, but requires longer for an abrupt starting sound, like the

amplitude step described here. The amplitude steps tend to give more of a clicking

sound. In practice, most musical instruments take longer than 3 ms for their attack,

so the amplitude steps described are a bit extreme, making it reasonable to accept the

higher error rates found. This seems to show that the linear amplitude ramp makes

for a better approximation of a note attack/onset.

5.4 Additive Noise

Experiment 8: Added noise.

This experiment is similar to Experiment 1, with the frequency and amplitude of

the input remaining constant, except that this time 15% white noise is added to the

input, i.e. random values ranging between -0.15 and 0.15. The results, shown in Figure

5.19, show a decrease in the accuracy of all methods relative to Figure 5.1. However,

the SNAC and WSNAC functions remain more accurate than the others, especially

at the lower MIDI numbers. Note that the peaks are still very prominent in the lag
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(a) Step at 50%
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(b) Step at 37.5%
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(c) Step at 25%

40 50 60 70 80 90 100 110
0

5

10

15

20

25

E
rr

or
 (

ce
nt

s)

MIDI number

 

 
SNAC
Unbiased Autocorrelation
Autocorrelation
Windowed Unbiased Autocorrelation
WSNAC

(d) Step at 12.5%
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(e) Step at 0%

Figure 5.18: The pitch errors measured using different autocorrelation-type methods on

complicated waveforms with different step positions and varying input frequencies.

domain and can be found easily above the noise: the increase in error is due to the

inability to find the exact top of the peak, or that the peak has actually moved.

5.5 Summary

The experiments described throughout this chapter have tried to simulate the type of

variations that are typical in music, and that might be expected from a user. The

inputs, however, have been constructed and controlled in such a manner that the
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(a) Using a sine wave with 15% white noise added
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(b) Using a more complicated waveform with 15% white noise added

Figure 5.19: The pitch errors, measured error using different autocorrelation-type methods

on signals with added white noise.
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desired outcome is known, and accurate error measurements can be made.

In general, when using a complicated waveform, i.e. with a number of harmonics,

instead of a sine wave, the errors were actually smaller. This seems to be because

the waveform has steeper slopes, and produces lag domain peaks that are narrower in

width. This can in fact improve the parabola peak finding. However, when the higher

MIDI numbers are used in conjunction with the complicated waveforms, errors start

being introduced again. This is because the component frequencies become very high,

making a peak’s width in the lag-domain too narrow. With these very narrow peaks,

the three point parabola peak fitting method does not make as good an approximation,

and as a result errors start being introduced. This effect can be seen in Figures 5.2, 5.9,

5.15 and 5.18 as a small increase in the error rate from about MIDI numbers 90 and

above. Nevertheless, in real music, the instruments that can play really high notes,

such as the piccolo, do not tend to produce many harmonics, but sound quite pure

and produce sinusoidal-like shapes. Therefore, the type of peak fitting problems just

described do not usually occur in practice. However, in the extreme case that this effect

does arise, one solution to this problem is to use a higher sampling rate, although this

would result in more computation. Another approach could be to try using a more

complicated peak approximation; however, this may not necessarily produce a better

result.

In summary, across all the experiments carried out, including frequency changes,

amplitude changes and additive noise, the WSNAC function has remained the most

consistently well performing algorithm, with the SNAC function also performing well

in a lot of cases. It was also shown that these two algorithms can work well at small

window sizes, requiring little over two periods of the waveform in order to detect the

pitch accurately to less than 5 cents in most cases. The exceptions were the amplitude

step experiment, which might be described as too extreme a test for any sensible pitch

to be found anyway, and the additive noise experiment, at which they could only

achieve around 10 cents accuracy or less. However, they performed better than the

other autocorrelation-type methods in this case, and getting more accurate than this

may not even be possible, due to some of the signal’s information being inherently lost

in the localised noise.

In this chapter, because of the controlled generation of the signals, it was possible

to choose the correct peak during the peak-picking process. However, in real musical

signals, a waveform’s shape can vary over the duration of a note due to the harmonics

changing differently. This makes picking the correct peak difficult in practice. Never-
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theless, if the correct peak is chosen, the experiments from this chapter remain valid.

However, even using a suitably sized window such that the waveform’s shape is ap-

proximately unchanged throughout, these results will only serve as a guideline to the

accuracy that will be achieved on real musical signals. Chapter 6 describes testing

using real musical signals, creating a more complete testing regime.
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Chapter 6

Choosing the Octave

The previous chapter looked at a number of different functions and compared the errors

in their estimates in the position of a peak’s maximum in the lag domain. Knowledge

of the expected position was used to guarantee that the correct peak was measured.

This chapter looks at the problem of how to choose which peak in the autocorrelation-

type function corresponds to the pitch’s octave as perceived by a listener. Section 6.1

discusses how to go about testing an algorithm and the datasets that were constructed

to perform these tests. Section 6.2 discusses the difference between the fundamen-

tal frequency and the pitch frequency and how these are not always the same. This

is followed in Section 6.2.1 by a brief look at how humans perceive sound, with as-

pects learnt from this applied in Section 6.2.2. The shape of the SNAC function is

investigated in Section 6.3, with a simple method for choosing a peak presented. An

alternative method for choosing the pitch’s octave, based on the cepstrum algorithm,

is discussed in Section 6.4 which can be used in conjunction with the SNAC function

to achieve a good measurement of pitch.

6.1 Measuring Accuracy of Peak Picking

In order to measure the accuracy of an algorithm, a dataset of sounds with known pitch

outcomes is required. No good standard databases for testing pitch could be found;

however, a good database of sounds was found from Lawrence Fritts at the University

of Iowa1.

The Iowa database contains sounds from a range of musical instruments which

include:

1http://theremin.music.uiowa.edu
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• String - double bass, cello, viola, violin, piano.

• Woodwind - bassoon, oboe, bass clarinet, E♭ clarinet, B♭ clarinet, alto saxophone,

alto flute, soprano saxophone, bass flute, flute.

• Brass - bass trombone, tuba, french horn, tenor trombone, B♭ trumpet.

This is an excellent test set which contains samples of the full range of notes from each

instrument, with each note played distinctly with a gap between them. The sounds

were recorded in an anechoic chamber and hence contain almost no reverberation, and

very little background noise. Note that the cello, violin and viola recordings contain

pizzicato, or plucked, notes as well as bowed versions. Also, the alto saxophone, soprano

saxophone, trumpet and flute recordings contain both vibrato and no vibrato versions

of the notes. The file-names labelled the content sufficiently clearly that the hand

marking of pitches and beginning/end of notes using listening and inspection methods

could be applied with confidence.

A second dataset of sounds was generated using MIDI, including a 3 octave chro-

matic scale, and the first half of ‘Für Elise’. One noticeable difference between this

dataset and the Iowa dataset is that in this dataset the notes are played with legato i.e.

without gaps. The program TiMidity++ version 2.13.2 [Izumo and Toivonen, 2007]

was used to convert MIDI to wave files. The command used to run TiMidity++ was

“timidity -OwM –reverb=d,0 -o [outfile.mid] [infile.wav]”. The second parameter is

used to reduce the amount of reverberation. The great thing about using MIDI is

that the sound of many different instruments can be created by simply changing the

instrument number in the MIDI file, and leaving the hard work to the MIDI converter.

The other reason is that the expected pitch output is relatively well known, although

it appears that small variations in pitch are introduced by TiMidity++. However, the

details of sound generation were intentionally left as a black box, so as not to influ-

ence the testing phase. Each of the sounds was generated using the following MIDI

instruments:

• String - cello, violin, piano, nylon string guitar, steel string guitar, clean electric

guitar and overdrive electric guitar.

• Woodwind - bassoon, clarinet, flute, oboe, recorder and soprano saxophone.

• Brass - tuba, trombone and trumpet.
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The resulting generated sounds are, however, not as good as real sounds, so this dataset

is considered useful, but secondary to the Iowa dataset.

Note that the sound files in both datasets have a sample rate of 44100 Hz.

Experiment 9a: Autocorrelation vs SNAC function at choosing the octave.

The ACF and SNAC function were tested using both datasets. For this experiment

the pitch period is chosen as the global maximum peak, when the peak at τ = 0 is

excluded. In order to test the SNAC function, an artificial slope is applied so that

if there are multiple peaks with a similar amplitude the left-most one will be chosen.

That is, Equation 4.2 is modified to become

n′

sloped(τ) =
( W

W − τ

) 2
W−1−τ∑

j=0

xjxj+τ

W−1−τ∑

j=0

(x2
j + x2

j+τ )

(6.1)

In comparison the ACF, as stated in Equation 2.6, has a natural slope that tapers the

function to zero at index W - so it is used unmodified.

The periodic peak chosen is considered to be a ‘pitch octave error’ if its maximum

is more than 1.5 semitones from the expected pitch. The term ‘pitch octave error’

denotes that the incorrect peak has been selected, and may describe an error other

than a note only in the incorrect octave; however, it is common when the incorrect

peak is selected that the resulting pitch in the incorrect octave. This experiment allows

for some variation in the exact position of the peak maximum, but is sufficiently small

that if an incorrect peak is chosen an error will result. The analysis is performed frame

by frame throughout all the sound files in the given database. The error rate shows

the percentage of incorrect peaks from the frames which contain an expected pitch -

i.e. frames that have no marked pitch are ignored.

Note that a window size of 2048 samples was used with a hop size of 1024 samples.

Any notes below F1 were removed from the datasets, as F1 is the largest period which

can be measured reliably using this window size.

The results in Table 6.1 show the percentage of frames in which the peak chosen

was incorrect. The sloped SNAC function performs slightly worse than the ACF on

both of the datasets. These figures show that on the main dataset, the Iowa dataset,

one octave error occurs about every 25 frames on average. Moreover, at the frame rate

of 43 frames per second, this is about 1.7 octave errors per second. This high rate of

error would not only frustrate the user, but can upset any further analysis done on the
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Percentage of pitch octave errors

Dataset Iowa MIDI

ACF 3.94% 1.66%

SNAC (Sloped) 4.08% 1.70%

Table 6.1: A comparison between the ACF and SNAC function showing the percentage of

frames with incorrect pitch octaves.

pitch signal. In order to make a satisfactory musical tool, the octave error rate needs

to be reduced.

6.2 Can the Fundamental Frequency and the Pitch

Frequency be Different?

It may not be obvious as to how the fundamental frequency and the pitch freqency can

be different. The following uses an example with 3 different cases to help explain why.

Case 1: If a sound is produced that contains frequencies which are all a multiple of

200 Hz, and are all the same amplitude, as shown in Figure 6.1a, then the fundamental

frequency is 200 Hz, and the pitch frequency is also 200 Hz.

Case 2: If a sound is produced that contains frequencies which are all a multiple

of 100 Hz, and are all of the same amplitude, as shown in Figure 6.1b, then the

fundamental frequency is 100 Hz, and the pitch frequency is also 100 Hz.

Case 3: If a small amount of signal from case 2 is added to case 1, as shown in

Figure 6.1c, then the perceived pitch frequency, Fp, is still associated with the dominent

spetra at 200 Hz. However, the mathematical fundamental frequency, F0, is 100 Hz,

as it is the lowest common denominator frequency, and associates with the period of

the signal.

If the amplitudes of the odd multiples of 100 Hz are increased, then at some point the

pitch frequency will switch to be perceived at 100 Hz. The point at which this switch

happens is a property of human pitch perception, and can vary with the frequency

range, and harmonic structure of the signal.
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Figure 6.1: Fundamental frequency vs pitch frequency example

6.2.1 Pitch Perception

This section examines the mechanism of human pitch perception, with some of these

insights used to improve the pitch detection algorithms.

The human ear consists of three main parts: the outer, middle and inner ear. The

outer ear consists of the pinna, the visible part on the outside and the ear canal, which

helps focus energy on the ear drum. The middle ear consists of the ear drum and the

ossicles, a series of three bones, which act as a lever to transfer the vibrations into the

fluid and membranes in the inner ear. The inner ear contains the cochlea, which is

where the actual sensing of the sound is done [Carlson and Buskist, 1997]. The cochlea

contains the basilar membrane, which changes in width along its length, with different

parts having different resonant frequencies. Inner hair cells along the membrane’s

length cause certain neurons to fire with localised movements of the membrane. These

firings send electrical pulses up the auditory nerve [Moore, 2003].

Two major theories of pitch perception attempt to explain how the neuron firings

are converted into pitch information. These are place theory and temporal theory

[Moore, 2003]. In place theory the basic idea is that the pitch is found using informa-

tion from the position or place of the hair cells that caused firings along the basilar

membrane, whereas in temporal theory it is thought that the pitch is deduced from
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information related to the timing between neuron firings. However, it is likely that a

combination of these methods takes place with the different methods having greater

influence at different frequencies. Therefore, the ear is probably performing both time

analysis and frequency analysis of a sound wave before deciding on the pitch [Rossing,

1990].

An important consequence of the ear’s design is that, as sound passes from the outer

ear through the middle ear, not all frequencies pass evenly. The outer and middle ear

have a filtering effect. The only information used by the inner ear for perceiving the

pitch has had this filtering applied. Thus, in order to match the pitch perception of

humans, it makes some sense to apply a similar filtering effect to the sound before

performing any pitch detection.

6.2.2 Outer/Middle Ear Filtering

Robinson [2001] discussed a filter that was employed to approximate the sound that

is actually received by the inner ear. We implemented this filter and applied it to the

input as a pre-processing step, in an attempt to reduce pitch octave errors, making

the overall algorithm more of a pitch detector, than a pure fundamental frequency

estimator. This step can be considered more biologically based than other parts of the

algorithm.

The SNAC and WSNAC functions, in conjunction with peak picking, can be used

to find the fundamental frequency of any harmonic signal. The algorithms are not

constrained to sound signals alone, but can be used on any type of signal, so long

as the zero frequency component is first removed - which can be approximated by

subtracting out the signal’s mean. However, the filtering described here is only for use

with sound signals when trying to determine musical pitch. To help understand where

this filter design comes from, the concept of perceived loudness is first discussed.

Figure 6.2 shows a graph of perceived equal-loudness curves [Nave, 2007], generated

from psycho-acoustic tests. The phon is a unit of loudness and is defined as the

intensity, in decibels, of a 1000 Hz frequency which is perceived to have the same

loudness.

Figure 6.3 takes an 80 phon curve and turns it upside down to give an attenuation

curve. Here the smallest attenuation, at around 4 kHz, is set as the 0 dB attenuation,

so the filter has no gain. This curve is used as an approximation to the attenuation that

occurs in the outer/middle ear. Two digital filters from Robinson [2001] are constructed

to approximate this target curve.
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Figure 6.2: Equal-loudness curves [Nave, 2007]. This graph shows the intensity required at

different frequencies to give the same perceived loudness.

The low frequency drop off of the outer/middle ear filtering is approximated using

a second order Butterworth filter, giving a slow frequency roll-off. This filter is a high-

pass infinite impulse response (IIR) filter with a 150 Hz cutoff frequency. That is,

frequencies below 150 Hz are attenuated by 3 dB or more. Note that the frequencies

below 150 Hz are not removed completely, but are reduced in strength. This filter is

fast to run, and gives a significant improvement to the rest of the pitch algorithm when

compared to using no filter at all. It reduces any low rumbling sounds that are below

human hearing, as well as any DC offset component.

The next filter tries to approximate the more complicated shape on the right-hand

side of the target curve. A 10th order IIR filter is used which was designed using the

Yulewalk method as implemented in Matlab’s signal processing toolbox [MathWorks,

2006]. However, this filter is more computationally expensive and does not have as

significant an effect as the first filter on the pitch recognition process. If computation

time is a real problem, this filter can be skipped without causing any large differences

in the result.

Both filters are combined to form a single outer/middle ear filter. Figure 6.3 shows

the filter response compared with the target curve. This filter approximates the 80
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Figure 6.3: The target equal-loudness attenuation curve and the designed filters

phon attenuation curve very well. For further details of the filters see Appendix B.

Experiment 9b: Using the middle/outer ear filter.

This experiment is the same as Experiment 9a except that the middle/outer ear

filter is applied to the sound before any pitch detection is performed.

Periodic Error

Dataset Iowa MIDI

ACF 2.43% 1.68%

SNAC (Sloped) 2.55% 1.68%

Table 6.2: Comparison of periodic errors using middle/outer ear filtering

The results in Table 6.2 show the percentage of frames in which the peak chosen

was incorrect. Notice that the error rate has been reduced for both algorithms on the

Iowa dataset compared with Experiment 9a. However, on the generated MIDI dataset

no significant change was made. Also note that the sloped SNAC function and ACF
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have similar performance. The best error rate of 2.43% on the Iowa database is still

quite high, considering at the speed of 43 frames per second it equates to about one

pitch error per second. Thus further improvement in the error rate is necessary. This

is addressed in the following sections with the development of a peak picking algorithm

and some other variations of it.

6.3 Peak Picking Algorithm

This section investigates the properties that govern the shape of the SNAC function.

Then, using this knowledge, a peak picking algorithm is described which attempts to

choose the correct peak more often than the simple global maximum approach.

The SNAC function indicates how well the input function correlates with itself

when delayed by varying amounts. The hope is for the SNAC function to reveal the

period which corresponds to the musical pitch. However, it turns out that the truly

mathematical fundamental period of a signal is not always the same as the musical

fundamental period that is of interest. The differences between these is discussed here,

as well as methods to find the musical period more consistently.

Firstly, the reader is familiarised the with the SNAC function’s shape, before dis-

cussing the typical problems that arise when extracting the fundamental period. This

is followed by a proposed peak picking algorithm, and experimental results.

A form of peak picking is often done in the Fourier domain in order to find the

frequency of harmonics or partials in a signal, as discussed in Section 2.4. However,

harmonics can fluctuate greatly in amplitude and frequency, especially at the begin-

ning/attack part of a note, or during vibrato. The lag domain was found to be a lot

more stable in most cases than the Fourier domain, allowing peaks to be found more

consistently.

6.3.1 Investigation

Here the pitch frequency, Fp, is referred to as the first harmonic, and a frequency n

times Fp as the nth harmonic. Analogous to this naming, we define the pitch period,

Pp, as the first ‘periodic’, and a period n times Pp as the nth periodic. The pitch period

is defined as the inverse of the Fp and is approximately equal to the length of time for

one cycle of the pseudo-periodic waveform.

When plotting a SNAC function, these periodics show up as primary-peaks. This

means that delaying the original signal by any of the periodics will cause it to correlate
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well with its original self. Figure 6.4 shows a segment of a violin recording, its Fourier

transform, and the SNAC function of the violin recording. It can be seen in (c) that the

first periodic appears at 75 samples, which is the length of time to repeat the waveform

in (a). The second periodic in (c) shows that the waveform in (a) also repeats after 150

samples, and so on. Given that the sample rate is 44100 Hz, the fundamental periodic

in (c) can be seen to be the reciprocal of the fundamental frequency in (b) of 588 Hz.
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(a) A window, of size W = 1024, taken from a violin recording
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Figure 6.4: (a) A piece of violin data, (b) the Fourier transform of the violin data, (c). The

SNAC function of the violin data.

In simple cases, such as the violin example in Figure 6.4, the fundamental frequency

dominates the signal. This typically has the property of producing clear outstanding

periodic peaks in the SNAC function. In these simple cases, simply picking the first

of the highest peaks as our pitch fundamental, or first periodic, is correct most of
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the time. A periodic with a lag value greater than the first periodic, is referred to

as a super-periodic. In real music, a super-periodic may contain a higher peak than

the first periodic. This can come about because the signal is not stationary and may

contain amplitude or frequency variations. Moreover, the signal may contain a certain

amount of noise and other background sounds, and even some precision errors. These

factors could, for example, result in the second periodic having a higher peak than the

first periodic. Note that even though, mathematically, the second periodic may form

a better F0 for the frame, this is not the pitch period, Fp, that is of interest. If a

super-periodic peak is mistaken for the first periodic, it results in a misclassification of

pitch, typically an octave or more lower than expected.

In more complicated cases of a musical note, harmonics other than the first can

dominate the signal. Figure 6.5 (a) shows an example of a signal with a strong 2nd

harmonic which can be seen in (b). This causes a strong sub-periodic to appear in

the SNAC function as shown in (c). A sub-periodic is defined as any peak in the

SNAC function that has a lag smaller that the first periodic. Sub-periodics can also

be mistaken for the first periodic if they are sufficiently high. An example of a sub-

periodic can be seen in Figure 6.5. Notice in (a) how the signal closely repeats after

88 samples, but repeats more accurately after 176 samples. On listening tests for this

signal, a human will identify the pitch period, Pp, at 176 samples.

6.3.2 The Algorithm

In the general case, many sub-periodic peaks and super-periodic peaks can occur in the

same SNAC function making it a difficult task to identify which peak to label as the

first periodic. The peak picking algorithm described in the following was developed by

experimentation.

The first part of the algorithm involves categorising peaks into two types, primary-

peaks, which are considered to be possible periodics, and secondary-peaks. For exam-

ple, in Figure 6.6 the periodic is 325 samples, however, a lot of sub-periodics occur;

caused by strong harmonics making a ripple across the graph. The two types of SNAC

function peaks are described as follows:

• A primary-peak is defined as the maximum between a positively sloped zero-

crossing and negatively sloped zero-crossing.

• All other maxima are labelled secondary-peaks, including any peaks before the

first positively sloped zero-crossing. Secondary-peaks get discarded from the rest
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Figure 6.5: (a) A piece of violin data with a strong second harmonic, (b) the Fourier

transform of the violin data, (c). The SNAC function of the violin data.

of the algorithm.

• If there is a positively sloped zero-crossing toward the right-hand end of the

graph without a succeeding negative zero-crossing, the highest peak since the

zero-crossing is considered a primary-peak, if one exists.

The zero-crossing concept relies on the original signal having its DC or zero-frequency

component removed. Note that in our implementation this happens during the outer/middle

ear filtering discussed in Section 6.2.2. This ensures that a zero-crossing will occur at

least once between any nth periodic and the next, provided that there are no sub-periods

that are higher than the first periodic.
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Figure 6.6: A SNAC function graph showing three primary-peaks marked with *’s, the

highest being at τ = 650, whereas the 1st periodic is at τ = 325. All unmarked peaks are

secondary-peaks.

In Figure 6.6 there are three primary-peaks which are marked with a ∗. However,

if the value at τ = 720 had gone below the zero-line, it would have created another

primary-peak at τ = 750. This new peak would be considered a spurious primary-

peak and is hard to eliminate effectively and could therefore be included. However,

these spurious peaks are normally a lot smaller than the other primary-peaks, making

the likelihood of them being discarded in the later part of the algorithm very high.

Nevertheless, the main concern in this part of the algorithm is to remove any ripple

peaks near the top of a primary-peak which could be mistaken as a periodic in later

stages. However, reducing the number of peaks also reduces the amount of calculation

in the later part of the peak picking.

This algorithm can be used on any of the autocorrelation-type methods, however

it cannot be used on the SDF because that has no concept of a centre or zero-crossing.

This is one of the advantages of the SNAC function over the SDF.

The parabola technique described in Section 4.3 is used for each primary-peak to

get a real-valued position. Let Kτ be the set of these primary-peak lag values. Let Kn

be the set of corresponding n′(τ) values of peak heights. Note, n′(τ) is being treated as

a continuous function here, of which Equation 4.2 only gives values at integer positions.

The next part of the peak-picking algorithm is to define a threshold, vthreshold.

This threshold is equal to the n′(τ) value of the highest primary-peak, multiplied by a

constant, c. That is to say,

vthreshold = c max(Kn). (6.2)

Finally, the first periodic is then chosen to be at the first primary-peak which has
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its Kn ≥ vthreshold, with the corresponding lag value from Kτ giving the actual period

value.

The constant, c, has to be large enough to avoid choosing sub-periodics caused by

strong harmonics, such as those in Figure 6.7, but low enough as to not choose super-

periodics. Recall, that choosing an incorrect first periodic will result in a pitch error,

usually a wrong octave.
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Figure 6.7: A graph showing the SNAC function of a signal with a strong second harmonic.

The real pitch here has a period of 190 samples, but close matches are made at half this

period.

6.3.3 Results

Experiment 10: The SNAC function with peak-picking, using varying constants.

The Peak Picking algorithm was tested in a similar way as the simple global max-

imum peak method described earlier, except non-sloping versions of the equations are

used i.e. Equation 2.7 and 4.2. The experiments were run using a range of different

values of the constant c, with the results shown in Table 6.3.

Periodic Error

Constant c 0.8 0.85 0.90 0.95 1.0

Iowa database 2.34% 1.46% 0.96% 0.93% 26.1%

MIDI database 0.66% 1.03% 1.87% 4.00% 23.3%

Table 6.3: Results of the peak picking algorithm on the SNAC function
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Notice how the error rate for c = 1.0 equals that of the simple global maxima

approach when the non-sloped algorithms are used. The new algorithm shows some

improvements, with an error rate of 0.93% on the Iowa database when c = 0.95, bet-

tering the previous best error of 2.43%. The MIDI database improves from a previous

best of 1.66% to 0.66% when c = 0.8. However, the problem is that these are not

the same c value. One solution is for a program to provide the ability for the user to

change the constant to suit their instrument, although this is by no means ideal.

Pitch is a subjective quantity and impossible to get correct all the time. In special

cases, such as the ‘tritone paradox’ [Deutsch, 1986], the pitch of a given note may be

judged differently by different listeners. We can endeavour to get the pitch agreed by

the user/musician as often as possible. Note that the datasets used in this thesis use

musical notes with a pitch that is fairly well defined. However, the value of c can be

adjusted, usually in the within the range 0.8 to 1.0, to achieve different octave results.

The errors that do occur typically happen at the beginning/attack part of a note,

or during fast pitch changes within a note, such as that in vibrato. Although, a small

number of errors arise even in steady notes, due to the vast variation in harmonic

structure between instruments. The following section takes another approach to try

to improve the error rate. Moreover, these problems are discussed in more detail in

Chapter 7, with some other proposed solutions.

6.4 Using the Cepstrum to choose the Periodic Peak

It seems that no matter how we try to select the first periodic in the SNAC function,

only a small improvement in the error rate is made. Consider a more generalised value

called the ‘octave estimate’ to be an estimate of the period. The octave estimate is

not expected to be precise in its period, but is expected to reside in the correct octave

with a high degree of confidence. Furthermore, the closest primary-peak in the SNAC

function to the octave estimate can be used to find the period within the given octave

to a greater accuracy.

This section introduces the idea of using a completely different method to choose an

octave estimate, and not restricting ourselves to the SNAC or autocorrelation domain

values. The cepstrum algorithm, as discussed in Section 2.5.1, is investigated purely

for its octave error robustness, before a modified version of the cepstrum algorithm is

introduced in Section 6.4.1. The octave estimate is then used as guide to selecting the

correct periodic peak in the SNAC function.
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One of the limitations of using the cepstrum is that it struggles to choose the fun-

damental frequency when there are fewer than about three periods in the window. The

problem here lies in the STFT, or windowed FFT, as the Hamming window function

used produces frequency lobes with a noise equivalent bandwidth metric of 1.37, caus-

ing frequency bins to overlap in the Fourier domain. Hence, the Fourier transform of

the spectrum, i.e. the cepstrum, has a reduced ability to find frequency components in

the spectrum function.

Changing the windowing function can change the amount of data that is lost at the

edge of the window. A rectangular window can use all the data in the window fully,

but causes a lot of spectral leakage. A compromise might prove useful, for example

a sine window. However, the only way to increase the frequency resolution whilst

maintaining a low level of spectral leakage is to use a larger window, the downside

being that some time resolution is lost. Although the concern here is only to generate

an octave estimate, there is no need to follow the fast variations in pitch, such as those

during vibrato - that is left up to the other algorithm. For now the important thing is

to choose the octave correctly even if it requires using a larger window.

Experiment 11: The Cepstrum, using varying constants.

The cepstrum algorithm described in Section 2.5.1 which can be used for pitch

detection is used here to obtain an octave estimate. A window size of 4096 is used

with a hop size of 1024. Note that the split value was set to a quefrency (cepstrum

axis) value of 5. This is a bit smaller than the shortest period size in the datasets.

This experiment was conducted in the same manner as experiments 9 and 10, with an

octave estimate that differs more than 1.5 semitones from the expected pitch counting

as an error.

Octave Estimate Errors

Constant c 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Iowa dataset 21.3% 15.8% 12.6% 11.3% 11.5% 13.4% 16.6%

MIDI dataset 21.1% 14.3% 10.9% 8.98% 8.16% 8.88% 11.0%

Table 6.4: Results of the octave estimates using the cepstrum with a Hamming window.

The octave error rates shown in Table 6.5 show the cepstrum has a best of 11.3%

on the Iowa dataset with c = 0.7. This is a quite a high error rate in comparison to

that of the SNAC function. Using the cepstrum does not seem beneficial at all.
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6.4.1 The Modified Cepstrum

After investigating the shape of the cepstrum domain for a number of different inputs,

it appeared that sometimes cepstrum peaks just formed in the wrong place for no

particular reason, causing bad octave estimates.

After studying the shape of the log power spectrum which led to the unexpected

cepstrum shapes, it appeared that fluctuations in the more negative values of the log

power spectrum were having a large influence on the cepstrum shape. The large nega-

tive values observed seemed to come and go at random, with most of them toward the

right-hand end of the log power spectrum. Figure 6.8 shows an example log spectrum

with some downward spikes toward the right-hand end. The large negative values in

the log power spectrum occur when the (linear) power spectrum value is close to zero.

This is because the logarithm of a value less than one is negative, and as the value

approaches zero, its logarithm approaches negative infinity.
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Figure 6.8: The log power spectrum of a segment of flute playing B3, using an STFT with

a window size of 4096 and a Hann window function.

A reason for these large fluctuations at the right-hand end of the log power spectrum

is that the data sets were either recorded in an anechoic chamber or were produced

by computer so they have very little or no background noise. The left-hand end of

the log power spectrum typically contains strong peaks from the harmonics in the

instrument’s sound. Spectral leakage occurs around the peaks, reducing the large

number of negative values occurring between the peaks. However, the right-hand end

of the log power spectrum contains little energy from the instrument itself, but consists

mainly of background noise. Depending on the exact shape of the spectral leakage

coming from the distant peaks, large negative values can occur. Even if there is some
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background noise, groups of small negative values can have a significant effect on the

cepstrum shape.

If a Hanning window is used, the spectral leakage curve drops off quite steeply,

such that a given peak will influence its 20th neighbouring bin by only -90 dB. In

comparison the Hamming window still has a -60 dB influence on its 60th neighbouring

bin. As expected the Hanning window produces smaller power spectrum values to the

right-hand end far from any strong peaks. This results in larger fluctuations in the

log power spectrum compared to the Hamming window and a more chaotic cepstrum

shape.

There appears to be no good reason why these groups of very quiet freqency bands

should have such a large influence on our pitch detection. The reason for the use of

the logarithm, is to achieve the property of addition between the source signal, s(t),

from the vocal chords, and the vocal tract filter, h(t), for purposes of separation in the

cepstrum domain. The property of having a peak at the fundamental period is merely

a secondary effect. However, if our concern is only the fundamental period, there is no

need for the logarithm rule to be used.

Experiment 12: The modified cepstrum using varying constants

A logical progression was to modify the cepstrum to use log(1 + |X(f)|) instead of

log(|X(f)|) as originally described in Section 2.5.1. This maintains the curved shape

of the logarithm, but makes any small values of |X(f)| result in a zero instead of a

large negative value when the logarithm is taken.

The shape of the modified cepstrum curve resembles the shape of the SNAC function

somewhat, and it was discovered that the peak picking algorithm from Section 6.3 could

be used on the modified cepstrum with great effect. However, a small modification to

the algorithm was found to work better on the modified cepstrum. In this experiment

Equation 6.2 was replaced with

vthreshold = m + (c − 1)m2, (6.3)

where m = max(Kn).

The results in Table 6.5 show the modified cepstrum has a reduced error rate over

the cepstrum on both datasets. An error rate of 0.617% was achieved on the Iowa

dataset and 0.377% on the MIDI dataset. This is not only better than the peak

picking result achieved using the SNAC function, but both results achieved well using

the same constant of c = 0.5. Note that the inverse FFT of the log(1+|X(f)|) spectrum

was actually used here. However, according to the Fourier inversion theorem this is
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Octave Estimate Errors

Constant c 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Iowa dataset 1.84% 0.975% 0.634% 0.617% 0.802% 2.16% 2.58% 7.55%

MIDI dataset 1.18% 0.459% 0.377% 0.511% 0.857% 1.6% 3.11% 9.05%

Table 6.5: Results of the octave estimates when changing the constant, c, using the modified

cepstrum.

equivalent to the forward FFT for our real even function, i.e. |X(f)| = |X(−f)|.
Previously, changing the scaling of the power spectrum resulted in adding an offset

to the cepstrum result. This can be shown by

log(s|X(f)|) = log(s) + log(|X(f)|). (6.4)

This constant offset does not affect the position of the maximum, and hence is irrelevant

to our purpose. However, when using the log(1 + |X(f)|) function any scaling of the

power spectrum becomes significant, as the simple offset relationship does not hold.

i.e.

log(1 + s|X(f)|) 6= log(s) + log(1 + |X(f)|) (6.5)

Experiment 13: The modified cepstrum with varied scaling.

This experiment investigates how different values of the scalar s affect the number

of periodic errors. Changing s effectively changes the curvature of the curve as shown

by Figure 6.9. Note that log(1 + sx) tends toward a straight line, or linear function,

as s approaches zero. Also note that a base 10 logarithm is used in this experiment.

This experiment is run under similar conditions to Experiment 12. The differences

being that the peak-picking constant, c, was fixed to 0.5 and that the value of the

scalar, s, is varied.

The results in Table 6.6 show little improvement over the previous experiment with

a best error rate of 0.634% and 0.35% for the Iowa and MIDI dataset respectively. This

small variation in error rate across the different scalar values indicates that the exact

value of s is not of great significance. Hence, if the speed is of great concern the linear

function performs almost as well, without the need to calculate a lot of logarithms.

Note that in the linear case the algorithm becomes similar to the ‘Fourier of Fourier’

transform discussed in Marchand [2001], and is analogous to calculating a windowed

autocorrelation using the FFT method from Section 2.4.5 without zero padding.
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Figure 6.9: A comparson of of the log(1 + sx) function with different values of s. Note

that the height has been normalised so it is 1 at x = 10. A straight line has been put in for

reference.

Octave Estimate Errors

Scalar value s 10.0 1.0 0.1 0.01 0.001 Linear

Iowa dataset 0.673% 0.634% 0.712% 0.720% 0.724% 0.724%

MIDI dataset 0.548% 0.377% 0.352% 0.35% 0.35% 0.35%

Table 6.6: Results of the octave estimates when changing the scalar, s, of the modified

cepstrum.

In summary, this chapter introduced a filtering and peak picking method for the

SNAC function which improved the error rate over the existing autocorrelation-type

methods from 3.94% to 0.93% on the Iowa dataset, and 1.66% to 0.66% on the MIDI

dataset. Further improvement to the error rate was made with the introduction of the

modified cepstrum method to generate octave estimates. This method requires a larger

window size to compensate for the Hamming window used. However, this method can

be used in conjunction with a SNAC function of smaller size. Thus, it can maintain a

high time resolution in order to follow rapid pitch variations, whilst maintaining a low

octave error rate. The modified cepstrum was found by experiment to work best with

the constant c = 0.5 and scalar s = 1.0, achieving an error rate of 0.634% on the Iowa

dataset and 0.377% on the MIDI dataset.
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Chapter 7

Putting the Pitch in Context

This thesis has so far discussed ways of accurately and quickly determining the pitch

for a given window of a signal. That is to say, only local information about the sound is

used in determining the correct periodic and hence the octave. However, in practice it

can be beneficial and even necessary to use information from the surrounding context

of the window to help determine the correct periodic.

This chapter looks first at median smoothing, a technique for removing gross errors

using neighbouring values. Section 7.1 describes median smoothing and how it was

applied in an attempt to reduce the pitch error rate. However, its success was limited.

A new method called the aggregate lag domain (ALD) is introduced in Section

7.2.1 which uses the idea of a consistent octave throughout all frames within a note

and combines together their SNAC function or modified cepstrum space. An estimate

of the period is then chosen from this combined function space. Furthermore, this is

extended in Section 7.2.2 with a warped aggregate lag domain (WALD), in which any

variations in pitch are scaled or warped out before combining them to maximise peak

correlation. These methods are tested against the existing datasets to measure their

pitch octave error rate.

7.1 Median Smoothing

Median smoothing, or median filtering, is a non-linear filtering method for removing

gross errors or noise from a signal. A window consisting of an odd number of samples

is sorted into numerical order and the median value selected as the output. Then the

window is slid one to the right each time, gaining a new value and losing the oldest.

Any extreme values in the signal get pushed to the beginning or end of the sorted
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list, so are discarded from the output. One benefit of median smoothing is that steep

changes, or edges, in a signal are preserved quite well, in contrast to linear smoothing

filters which tend to blur out the region around a steep change.

In the case of pitch, any value that takes on a different octave than its neighbours

can be considered an extreme value to be removed. If linear filtering had been applied

instead, the pitch contour would have taken on values between the octaves, producing

an undesirable effect.

If the erroneous pitch values are few and far between, the median smoothing per-

forms well. However, if there are a whole sequence of pitch errors grouped together,

such that more than half of the window contains errors, median smoothing will get an

incorrect result. It is possible for not just one error, but a group of incorrect outputs

in this case.

One solution is to use a larger window size for the median filter, so that less than

half the window has errors. However, the window size must remain small enough to

identify short musical notes that contain only a small sequence of correct pitch values.

Hence, the window size must be kept smaller than twice the length of the shortest

possible note, which is quite short in practice.

Rabiner and Schafer [1978] suggest the use of median smoothing followed by linear

smoothing, such as a Hanning filter, with a two pass scheme. However, this does not

help solve the grouped error problem.

Experiment 14: Median Smoothing.

This experiment tests the use of a median smoothing filter and measures its effects

on the octave estimate. Note that the input to the median filter is the set of octave

estimate values, or pitch-input. The output is another set of octave estimate values.

This experiment was conducted in the same manner as experiment 13, with values of

c = 0.5 and s = 1.0 used for the modified cepstrum. The median filter was applied to

the octave estimate values using varying window sizes.

Table 7.1 shows results from median filters of different sizes. It can be seen that

some improvement was made on the MIDI dataset with a window size of 15 reducing

the errors from 0.377% to 0.159%. However, there was only a small improvement for

the Iowa dataset.

Investigation into the source of the errors found that most of them result from

groups of pitch-input errors, or pitch-input errors at the beginning or ends of notes.

This group error problem cannot be solved easily unless further information is known

about the pitch-input signal.
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Modified Cepstrum - Periodic Error

Dataset Iowa MIDI

No median smoothing 0.634% 0.377%

Median smooth 5 0.645% 0.354%

Median smooth 7 0.604% 0.268%

Median smooth 9 0.587% 0.185%

Median smooth 15 0.598% 0.159%

Median smooth 51 1.03% 16.7%

Table 7.1: Comparison of periodic errors using the modified cepstrum and varying the size

of the median smoothing.

7.2 Combining Lag Domain Peaks

In Chapter 6 the pitch or octave estimates were calculated for each frame using a SNAC

function or modified cepstrum, both of which are considered lag domain functions here.

The median smoothing uses only the pitch or octave estimate values from each frame.

However, in this section the information from the lag domain is utilised to a greater

degree by sharing values, other than the resultant pitch, between neighbouring frames.

Even using the new lag domain methods, such as the SNAC function or median

smoothing, errors in the octave estimate can still occur. It is proposed that some of

these errors are caused by fluctuating harmonics. That is to say, as a note is played,

harmonics can change in amplitude with some amount of independence from each

other. At certain frames within a note, it may appear that a different note is being

played. Let us take an example near the end of a note, where all the harmonics have

faded except the second. Using only the information within the single frame of one

strong frequency, any method would have to associate the pitch frequency with the only

remaining frequency, resulting in an octave error. However, a human listener would

typically consider this sound as part of the ongoing note, and would not perceive it as

an octave jump.

This section introduces a new idea in which information from all the frames of a

note are combined. Then using this combined information, a single octave estimate is

made for the entire note. The expectation is that this single combined estimate should

be more robust, and the consistency in the octave across a note will be guaranteed.

The method is based on the assumption that the pitch does not change wildly within a
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single note. The pitch should be allowed to vary a reasonable amount, such as during

vibrato or glissando, but it should not be allowed to jump drastically, for example by a

whole octave. A jump this large should be considered a note change, and is discussed

more in Section 7.3.

In order to implement this idea fully the positions of the beginnings and ends of

notes need to be obtained. This in itself is a whole other field of study which this

thesis will not go into in great detail. This section endeavours to test the concept

of the combined octave estimate alone, and information of the beginning and ends of

notes is used from the dataset mark up. Nevertheless, note onset/offset detection is

discussed in Section 7.3.

Note that it may be possible to use information from the surrounding notes to help

determine the correct pitch from the musical structure. However, because different

music styles contain so much variation, without knowledge of the specific music being

played it is possible for notes to vary just about anywhere. Since we do not wish to

impose any restrictions on what the user can play, the methods discussed in this section

combine together only information from within a single musical note.

7.2.1 Aggregate Lag Domain (ALD)

The basic idea is to use information from the whole of a single note to determine

an overall octave estimate. This is in order to average out the effects of a changing

harmonic structure, such as those during fast onsets, slow decays, tremolo or vibrato.

This combined octave estimate is expected to be more stable than the estimates from

a single frame, and will not follow the variations in pitch within the note. Note that

the pitch is still found on a frame by frame basis, with the combined octave estimate

used only as a guide.

The aggregate lag domain (ALD) is defined as the element-wise summation of the

lag domains across all frames within the note. For normalised autocorrelation-type

methods, the terms are weighted by the total energy, r′i(0), (or log of the energy)

within the window, and then re-normalised. For example, the ALD using the SNAC

function is as follows:

n′

Ag(τ) =

e∑

i=s

(r′i(0)n′

i(τ))

e∑

i=s

r′i(0)

(7.1)
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where s and e are the starting and ending frame indices of the note and n′

Ag denotes

the ALD. The extra weighting and normalising is done in order to preserve the original

amplitude of influence. For example, the louder parts of the note will take a higher

proportion of the aggregate, as these sounds have a stronger influence on the listener.

Moreover, this gives an effect similar to one large lag domain function applied across

the whole length of the note, but at a much cheaper computation cost. For now, it

is assumed that the indices of the starting and ending frames of the notes are known.

However Section 7.3 discusses how to detect these automatically.

After the aggregate lag domain is calculated, the peak picking method described

in Section 6.3 is applied to this in the same manner as before. The pitch period that

results becomes the combined octave estimate, λ̃Ag, and will govern the octave of all

frames within the note. Note that the ˜ indicates the value is an estimate. Further,

frame by frame analysis of the note using the SNAC or WSNAC function will now

choose the first periodic, Pp, to be the closest primary peak to the combined octave

estimate, such that |Kτ − λ̃Ag| is a minimum.

Experiment 15: Aggregate vs non-aggregate lag domain.

This experiment was created to compare the aggregate lag domain approach to the

single frame peak picking approach. As before, if the octave estimate is within 1.5

semitones from the expected pitch it is considered correct, otherwise it is considered

an octave error. Note the SNAC function is run using a threshold of 0.9, and the

modified cepstrum was run with c = 0.5 and s = 1.0.

Octave Estimate Error

Dataset Iowa MIDI

SNAC 0.99% 1.87%

SNAC - ALD 0.712% 3.07%

Modified Cepstrum 0.634% 0.377%

Modified Cepstrum - ALD 0.327% 0.0371%

Table 7.2: Comparison of octave estimate errors with and without the aggregate lag domain

estimates.

Table 7.2 shows some variable results. The aggregate estimate used with the SNAC

function does worse on the MIDI dataset than before, whereas the aggregate esti-

mate used with the modified cepstrum makes a good improvement on both datasets.
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Problems arise especially on sounds with lower fundamental frequencies but higher

harmonics. These sounds contain periodics that have a narrow width in the lag do-

main. Any pitch variations within the note cause peaks to ‘wobble’ from side to side

an amount proportional to their τ values, i.e. their τ values are scaled. This can cause

the narrow peaks with larger τ values to move further than their width throughout the

course of the note. This causes the peaks toward the right-hand end of the aggregate

lag domain to become increasingly spread out, reducing their overall height. This in-

creases the likelihood of peaks toward the left-hand side to be selected, because they

are not affected as much. Thus, an octave error can result, especially with larger pitch

variations. However, Section 7.2.2 discusses a method to reduce this effect.

7.2.2 Warped Aggregate Lag Domain (WALD)

The idea here is to warp the lag axis of the lag domain at each frame, in order to align

the peaks before aggregating the frames together. This attempts to remove the effects

of any pitch variations, such as vibrato, which can cause the misalignment of peaks

between frames. A single octave estimate is then chosen from this more stable warped

aggregate lag domain (WALD) and its value un-warped at each frame when choosing

the first periodic.

A number of difficulties and instabilities can arise when trying to implement this

idea. Firstly, it is possible for peaks to appear and disappear throughout the duration

of a note. Secondly, peaks can move sufficiently far between frames that it is difficult to

match up which peak went where. This problem is especially prominent at the higher

lag values. Thirdly, in real music it is possible that some peaks appear which do not

form a multiple of the first periodic, i.e. from non-harmonic components.

The following describes a method that attempts to solve most of these difficulties

by scaling, or warping, the τ axis of the lag domain at each frame, in order to align

the peaks.

Firstly, the starting frame of the note, n′

s, is calculated as normal, with its lag

domain becoming the reference frame that other frames will align to, i.e. the starting

frame has a warping value of ws = 1.

For subsequent frames, the lag axis is warped, i.e. its τ values are scaled, by a warp

factor wi in order to align the peaks. To find the warp factor for the frame with index

i, the position of the highest peak from the previous frame, τm(i − 1), is used as a

reference point. Then the closest peak to this in the current frame, τc(i), is found. The

highest peak in the previous frame is used as a reference because it is the most likely
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peak to follow on, and is likely to be stable, as being the loudest it is the least affected

by noise. These things make it one of the easiest peaks to match up. Following this,

the warp factor for the current frame, wi, is found using

wi =
τc(i)

τm(i − 1)
wi−1. (7.2)

Even though this peak may not be the first periodic peak, it is assumed that the

peak’s position will scale in proportion to that of the first periodic. This should be

approximately true if the peak is any of the super-periodics of the note, which is very

likely since the highest peak was chosen. This warp factor tells us how much the frame

i lag axis has to be scaled by in order to align it with the starting frame.

The lag domain function of each frame is warped - that is, new values are calculated

by interpolating the old values. This warping can be described as

n̆′

i(τ) = n′

i(
τ

wi

) 0 ≤ τ < W, τ ∈ Z, (7.3)

where the˘ indicates the warped version. Note that the new function is of the origi-

nal length, so if the warp factor is greater than 1, the extra values are just ignored.

However, if the warp factor is less than 1, the remainder of the indices are filled with

the last original value, n′

i(W − 1), although zeros could also be used. Currently linear

interpolation is used to get the fractional indices, but other types of interpolation could

also be used here.

Now that the functions have been aligned, the WALD is calculated similarly to

Equation 7.1, except here the warped lag domains are used:

n̆′

Ag(τ) =

f∑

i=s

r′i(0)n̆′

i(τ)

f∑

i=s

r′i(0)

(7.4)

Again the peak picking method from Section 6.3 is used to choose the octave esti-

mate in the same way as Section 7.2.1. However, an extra de-warping step is required

at each frame before the local periodic is chosen. This is done by multiplying the octave

estimate by the warp factor for the given frame, giving

λ̃i = λ̃Agwi, (7.5)

where λ̃i is the de-warped estimate. The first periodic, Pp, local to frame i, is now

chosen as the closest primary peak to λ̃i, making |Kτ − λ̃i| a minimum. Note that Kτ

is the set of primary peak lag values for a given frame as defined in Section 6.3.2.
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Figure 7.1: The ALD and WALD of a note with varying pitch. The blue line shows the

warped peak aligned version, and the red line without warped peak alignment.

Figure 7.1 shows an example which compares the WALD to the ALD. At the left-

hand side the peaks are of similar height, but by the right-hand side the red line has

become lower in amplitude, with the peaks becoming slightly wider. In contrast, the

blue line of the warped method maintains a higher amplitude, decreasing only slightly

in height from the left-hand side, while maintaining a narrow width. Note that the

alignment of the blue line is different from the red line in the figure. This is due to

the first frame of the note having a small periodic, causing subsequent frames to be

aligned to it, whereas with the non-warped method, the peaks drift further off to the

right.

Experiment 16: Warped vs un-warped aggregate lag domain.

This experiment is the same as Experiment 15, except for the use of the warped

context approach. Both the warped and non-warped aggregate lag domain methods

are compared.

Octave Estimate Error

Dataset Iowa MIDI

SNAC 0.99% 1.87%

SNAC - ALD 0.712% 3.07%

SNAC - WALD 0.757% 3.40%

Modified Cepstrum 0.634% 0.377%

Modified Cepstrum - ALD 0.327% 0.0371%

Modified Cepstrum - WALD 0.118% 0.0371%

Table 7.3: Comparison of octave estimate errors using un-warped, warped and no aggregate

lag domain.

Table 7.3 shows improvement of warped methods over the un-warped methods on
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the Iowa dataset, but a slightly worse error rate on the MIDI dataset when used with

the SNAC function. Clearly, the modified cepstrum used with a warped aggregate

lag domain performs best overall at achieving a stable octave estimate across both

datasets.

The large errors in the aggregate SNAC methods shown for the MIDI dataset seem

to be caused by the SNAC function’s inability to deal with any reverberation effects,

where harmonics from the previous note flow on into the next with decreasing strength.

Any contribution to the SNAC function from neighbouring notes seems to have a

great influence, especially if the neighbouring notes share some common harmonic

frequencies. These common harmonic frequencies become accentuated and generally

cause the Tartini-tone or combination-tone to become prominent. The window overlap

at the edge of the notes also contributes to this effect. For example, if the window

is centred at the beginning of the note then half of the window contains data from

the previous joining note. Moreover, as the MIDI dataset contains legato notes, which

flow directly from one note into the next without gaps, this effect is exaggerated. Note

that the Iowa dataset contains long gaps between each note and these effects are not

observed, in agreement with this theory.

In contrast, the modified cepstrum does not appear to be affected much by the

harmonics of neighbouring notes.

Experiment 17: Reverberation

This theory was tested by letting the MIDI-to-wave converter add in reverberation

to the MIDI dataset. The input files were generated with reverberation using the com-

mand “timidity -OwM -o [outfile.wav] [infile.mid]”. Note that the default reverberation

of the converter is used. This experiment is the same as Experiment 16, except that

only the MIDI dataset is tested, both with and without reverberation.

Table 7.4 shows that all SNAC methods have an increase in error by at least 1%

when reverberation is added, whereas the the modified cepstrum with WALD increased

only to 0.109% error. This indicates that the reverberation does indeed affect the SNAC

function’s ability to choose the correct octave, more so than the modified cepstrum.

7.2.3 Real-time Use

Although the aggregate lag domain-type methods require knowledge of the starting and

finishing times of the note in advance, this does not mean that they cannot be used in

real-time. As soon as a note onset is detected, the aggregation can begin, and at any
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Octave Estimate Error

Dataset MIDI - no reverb MIDI - with reverb

SNAC 1.87% 2.71%

SNAC - ALD 3.07% 4.51%

SNAC - WALD 3.40% 4.62%

Modified Cepstrum 0.352% 0.671%

Modified Cepstrum - ALD 0.0371% 0.140%

Modified Cepstrum - WALD 0.0371% 0.109%

Table 7.4: A Comparison of the MIDI dataset with and without reverberation.

point in time throughout the note, the current frame can be treated as the end frame.

This means that at every new frame in the note, the octave estimate is recalculated,

and the periodic peaks from all the previous frames in the note are reselected to be

closest to this new value.

The result is that as a musical note is played real-time into the system, the octave

of the note is represented by the sound within the note so far. Moreover, this means

that as more information comes later in the note, it is possible for the entire note to

change octave. However, its new octave will be self consistent. By the time the note

has finished being played the resulting octave will be the same as if the aggregated lag

domain method had been performed only once on its completion.

7.2.4 Future Work

It might be possible, using smoothly interpolated warp values, to do one continuous

warp of the time domain thoughout an entire note to remove the pitch variations - then

the SNAC or modified cepstrum analysis performed on the result. This might achieve

further improvements than the linear piece-wise warp.

7.3 Note Onset Detection

Both ALD and WALD methods need to know when a musical note starts and finishes.

Note onset detection forms part of the mid-level analysis stage, and is needed in order to

produce musical score or MIDI style output, or to perform certain higher-level analysis,

such as the vibrato analysis discussed in Chapter 9.
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A simple note onset detection algorithm uses two independent lowpass filters: one

small, responsive, low-order filter and one longer, less responsive, higher-order filter.

If we call our sound input stream S, then let L be the result of the low order filter

applied to S, and H the result of the high order filter applied to S. It is necessary to

add extra delay to L, such that the overall delay from S to L is the same as from S to

H.

Then the basic idea is that at the start of a note there is a sudden increase in

volume, called the attack. Here the values of H rise slowly due to a larger filter size,

because it is being averaged over more data. However, the values of L will increase

more quickly causing them to cross above the values of H. Therefore the point in time

where the values of L cross from less-than H to greater-than H is classified as being a

note onset.

This algorithm relies on a sudden volume increase at the beginning of a note in

order to detect the note onset. On many instruments this is the case, such as piano, or

guitar, or anything where a string is struck and is left to vibrate resulting in a natural

exponential decay. However, in some instruments of our concern, such as the violin,

the musician can control the volume throughout the duration of the note. For instance,

the bow can apply a continuous force to the string, making any desired volume curve.

Marolt, Kavcic, and Privosnik [2002] use artificial neural networks for note onset

detection based on a combination of a bank of auditory filters, a network of integrate-

and-fire neurons and a multilayer perceptron.

Brossier, Bello, and Plumbley [2004] use a high frequency content (HFC) function,

the value of which at a given frame is constructed by linearly weighting values of the

STFT. Peaks in the smoothed HFC function then indicate the time of note onsets.

Moreover, a dynamic thresholding is used to compensate for pronounced amplitude

changes in the function profile, along with a silence gate to remove onsets below a

certain loudness threshold - typically 80 dB.

An exhaustive discussion of note onset detection methods is not attempted here, as

it is not of primary concern in this thesis. However, a good summary can be found in

Bello [2003].

The following section discusses an investigation into detecting note changes using

the pitch directly. A changing pitch may result in a change in the different frequency

bands - giving a means to detect changes from one note to another using bandpass filter

methods, such as in HFC. However, it would seem useful to use the pitch information

more directly when determining if a note onset or note change had occurred.
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Figure 7.2: An example of some vibrato, that drifts around. The vertical axis indicates

pitch and the horizontal axis indicates time (spanning about 11 seconds).

7.3.1 Detecting Note Changes using Pitch

Music can change smoothly between one note and another without a volume break,

making the start of a note possible without a sudden onset. This is referred to here as

a note change, and implies the finishing of one note and the start of the next, based

primarily on a pitch change. Note changes are difficult to detect using a basic amplitude

filtering method. However, detecting a note change using pitch is by no means a trivial

task either. Variations during a note such as vibrato can cause complications, as these

pitch variations are not considered note changes. Moreover, a vibrato may consist of

a pitch variation greater than that of a single semitone, thus making a simple pitch

change threshold approach unreliable.

Throughout the duration of a note, the pitch is rarely perfectly steady. Figure 7.2

shows a vibrato example that contains drift. Drift is defined here as a variation of the

vibrato’s centre-pitch, which can often happen on longer notes. Let us define µs as the

short-term mean pitch: the average pitch over the last ts seconds. ts should be chosen

to be as small as possible to detect fast-changing notes, but nevertheless should be

sufficiently large enough to encompass half a cycle of slow vibrato. A value of around

1/8th of a second is good. The idea is that the short-term mean pitch should smooth

out any vibrato cycles while maintaining an accurate shape of the drift. This helps to

ensure that the individual vibrato cycles are not considered as note changes.

In contrast, µl is defined as the long-term mean pitch. This is the average pitch

over the last tl seconds, where tl is much greater than ts, causing µl to have a more

stable pitch, while still maintaining the ability to drift over a very long note.

The following discusses a basic algorithm for detecting note changes using pitch

which is very similar to the two-filter amplitude method discussed in section 7.3, except

that instead of using short-term and long-term filtered amplitudes, short-term and

long-term mean pitches are used.
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With the amplitude filter algorithm, when S crosses above L the note is considered

as starting. However, with pitch there is no sense of a correct direction, as a note’s

pitch can change up or down to get to the next note. So instead, a deviation value dl

is used, which defines the amount µs has to deviate from µl before a note change is

detected. This deviation can be on either side.

One of main difficulties with note-change detection using pitch is detecting the

difference between a series of fast alternating notes, such as a trill, and a single note

with vibrato. The speed of a trill can be as fast or faster than the slowest vibrato.

This means that the pitch smoothing used to smooth out the vibrato also smooths out

the trill.

Even without the vibrato smoothing, there is still a certain amount of implicit pitch

smoothing that happens in the low-level part of the pitch algorithm, due to the finite

window size. The square-wave shaped pitch contour of a trill can become significantly

rounded at the corners, making it more sinusoidal in shape and difficult to distinguish

from vibrato. However, in the case of trills it is likely that the notes will contain

some onset amplitude change, so that a combination of pitch and amplitude detection

methods can be used to distinguish these.

Once a note change has been detected, the delay introduced from the pitch smooth-

ing needs to be taken into account, in which case time has already progressed into the

next note. Once the algorithm has decided there was a note change, then it has to go

back and find exactly where it happened. This process is called back-tracking, and is

described in Section 7.3.2.

This results in the algorithm having to back-track to the place where the note change

actually occurred. The averaging filter is then reset, causing it to start averaging from

the start of the new note, otherwise the previous note will have a strong influence on

the new note’s short-term and long-term pitch.

7.3.2 Back-Tracking

Once a note change has been detected, the exact position of the note change needs

to be determined. In the method described here, and referred to as back-tracking, it

is assumed that the exact point of the note change is somewhere within the last ts

seconds, the size of the small smoothing filter, and is most likely to be near the centre

of this, i.e. at the filter delay of ts/2. The original pitch contour is consulted to find

where the point of greatest gradient magnitude is within these bounds. The gradients

can be weighted, with higher values at the centre and tending toward lower values at
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the bounds. This serves to choose the gradient peak closest to the centre of the bounds

in cases where there are bi-modal or tri-modal gradient peaks. The point in time of

the greatest gradient magnitude peak is called tggm.

When back-tracking occurs, the WALD has to be rewound back to the point of

the note change. This is done using a second array which stores the aggregate of the

warped lag domains since tggm. If at any stage a higher gradient magnitude peak is

found then tggm is updated and the second array is reset to zero. Note that when a

note change is detected, the WALD is rewound back by simply subtracting the second

array.

7.3.3 Forward-Tracking

Forward-tracking happens after the back-tracking has occurred, and involves the pro-

cess of restarting the WALD from the point of note change to bring it up to the current

frame. A number of actions need to be performed. Firstly, the WALD for the new note

simply takes on the values from the second array. Secondly, the pitch values for the

old and new notes need to be recalculated using their updated octave estimates. This

forward-tracking method allows new pitch values of the note to be realised without

the need to store the lag domain or perform any transformations from existing frames.

It requires only three things: the positions of the primary-peaks to be stored at each

frame, one array for the WALD, and a second array for the subset of WALD values

since time tggm.
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Chapter 8

Further Optimisations

This chapter looks at futher optimisations for the algorithms described so far. Firstly,

the choice of window size is discussed in Section 8.1, with the introduction of a two

part approach. This method chooses a window size appropriate for the specific data

at that point in time. Secondly, Section 8.2 defines an incremental version of the

SNAC function, which results in a pitch value for every sample of input, requiring only

a small, fixed number of calculations to go from one pitch value to the next. This

incremental algorithm is extended in Section 8.4 to work with the WSNAC function.

However, Section 8.3 first introduces the complex moving-average (CMA) filter, which

describes a fast method to perform a Hann weighted convolution which is then used in

the incremental WSNAC function algorithm.

8.1 Choosing the Window Size

This section introduces the use of a two part window size method. Firstly, the window

size is chosen to be sufficiently large to capture the lowest desired pitch. This could

be chosen by the user directly, for example by means of the user specifying a note, or

more indirectly, such as by the user’s choice of instrument. The window size can then

be made as small as twice the fundamental period of this lowest note.

Even though this window size is just large enough to determine the low notes

accurately, it is still in fact relatively large compared to the period of higher pitched

notes on the same instrument, as a typical instrument can range over 2 or 3 octaves.

In this case, the fast variations in pitch that can come about at higher pitches are lost

due to the sub-optimal time resolution. For example, at 3 octaves above the lowest

note, the window would contain 16 periods, and no information on how the pitch could
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have varied within this large window can be achieved.

Nevertheless, the large window does give a good estimate of the average funda-

mental period throughout the window. Using the period estimate, λe, of this large

window, a second smaller window can be chosen in which a higher time resolution is

achieved. Moreover, because the approximate fundamental period is known, and only

the localised variations are to be found, there is no need to calculate all the lag domain

coefficients. Only the coefficients around the period estimate are needed, with enough

to cover for an allowed pitch variation. Using this property, the incremental algorithms

described in Sections 8.2 and 8.4 are developed. These algorithms have a step size of

one, providing a pitch value for every sample. This rate may seem excessive and a

bit redundant, but remains efficient to calculate, because only a handful of coefficients

need to be calculated for each step. In any case, samples can be ignored to give any

desired rate.

At very small window sizes, there is a reduced number of samples being used in

correlation calculations, causing less certainty with which the exact fundamental period

is known. However, the exact time that the frequency occurred is more certain. This

is the familiar time/frequency tradeoff that governs all analysis methods, and stems

from the uncertainty principle [Serway, 1996]. However, if we assume that in musical

signals the major pitch changes controlled by a human rarely go faster than 20 times

a second, then based on this a window size of 1/40th of a second should be enough

to capture these. However, the pitch changes are not perfectly sinusoidal, so a higher

rate is needed to capture the shape. In practice capping the minimum window size to

around 512 samples at 44100 Hz serves well, as a certain number of frames are needed

for other parts of the analysis, such as the note change detection.

Like multi-resolution techniques, such as wavelets (Section 2.5.2), this two part

window size method allows for a varying time/frequency tradeoff. However, rather

than using an optimal constant Q1 tradeoff i.e. a bandwidth proportional to the centre

frequency, this method allows for customised tradeoffs that can be based on known

prior physical properties. For example, if variations are known not to exceed a certain

rate, then having an increased time resolution is not always useful. Instead, having

a fixed frequency accuracy below a certain point, with constant Q elsewhere, can be

more beneficial.

1The Q or quality factor describes the bandwidth of a system relative to its centre frequency
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8.2 Incremental SNAC Function Calculation

The incremental SNAC function is a fast way of calculating a subset of the SNAC

function coefficients over a set of continuous frames. Using the fundamental period

estimate, λe, from the large window, only the local variations in pitch are left to be

found. Because there is only a small amount of time that has passed between a group

of frames, the pitch is assumed to be contained within the nearby neighbourhood of

the estimate. For typical variations the position of all the local periodic peaks can be

found using only the τ coefficients within a neighbourhood width of 9, i.e. the set of τ

values used, T , contains the closest integer to the estimate and the four integers either

side. For such a small set of values to evaluate, the SNAC function from Equation 4.2

can be calculated directly for the first frame, that is without the using the SDF via

autocorrelation method from Section 3.3.4.

Once the SNAC coefficients for the first frame of the local window have been cal-

culated, the window can be moved by one sample, i.e. a hop size of 1, by using an

incremental method. Simply store the numerator and denominator parts of Equation

4.2 separately, as in the following:

n′

top(τ) = 2
W−1−τ∑

j=0

xjxj+τ , τ ∈ T (8.1)

n′

bottom(τ) =
W−1−τ∑

j=0

(x2
j + x2

j+τ ), τ ∈ T. (8.2)

Note, that in this section W refers to the size of the small window. Then to increment

the window one sample forward, simply perform

n′

top(τ) + = 2(xW−τxW − x0xτ ), (8.3)

n′

bottom(τ) + = (x2
W−τ + x2

W ) − (x2
0 + x2

τ ). (8.4)

The new SNAC function coefficient can then be calculated using

n′(τ) =
n′

top(τ)

n′

bottom(τ)
, τ ∈ T (8.5)

The meaning of what data lies in within the window has now changed, with the window

one sample more to the right than before. This new window position is referred to as

the next frame. Equations 8.3 to 8.5 can be calculated repeatedly for each value of τ

in the set T , giving a window hop size of one sample each time.

The local periodic peak at each frame can be found in a way similar to Section 6.3.

However, the maximum of the first periodic is assumed to be the highest value within
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the neighbourhood. If the highest value is on the boundary of the neighbourhood, then

the frame can be flagged as having too much variation, or the neighbourhood could be

extended by adding the new τ value to the set T and calculating another whole run of

SNAC coefficients.

The increments are repeated to give a number of frames equal to the hop size, thop,

(in samples) of the large window, thus giving pitch values at a rate of one for every

sample. If the largest value of T is greater than the maximum free sliding space, i.e.

max(T ) >
Wlarge − thop

2
, (8.6)

then the small window will need to extend beyond the larger window edge, at the

starting and finishing frames.

As musical notes get lower in frequency, the same pitch variation (in cents) causes

a larger change in the lag value of the first periodic. This means that larger neigh-

bourhoods can be required for low notes. However, at these lower frequencies the

width of the periodic peaks are greater, and accurate peak positions can be found

using only every second SNAC coefficient, i.e. the set T contains only every sec-

ond integer. For example, a periodic estimate of λe = 207.3 would result from

T = {199, 201, 203, 205, 207, 209, 211, 213, 215}.

8.3 Complex Moving-Average (CMA) Filter

Before describing the incremental WSNAC function in Section 8.4, the following al-

gorithm must be introduced, as it forms a basis of the incremental WSNAC function

algorithm. This new algorithm, we call the complex moving-average filter or CMA

filter2, was developed for sound processing in this work, however it is a general purpose

algorithm in its own right, which could be used in many fields.

The CMA filter is an incremental algorithm, based on the moving-average filter.

The CMA filter has the nice property of having a smooth windowing function or kernel,

whilst being fast to compute a convolution. Let us first look at the moving-average

filter and then progress our way into the new algorithm. The moving average filter

takes the mean of the last n terms from the input.

yt =
1

n

n−1∑

j=0

xt−j (8.7)

2pronounced ‘Karma filter’
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where x is input, y is output, and t is the current index to calculate. This can be

calculated incrementally as follows.

yt = yt−1 +
xt − xt−n

n
(8.8)

This can be considered as a finite impulse response (FIR) filter with each coefficient

being 1/n, giving it a rectangular window shape.

The CMA filter can be seen as a special case of weighted moving-average filter,

where each value is multiplied by a corresponding weight coefficient, before being av-

eraged, as shown in the following:

yt =
1

s

n−1∑

j=0

w(j)xt−j, (8.9)

where s is the sum of the weighting coefficients, i.e.

s =
n−1∑

j=0

w(j). (8.10)

The weighting function used for the CMA filter is a symmetric Hanning window,

w(j) = 1 − cos
(2π(j + 1)

n + 1

)
, 0 ≤ j < n. (8.11)

Note that the symmetric Hanning window is the same as a Hann window that is

longer by two samples, but with the zero value at either end left off, thus saving a

couple of wasted calculations. Also note, the equation is normally multiplied by 0.5,

however this has been left out, as it gets cancelled out in Equation 8.9. Moreover, the

weighting function can also be referred to as the filter kernel.

Now let us break up the combined Equation of 8.9 and 8.11 into separate summation

parts, at and bt, with the scaling part separated out, such that

yt =
1

s
(at − bt). (8.12)

The first part is defined as the basic summation component,

at =
n−1∑

j=0

xt−j. (8.13)

which is the same as in the moving-average filter, and can be calculated incrementally

as a running sum. Each time step a has a new x term added on, and an old x term

subtracted off, i.e.

at = at−1 + xt − xt−n. (8.14)
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The second part is defined as the cosine component,

bt =
n−1∑

j=0

cos
(2π(j + 1)

n + 1

)
xt−j. (8.15)

It is not so obvious, but this too can be calculated incrementally, as a running complex

sum. bt may be considered as the real part of a complex number, zt = bt + ict, which

represents the sum of terms, except that each term is rotated around a circle by a

different angle at any instant. Note that ct can initially be set to 0. If we define a

rotation constant, r, as:

r = cos(θ) + i sin(θ) = eiθ, r ∈ C, (8.16)

where θ = 2π/(n + 1), then Equation 8.15 can be rewritten as:

bt =
n−1∑

j=0

ℜ(eiθ(j+1))xt−j =
n−1∑

j=0

ℜ(rj+1)xt−j. (8.17)

Note that ℜ indicates ‘the real part of’. Also note that because the x values are all

real values this can be rewritten as:

bt = ℜ(
n−1∑

j=0

rj+1xt−j) = ℜ(zt). (8.18)

Now multiplying zt by r causes all the terms in the complex sum to be rotated, i.e.

rzt = r
n−1∑

j=0

rj+1xt−j =
n−1∑

j=0

rj+2xt−j. (8.19)

Rotating the complex sum by r is equivalent to rotating each of the terms by r and

then summing the result - even though the terms already have varying amounts of

rotation. This has the effect of moving the cosine component of the Hanning window

across one step for all its elements, except that the terms at the ends need to be dealt

with. The last term in the sum, at j = n − 1, is now:

rn+1xt−n+1 = ei2πxt−n+1 = xt−n+1. (8.20)

This old element, xt−n+1, can be removed by simply subtracting it out from the complex

sum. However, because the position of the window has increased by one, the value of

t has also increased by one. Thus, the subtracted element is now referred to as xt−n.

The new element to be added in is rxt. However, if xt is added to zt before the rotation

is performed then this gets done implicitly.
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To summarise, the cosine component can be calculated incrementally using three

simple operations. Firstly, add the new term xt to z. Secondly, perform the rotation

by multiplying z by r. Thirdly, subtract off the oldest term, xt−n from z. This can be

expressed in the form

zt = r(zt−1 + xt) − xt−n. (8.21)

Finally, because bt = ℜ(zt), this result, along with at, can be combined into Equation

8.12 to give our smoothed output. Note that only the current value of a and z need to

be stored. That is, once yt is calculated, the previous values at−1 and zt−1 are never

used again. Also note that s is constant, hence, only needs to be calculated once.

The following contains some C++ code to help clarify the process.

#include <cmath>

#include <complex>

/** @param x Input

@param y Output

@param n Size of Symmetric Hanning Window

@param len The size of x and y

*/

void CMA_filter(const double *x, double *y, int n, int len) {

double theta = 2.0 * M_PI / (n+1);

complex<double> r = complex<double>(cos(theta), sin(theta));

complex<double> z = complex<double>(0.0, 0.0);

double a = 0.0, s = 0.0, old_x = 0.0;

//precalculate the scaling factor

for(int j=0; j<n; j++) s += 1.0 - cos((j+1)*theta);

for(int t=0; t<len; t++) {

if(t >= n) old_x = x[t-n];

a += x[t] - old_x;

z = (z + x[t]) * r - old_x; //Note: complex multiplication here

y[t] = (a - z.real()) / s;

}

}
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Like the moving-average filter, the CMA filter has a delay of (n − 1)/2 samples.

Moreover, in this example code values of x before the start are considered as being

zero. This causes the result to curve up from zero, which is not ideal in all situations.

One solution to this is to assume xk = x0 for k < 0. Another solution is to scale yt by

the sum of coefficients used so far, instead of s, while t < n. This too can be created

using the same incremental rotation scheme.

To understand why this works, it can be seen that a Hann window consists only

of a cosine component and an offset component of which the real Fourier transform

contains only two non-zero coefficients (for f ≥ 0). The CMA filter can be seen as a

convolution algorithm performed in Fourier space. However, because only two Fourier

coefficients are needed, it is fast to calculate them incrementally. The net result is

equivalent to a conversion to Fourier space and back, but without the use of the FFT.

The CMA filter is really just a special case of an FIR filter that uses a Hann window.

A small modification to Equation 8.12 can allow for the Hamming window kernel,

described in Equation 2.8, to be used in the CMA filter - instead of the Hann window.

This modification is:

yt =
1

s
(0.53836at − 0.46164bt), (8.22)

where s is the sum of coefficients from Equation 2.8.

This idea can be extended to any window shape which contains a small number

of non-zero Fourier coefficients, whilst remaining efficient. It is also possible to use a

window shape which is a sub-section of a window constructed using a small number

of non-zero Fourier coefficients. This is done by simply adding and subtracting the

new and old values of x from z at the appropriate angle of rotation. For example, it

is possible to use only the first half of a sine function, i.e. from 0 to 180 degrees, to

create a sine window. This window is generated from the equation

w(j) = sin(
πj

n − 1
), 0 ≤ j < n, (8.23)

Only one Fourier coefficient is being used with the sine window, and a smaller angle

of rotation is needed for the incremental calculation. Here, Equation 8.16 is used with

θ = π/(n − 1).

As with the moving-average filter, the CMA filter may accumulate error after a

while, which keeps propagating onward, also called drift. Exactly how much drift will

occur depends on the precision being used. One method to reduce the error is to use a

higher precision within the filter than the precision of the input and output data, for
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example using variables of type double (64 bit) within the CMA filter even though the

input/output is of type float (32 bit).

8.4 Incremental WSNAC Calculation

The following describes how to calculate the WSNAC function incrementally, in a

similar fashion to the incremental SNAC function. Likewise, it is useful when a small

set of τ values, T , need their coefficients calculated along a sliding window, i.e. a

succession of frames all at a hop size of one apart. If the set T is small enough the

‘Crosscorrelation via FFT’ method from Section 4.2.1 becomes inefficient, as all of

the τ values at a given time step have to be calculated, resulting in of the order of

O((W +p) log(W +p)) calcuations. In comparison, the incremental method has a O(lT )

cost to move from one frame to the next, where lT is the size of the set T . So when

lT ≪ W + p the incremental method becomes more efficient at calculating the values

of T over a series of consecutive frames.

Because the computation is not bound by the ‘Crosscorrelation by FFT’ properties

in which all values of n̂′(τ) need to be calculated using the same windowing function,

there is no need for the windowing function to be implicitly difined as a combined

two-part approach, as it was in Equation 4.22. Each τ coefficient can have its own

windowing function tailored to the size it needs.

Equation 4.22 modified in this way becomes

n̂′(τ) =

2
W−τ−1∑

j=0

(wj(τ) · xjxj+τ )

W−τ−1∑

j=0

[
wj(τ)(x2

j + x2
j+τ )

] , (8.24)

where the windowing function coefficients are now a function of τ as follows:

wj(τ) = 1 − cos(
2π(j + 1)

Ws − τ + 1
), 0 ≤ j < Ws − τ. (8.25)

Notice that the denominator inside the cosine term is (Ws−τ +1) and not (Ws−τ−1).

This is because the Hanning window is being used and not a Hann window, similar to

Equation 8.11. Note that the windowing function used must be compatible with the

CMA filter method. That is, it must be a function, or sub-section of a function, with

a small number of non-zero Fourier coefficients for it to be efficient.
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The top and bottom parts of Equation 8.24 are calculated separately, and labelled

n̂′

top(τ) and n̂′

bottom(τ) respectively. These individual parts can be calculated incremen-

tally by treating each of them as a CMA filter, as described in Section 8.3. Let p(τ)

be the complex sum that is used for the CMA filter of the top part, and q(τ) for the

bottom part. Note that only the real parts of p and q represent the top and bottom of

Equation 8.24.

To increment to the next frame, the window is moved one sample forward. To

achieve this both p and q undergo rotations in the complex plane, while subtracting

off the old terms and adding on the new terms as follows:

p(τ) := r(p(τ) + 2xW−τxW ) − 2x0xτ , (8.26)

q(τ) := r(q(τ) + x2
W−τ + x2

W ) − (x2
0 + x2

τ ). (8.27)

Note that the := operator means assignment, giving p and q the new values for the next

frame. As with the incremental SNAC function, after these calculations the meaning

of the data lying within the window has now changed. This means that the next time

the calculations are performed, the values of x are different than before, i.e. effectively

meaning xk becomes xk+1 for all k simultaneously, although in practice this is not

actually performed, as it would be far too expensive. Instead an offset is used based

on the frame number.

To calculate the WSNAC coefficient, n̂′(τ), for the given frame, use

n̂′(τ) =
n̂′

top(τ)

n̂′

bottom(τ)
=

ℜ(p)

ℜ(q)
. (8.28)

Equations 8.26 to 8.28 can be calculated repeatedly for each value of τ required,

giving a window hop size of one sample each time.

To find the pitch at a given frame, the same technique is used as for the incremental

SNAC function from Section 8.2.

To sumarise, the incremental WSNAC function coefficients are calculated for all τ

in T across all the required local frames. The number of local frames required is equal

to the hop size of the large window. The alignment of the local frames is such that the

centre of the middle frame’s window is at the centre of the large window.
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Chapter 9

Vibrato Analysis

With the ability to calculate pitch contours, one can start looking at high level analysis

of the pitch. This chapter looks specifically at the analysis of vibrato, a common form

of pitch variation used in music. Section 9.1 provides a background of vibrato from

a musical perspective. Section 9.2 discusses some assumptions that are made about

vibrato. Section 9.3 discusses how a variation of “Prony’s spectral line estimation”

method is applied to find vibrato parameters.

9.1 Background

Vibrato, also referred to as frequency vibrato, is a cyclic variation in the pitch of a note.

It is often used to add expression, or beautify a note. Vibrato typically has a sinusoidal

shape with frequencies in the range 5 - 12 Hz, with the average being around 7 Hz. The

frequency of the pitch oscillation is referred to as the speed of the vibrato. Between 1

and 5 Hz a listener can recognise the periodicity of the pitch change [Rossing, 1990].

However, above 6 Hz the tone tends to be perceived as a single pitch with intensity

fluctuations at the frequency of the vibrato. The interval between the the lowest and

highest pitch values is called the width1 of the vibrato. Singers tend to have a greater

vibrato width than instrumentalists.

The historically accurate (“period”) performances indicate that classical music from

the renaissance, baroque, classical and romantic eras contained little use of vibrato in

orchestra - thus keeping the sound pure. It was typically used only by soloists, both

instrumentalists and singers, as a decoration. However, some musicians from the early

nineteenth century such as Paganini and Sarasate started using vibrato a lot more -

1Also called height
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to add more emotion, colour and flair to the story being portrayed. In the twentieth

century the idea of using vibrato almost continuously throughout a piece became the

norm, and even parts of the orchestra - mainly violins - would make use of vibrato.

Over the last 20 years or so, the tendency for large and excessive vibrato has

subsided, although its use has become rather diverse. For example some ‘Salvation

Army’ type brass bands still use a lot of vibrato. Some classical performances try to

keep strictly to the way it was played when it was written, but it is common to hear

music with medium use of vibrato at the performer’s choice - especially music from the

late romantic period such as Wagner and Mahler.

Vibrato is used in ‘pop music’, for example the singer Tom Jones makes good use

of it, and it is common for slow ballad type songs to have vibrato on the longer notes.

Vibrato helps a soloist project his or her sound over the accompanying music,

making it stand out and be heard, rather than being lost into the background.

The human voice tends to have some natural vibrato. Instrumentalists often add

vibrato to try and bring their instruments to life - giving it these vocal like qualities.

Whether it be vocal or instrumental, it is the long drawn out notes where the

musician has the most time to control the expressiveness of the note. The freedom

is given to the performer to control how the vibrato takes form. Parameters such as

speed, width and shape of the vibrato are under the control of the musician.

9.2 Parameters

Vibrato, defined in Section 9.1, has a number of parameters which could be useful for

us to measure. In general, vibrato follows a sinusoidal-like shape, that is the pitch

varies up and down repeatedly at a certain speed. Although, this speed may vary over

the course of a note. Because of this, finding only a single value of vibrato speed for

an entire note is not telling the whole story. An instantaneous vibrato speed at regular

time intervals along the pitch curve would be more informative to the user.

Stricter constraints can be applied to a vibrato’s shape than to a general periodic

signal, such as those assumed for the pitch detection algorithms described in Chapter

2. In a general periodic signal any combination of harmonic structure is permissible,

allowing a single period to contain many local maxima and minima. These more general

pitch detection algorithms require at least 2 periods of signal to be reliable. However,

the speed of vibrato can change relatively fast with respect to the time of a single

period, for example a vibrato may change from 5 Hz to 8 Hz in only two periods. Pitch
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detection algorithms would smear this speed change over the neighbouring periods,

because of the window size required. It would be better if the speed could be found

using a smaller window size, say one period or less.

Section 9.3 introduces the idea of using a least-squares regression algorithm to fit

a sine wave to a small segment of the pitch contour. Because of the curved up-down

nature of a vibrato’s pitch contour, a single sine wave fit can describe a segment fairly

well. This segment, or window, can then be slid along and the analysis repeated and

so on a number of times along a musical note, for example 40 times a second.

Using the constraints of vibrato shape being approximately sinusoidal, a “least

squares sine wave regression algorithm”, based on Prony’s method, can be used to find

the vibrato speed - even using less than one period. The algorithm can be used to find

a sine wave’s frequency, amplitude, phase and y-offset that matches the vibrato’s pitch

curve within a small window, with the least squares error. It uses a few tricks from

Prony’s method to do this in a small number of steps.

9.3 Prony Spectral Line Estimation

This section describes how to find the frequency, amplitude, phase and y-offset of a sine

wave which fits the data with the least squared error. This technique is a special variant

of Prony’s method as discribed in Hildebrand [1956] and Kay and Marple [1981]. First

the general Prony method is introduced, before specialising to the one sine wave case

of interest to us, the parameters of which can be found in a fixed number of steps.

In Prony’s method the data, x, are approximated with the sum of p sine waves

added together:

x̂n =

p∑

m=1

Am sin(2πfmn∆t + θm), n = 0, ..., N−1. (9.1)

Here the frequency fm, amplitude Am, and phase θm, of each sine wave are parameters

that are estimated. ∆t is the time between each sample. The differences between the

true and fitted data x̂n are error terms en:

xn = x̂n + en, (9.2)

and the goal is to minimise the sum of squared errors

N−1∑

n=0

e2
n. (9.3)
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9.3.1 Single Sine Wave Case

The simplest and probably the most useful case is a single sine wave fit, where the data

has approximately a sine wave shape, but may contain (uncorrelated) noise.

If you take a pure sine wave, shift it left in time by t′ and add to it the original sine

wave shifted right in time by t′, the result is another sine wave of the same angular

frequency, ω, and phase as the original. This can be expressed in the form

sin(ω(t − t′)) + sin(ω(t + t′)) = α1 sin(ωt) (9.4)

where α1 = 2 cos(ωt′). The amount that our original sine wave, sin(ωt), has been

scaled by, α1, is a function of the time offset, t′, and the angular frequency, ω. Hence,

an unknown angular frequency can be found from the amplitude scaling factor α1, and

the time offset t′.

For our discrete data we set t′ = ∆t, the time between consecutive samples. For a

data sequence {x0, x1 . . . xN−1}, the left-hand side of equation 9.4 becomes Y, and the

right-hand side X, both single column matrices. These are

X =




x1

x2

...

xN−2




,Y =




x0 + x2

x1 + x3

...

xN−3 + xN−1




. (9.5)

Least squares regression is then applied on

X · α = Y (9.6)

where the scaling factor α = [α1], giving

α = X+ · Y (9.7)

where + denotes the Moore-Penrose generalised matrix inverse2 [Weisstein, 2006c].

This corresponds to

X+ = (XT · X)−1 · XT , (9.8)

where T denotes matrix transpose.

The angular frequency ω can now be found from α1 using

ω =
cos−1(α1/2)

t′
. (9.9)

2also known as the Moore-Penrose pseudo-inverse
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Finding the amplitude and phase

Once the angular frequency ω has been found we can use it in finding the amplitude

and phase of the sine wave. We construct a cosine wave and a sine wave of angular

frequency ω and perform least squares regression again, using equation 9.7. This time

we have

X =




1 0

cos(ω∆t) sin(ω∆t)

cos(2ω∆t) sin(2ω∆t)
...

...

cos((N − 1)ω∆t) sin((N − 1)ω∆t)




, α =

[
α0

α1

]
,Y =




x0

x1

x2

...

xN−1




. (9.10)

Note that using

α0 cos(wt) + α1 sin(wt) = A1 sin(wt + θ1), (9.11)

the amplitude, A1, of the original sine wave can be found using

A1 =
√

α2
0 + α2

1. (9.12)

The phase, θ1, of the original sine wave can be found using

θ1 =
π

2
− atan2(α1, α0), (9.13)

where atan2 is the arctangent function which takes into account the signs of both angles

to determine the quadrant, as used in the C language’s standard library.

9.3.2 Estimation Errors

Estimation errors become more significant at low frequencies, or with a very densely

sampled data set. As the difference between consecutive data values decreases, with

respect to the overall amplitude, it leads to larger errors in the angular frequency

estimation. This is because the α1/2 term in Equation 9.9 becomes close to one, and

small changes in the input result in large changes in estimation.

There is no reason to restrict ourselves to t′ = ∆t in Equation 9.4. Instead let

us allow t′ = k∆t, where k is an integer and k >= 1. Different values of k were

experimented with. Figure 9.1 shows the squared error of a fitted sine wave to a sine

wave with varying amounts of white noise at different offsets, t′. Provided there are

enough data points we have found that having a t′ around 1
4

of a period is best, giving a

90◦ phase shift between the two sine waves added in Equation 9.5. On the other hand,

133



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

140

160

Sine wave offset (t’)

S
qu

ar
ed

 e
rr

or
 (

e)

Figure 9.1: The squared error of a sine wave, fitted using different time offsets t′, to a

sampled sine wave buried in white noise. The lines represent a signal to noise ratio of 10:1,

4:1, 2:1, 1:1, 0.66:1 from bottom to top. This example contained 200 data points with 3.45

periods.

as k increases, the number of terms in Equation 9.5 decreases, leaving fewer terms for

the regression. However, this is justified by the higher resilience to noise in the input,

especially if there are sufficiently many data points. The drawback of this approach

is that in order to choose the number of data points to offset, k, first an estimate of

the input frequency is required. But as seen from Figure 9.1, at medium to low noise

levels, this estimate does not need to be particularly accurate.

9.3.3 Allowing a Vertical Offset

The simplicity of Equation 9.4 depends on the sine wave having no DC offset, but

Prony’s method can be modified to allow for a y offset. This is useful in some cases, for

example to find the speed of vibrato in pitch space. Here the sine wave to approximate

is not centred on zero. One could apply a high pass filter to remove the DC component

from the sine wave, but this would introduce extra delay into the pipeline. A vibrato

can be of quite a short time span, maybe only a few cycles, making the response time

loss of a filter problematic. Also, simply subtracting out the mean is not appropriate

because there is no guarantee of an integer number of cycles. For example, averaging
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the first 1.5 cycles of a sine wave would give a value above the sine wave’s centre.

To solve this problem, a constant y-offset term is included into the angular frequency

regression calculation by adding a column of ones on the left-hand side of X in Equation

9.5. An α0 term is also added giving α =

[
α0

α1

]
, although its result is not used.

For calculation of the amplitude and phase term, a column of ones is also added

on the left of X in Equation 9.10, with α =




α0

α1

α2


. These equations work just as the

ones before, but now a vertical offset is allowed and is found with the least squares

error. Note that α0 is the resulting y-offset.

9.4 Pitch Smoothing

The pitch values from the pitch detection algorithm, which are output every sample,

can contain a small amount of noise variation. It can be useful to smooth out these

small but fast variations using a smoothing filter before displaying them to the user.

This could be done using a FIR filter, IIR filter or a moving-average filter. A low

pass FIR filter is stable and can produce the necessary smoothing, however this can

become fairly computationally expensive as large filter orders are needed for sufficient

smoothing.

IIR filters can provide similar smoothing with a lower order, more computationally

efficient algorithm. However, IIR filters are less stable than FIR filters, making them

prone to numerical errors. IIR filters are useable, but can have problems when defining

their delay - as they are not symmetrical.

A moving-average filter is fast to compute, but with its implied rectangular win-

dowing function can be harsher in its smoothing. This harshness is seen when sudden

changes move into the window, causing sudden jumps in the smoothed result. Again

this is not ideal for smoothing the pitch values. However, we found the Hanning-

weighted CMA filter described in Section 8.3 to work well, being both sufficiently

stable and fast to compute.
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Chapter 10

Implementation

This chapter discusses the program ‘Tartini’, which was initially written to develop

and test the algorithms described in this thesis. However, the program grew into a full

blown application which brings these tools to the end user. The application described

in this chapter marks the realisation of the aim of this thesis. The functionality of the

software is discussed in some detail, in which the progression from raw data to visual

information becomes apparent. Having an end user application enables musicians to

give direct feedback, which in turn helps steer the program design in the right direction.

Tartini is written in C++ and runs on a number of platforms including Windows,

Mac OS X, and Linux. It uses a number of libraries including Qt [Trolltech, 2004],

FFTW [Frigo and Johnson, 2005], RtAudio [Scavone, 2006], OpenGL and Qwt [Rath-

mann and Wilgen, 2005].

Tartini can perform real-time recording and analysis of sound, as well as play-back

and analysis of pre-recorded sound. It can detect pitch in real-time and display this

information the user in various ways. The user can choose between numerous musical

scales and tuning methods to use as reference lines, as without these it is difficult to

comprehend the appropriate meaning from the pitch contour. Section 10.2 provides a

summary of the common musical scales and tuning methods that were implemented.

Tartini can also show information about the harmonic structure of the note. This is

described in Section 10.1.1. Tartini can also show further parameters about the pitch,

such as vibrato speed, height and envelope shape. A further detailed pitch analysis can

be performed using the incremental pitch algorithms to provide extra resolution when

magnifying the pitch contour in areas of interest. However, this chapter first outlines

the algorithm structure of Tartini in Section 10.1, with Section 10.3 discussing the user

interface design.
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10.1 Tartini’s Algorithm Outline

This section discusses the implementation details of some of the non-visual aspects of

Tartini. First a summary of the program structure is given, followed by certain details

on the implemented tuning systems.

The following pseudo code shows the basic outline structure of the Tartini imple-

mentation.
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For each frame {
• Read in hop size new input samples and append them to x.

• Update y; the array of filtered values from x, using the

middle/outer filter from Section 6.2.2.

• Calculate the Modified Cepstrum, from Section 6.4.1, using a

window that consists of the latest W values from y.

• Warp the result and it add to the warped aggregate lag domain.

• Use the peak picking algorithm, from Section 6.3, on the

aggregate lag domain to to find the pitch period estimate, Pp.

Note that Equation 6.3 is used here for the peak thresholding.

• Calculate the SNAC or WSNAC function using the latest values from y.

The window size can be W or less.

• Find and store all the primary-peaks using parabolic interpolation.

• Update the chosen primary-peak for every frame in current note using

the new Pp - giving the pitch values at the effective centre of each

frame in the note so far.

• if(doing harmonic analysis) {
- Use the phase vocoder method, discussed in Section 10.1.1, to

find the frequency and amplitude of harmonics.

}

• if(doing detailed pitch analysis) {
- Perform the Incremental SNAC or WSNAC using a small window

based on the pitch period.

- Smooth the pitch MIDI number values with a Hanning window

CMA filter.

}

• Calculate the vibrato parameters using the Prony method variant

from Section 9.3.

• Calculate the short-term and long-term pitch mean-pitch as
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discussed in Section 7.3.1.

• if(note is ending or transitioning) {
- Do back-tracking (Section 7.3.2).

- Update the chosen peaks in the finished note.

- if(a new note has began) {
- Perform forward-tracking (Section 7.3.3).

- Update chosen peaks in the new note.

}
}

• Update the display if required.

}

Note that the detailed pitch analysis produces a pitch value per sample. These

values can be stored relative to the pitch at the effective centre of the frame. Hence,

if the octave estimate for the note changes at a later stage only a single pitch period

value needs to be updated for each frame in the note.

Also note the parameters used in Tartini include:

• A window size of 0.4 seconds is used for the vibrato Prony fit.

• The size of the CMA filter used to smooth the pitch values is 1/16th of a second.

These values were deduced from the constraints involved and through direct experi-

mentation.

10.1.1 Finding the Frequency and Amplitude of Harmonics

To find the frequency and amplitude of the harmonics in a given frame, the samples

about the centre of the window are interpolated so that one pitch period now con-

tains the number of samples n, equal to a power of two, where n ≥ Pp. The phase

vocoder method from Section 2.4.2 is used; except no windowing function is used. The

coefficients 1-41 correspond to the first 40 harmonics. Note that two FFT’s of size n

are performed, one containing values to the left of the centre, and the other values to

the right of the centre. The precise frequency of each harmonic is deduced from the

difference between the measured phase advance and the expected phase advance of the

given coefficient between the two FFT’s. The amplitude of a harmonic is taken as the

average magnitude of the given coefficients.

139



10.2 Scales and Tuning

The following summarises the common scales and tuning methods implemented in

Tartini. This information is used to supplement the pitch information to provide a

more relevant musical meaning of pitch to the user.

In music, a scale defines how a series of musical intervals are ordered within an

octave. In Western music an octave is typically divided up into 12 semitones. For

programming convenience we label these with indices 0-11, where 0 indicates the tonic

note of a given key. The chromatic scale consists of all 12 semitone indices, whereas

most other scales consist of a subset of 7 of these, such as the major and various minor

scales.

The major scale can be described using the interval pattern T-T-S-T-T-T-S, where

‘T’ indicates a whole-tone, and ‘S’ a semitone. When a major scale is played in the

key of C it uses only the white notes on the piano keyboard. In movable do solfège1

the notes of the major scale are sung as the syllables “Do-Re-Mi-Fa-So-La-Ti-Do”.

The diatonic scales are a group of scales with the same interval pattern as the major

scale, but with a cyclic shift, i.e. starting in a different place within the pattern. The

major scale forms the 1st, or Ionian, mode of the diatonic scales, and the natural minor

scale forms the 6th, or Aeolian, mode of the diatonic scales - the two most common

diatonic scales.

Other scales use different interval patterns, such as the harmonic minor and ascend-

ing melodic minor scales. A summary of the scales implemented in Tartini is given in

Table 10.1. Note that the ‘A’ indicates an augmented second, or tone-and-a-half. In

future work, we hope to implement other, less common, scales in Tartini as well.

Scale type Interval pattern Semitone indices

Chromatic S-S-S-S-S-S-S-S-S-S-S-S 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, (12)

Major T-T-S-T-T-T-S 0, 2, 4, 5, 7, 9, 11, (12)

Minor (natural) T-S-T-T-S-T-T 0, 2, 3, 5, 7, 8, 10, (12)

Minor (harmonic) T-S-T-T-S-A-S 0, 2, 3, 5, 7, 8, 11, (12)

Minor (ascending melodic) T-S-T-T-T-T-S 0, 2, 3, 5, 7, 9, 11, (12)

Table 10.1: A summary of the common musical scales which are implemented in Tartini.

The scales define a systematic way of naming the notes within an octave; however,

1as used in most English speaking countries
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it does not define the relative frequencies of these pitches. The relative frequencies of

the pitches of the notes in an octave are defined by their tuning. A number of different

tuning methods exist. The following contains a summary of the most common tuning

methods, including Pythagorean tuning, just intonation, meantone temperament and

even tempered.

There is no one type of tuning that is the correct one. Each tuning has its advantages

and disadvantages. These main differences include the purity of the sound within

intervals and chords, the power to modulate through different keys, and the practical

convenience in building and playing the instruments. Barbour [1972] and Barton [1908]

discuss in some depth different tuning methods.

Before the era of modern turning, a monochord was often used to create and use

a tuning system. A monochord is a string stretched over a wooden base with lines

indicating lengths for some tuning system. These lines were constructed geometrically

to make the desired ratios for a scale.

An interval is the distance stepped in pitch from one note to another. The size

of the interval is defined by the ratio of the frequencies of its component notes and if

this is a ratio of small whole numbers the interval is usually held to be pleasing; for

example, the octave having a ratio of 2:1, and the perfect fifth having a ratio of 3:2.

In contrast, a ratio of say 540:481 is more dissonant, and tends have a harsher sound.

Pythagorean tuning

Pythagorean tuning is based upon the first two intervals of the harmonic series, the

octave and the fifth. It involves successively tuning by fifths, for example C-G, G-D,

D-A and dropping the note by an octave when necessary to bring it back into the range

of the scale. The result is that all the fifths, starting from a given note, are perfect

except one. This is because this process can never return exactly to the original note -

hence one dissonant fifth is required to complete a scale. The dissonant fifth is called a

wolf fifth [Barbour, 1972]. As a result this tuning method provides reasonable freedom

to move between keys whilst maintaining pleasant sounding fifths. The values in Table

10.2 have been achieved from starting at C and going upwards by successive fifths, C,

G, D, A, E, B, F ♯; and going downwards to arrive at F , B♭, E♭, A♭, D♭. Here the wolf

fifth is the interval F ♯- D♭ which is left sounding badly out of tune. However, the wolf

fifth can be made to appear at any part of the scale.
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Just intonation

Just intonation, or the “just” scale is founded on the first five unique intervals of

the harmonic series - the octave, fifth, fourth, major third and minor third [Barbour,

1972], and usually described with three overlapping major triads. There is no standard

way of tuning all of the notes using this method; however, Table 10.2 contains some

commonly used just intervals. Very pleasant sounding chords and intervals are achieved

by this system. The process of changing key becomes less well defined, and usually

requires adjustment of the pitch at certain positions - making it impractical for some

instruments such as the piano. Just intonation is often used in unaccompanied singing,

for example a Capella groups, and fretless string instruments such as the violin - where

it can be used together in a small group. However, just intonation is not well suited for

large-scale orchestras, or a singer with instrumental accompaniment - such as a piano.

Meantone temperament

Meantone temperament is usually defined as having a perfect major third; for example,

C-E in ratio 4:5 for C-major. Then the 2nd is defined as exactly half the number of

cents as between the 1st and the 3rd, thus the ratio C-D is the same as D-E, i.e. the

mean of the two tones on a logarithmic scale. The fifth, here C-G, is made slightly

flattened from perfect, and the intervals G-D, D-A and A-E share the same ratio as

this. Meantone temperament was used from the beginning upon keyboard instruments

only. In the more general use of the word, a meantone temperament can have any

choice of third - provided the other rules are followed.

Even tempered

The even tempered method, also called equal temperament, is the most common tuning

method used today in western music. It consists of dividing the octave equally into

twelve semitones. Hence, all semitones are described by the frequency ratio 1 : 12
√

2.

Furthermore, a cent is defined as 1/100th of an even tempered semitone (using the

logarithmic scale). None of the intervals in even temperament form a perfect ratio.

However, this tuning allows a musician to modulate to any key without having any

intervals which are a long way from perfect. Today, people have become accustomed

to hearing these slightly imperfect intervals, whereas in the 16th century they were

generally considered unpleasant.

A summary of tuning systems is shown in Table 10.2.
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Semi- Pythagorean Even temp-

tone Note Interval tuning Just Meantone erament

index name (from tonic) (D♭to F ♯) intonation (cents) (cents)

0 C 1st (Tonic) 1:1 1:1 0 0

1 C♯ (D♭) Minor 2nd 256:243 76 100

2 D Major 2nd 9:8 9:8 193 200

3 D♯ (E♭) Minor 3rd 32:27 (6:5) 310 300

4 E Major 3rd 81:64 5:4 386 400

5 F 4th (Subdominant) 4:3 4:3 503 500

6 F ♯ (G♭) Augmented 4th 729:512 (25:18) 579 600

7 G 5th (Domanent) 3:2 3:2 697 700

8 G♯ (A♭) Minor 6th 128:81 (8:5) 773 800

9 A Major 6th 27:16 5:3 890 900

10 A♯ (B♭) Minor 7th 16:9 1007 1000

11 B Major 7th 243:128 15:8 1083 1100

12 C Octave 2:1 2:1 1200 1200

Table 10.2: A summary of the common tuning systems based on Helmholtz [1912], Jeans

[1943] and Barbour [1972]. Here a C scale is used as an example for reference.

10.3 User Interface Design

Tartini’s interface consists of a series of different widgets, or sub-windows, which each

display output from different parts of the analysis. Each of these widgets will be

discussed in turn.

10.3.1 File List Widget

A tool which allows a musician to play along with a pre-recorded song and see an im-

mediate comparison of their pitches, as well as allowing a comparison between existing

sound files, could prove useful. Tartini fulfils this role with the ‘Play and Record’ mode

in which the user listens through headphones and plays into the microphone simulta-

neously for live comparisons. To achieve this, Tartini has support for multiple sound

files to be open at the same time. The user can select the channels which are displayed

through the File List widget. Figure 10.1 shows a screenshot of the File List widget

containing a number of open files. For files with multiple channels, e.g. stereo sound,
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each channel is opened and analysed separately. Check-boxes allow the user to show

or hide any given channel as they desire. A single channel is marked with an ‘A’ in

the last column. This represents the active channel. Most user actions throughout the

program will apply only to the active channel. Widgets which can show information

only about a single channel show the active channel.

Figure 10.1: A screenshot of the File List widget running on Mac OS X.

10.3.2 Pitch Contour Widget

The Pitch Contour widget is one of the most important widgets in Tartini. It plots

the pitch over time, as calculated from the lower/mid level pitch analysis discussed in

Chapters 4 to 7. A screenshot of the Pitch Contour widget is shown in Figure 10.2. The

following discusses features of the Pitch Contour widget which were employed to help

facilitate the representation of the information to the user in a useful and convenient

manner.

Horizontal lines are drawn in the background to indicate the pitch of notes on the

selected musical scale. The names of the notes are indicated at the left-hand side of

each line along with the octave number. A choice of reference scales is given to the

user, as discussed in Section 10.2, which currently includes chromatic, major, natural

minor, harmonic minor and ascending melodic minor. This allows a musician to display

only the reference lines of a desired key, removing the excess clutter of lines. Moreover,

a choice of temperament, as discussed in Section 10.2, is given to the user, which

currently includes: even tempered, just intonation, Pythagorean tuning and meantone

temperament. This allows a musician to set the exact size of the intervals between the

notes in the scale to suit their needs. Note that the reference lines shown in the figure

are chromatic and even tempered. Since Tartini version 1.2, the ability to offset the
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Figure 10.2: A screenshot of the Pitch Contour widget running on Linux showing a G major

scale as played on violin. It can be seen that the 3rd and 7th (notes B and F ♯) are played

quite sharp of the even tempered scale.

scales was introduced due to user requests. This is done by letting the user choose the

frequency of A4, which is initially set to 440 Hz. Note that some scales do not contain

the note A, so the offset is such that the tonic, or base note, of a key is taken from the

chromatic even tempered scale which has an A4 set. However, there could be other

ways of dealing with this; for instance, letting the user choose the note and frequency

in order to define the scale offset.

The clarity measure discussed in Section 4.4 is put to use in the Pitch Contour

widget as a parameter to control pitch-fading, or the level of opacity of the lines. Sound

which has a loud and clearly defined pitch is shown completely opaque, in contrast to

sound that is softer and more noise-like which becomes increasingly transparent. The

primary use of this feature is to reduce the clutter of unwanted background sounds.

For instance, in between two notes is the faint sound of a chair squeaking. Even though

Tartini may be able to calculate the pitch for the squeak, it is likely the user is not so

interested in this sound. It is therefore classified as being less significant and drawn

almost invisibly. Hence, the two important notes will stand out to the user. However,

a side effect of this is that a quiet instrument causes the pitch contour to become very
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transparent. Tartini therefore allows pitch-fading to be disabled, so all notes are drawn

with full opacity.

As well as the opacity of the pitch contour being an indication of volume, a volume

curve, or more precisely the RMS value of the volume, is plotted on a logarithmic scale

underneath the pitch contour view with its values time aligned with the pitch. Vertical

reference lines were added in Tartini version 1.2 which are drawn in the background.

At a quick glance the exact volume of a certain pitch can be realised by scanning one’s

eyes down the line. In comparison, programs such as Intonia [Agin, 2007] increase the

thickness of the line with an increased volume; however, this tends to cause a loss in

precision of the exact centre, whereas Melodyne [Celemony Software] uses a pitch line

surrounded by a multi-coloured amplitude envelope. Melodyne’s technique works well,

although it could get very cluttered when multiple channels are overlaid.

Another feature of Tartini’s Pitch Contour interface is pitch-underfill, in which the

area underneath the pitch-contour is coloured slightly differently from the area above.

This provides the user with an indication of the vertical direction to the pitch-contour

when it is outside the current viewing area. The user immediately knows whether to

scroll up or down to see the notes the interest, thus reducing the chance of getting lost

when zoomed in on a large file. Moreover, pitch-underfill becomes useful to identify

the active channel’s pitch-contour amongst the other channels. Tartini allows the user

to choose the colours of the areas, or disable the pitch-underfill completely if desired.

Auto Following is a feature which allows the musician to play their instrument with

both hands, freeing them from the need to scroll up and down using the mouse/keyboard.

The idea is that the view scrolls up and down automatically in a smooth fashion to

keep the pitch contour close to the centre of the view. The pitch on which the view

should be centred is based on a weighted average of the pitch around the current time.

One limitation of this is if consecutively large intervals in pitch are played which con-

tain notes that are further apart than the height of the view, then the view will be

moved to look between them - making neither of them visible. One solution could be

to automatically zoom out, however this requires zooming back in at some stage, and

raises the issue of when, and how much, to zoom in. A number of users report that the

Auto Following feature just makes them feel dizzy, and has since been dubbed the ‘sea

sickness’ effect. A zoom feature is likely to disorient the users even more. Nevertheless,

it is possible that other methods of automatically following the pitch could work better.
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10.3.3 Chromatic Tuner Widget

The Chromatic Tuner widget was made to provide a familiar tool for musicians. How-

ever, this tuner utilises the added responsiveness of the almost instantaneous pitch

detection of the SNAC-type algorithms. As a result, tuning an instrument can become

quite efficient. Figure 10.3 shows a screenshot of the Chromatic Tuner widget. The

slider allows the user to smooth out the pitch using weighted averaging to reduce the

responsiveness if needed. This can be helpful in certain situations where there are small

fluctuations inherent in the pitch.

Figure 10.3: A screenshot of the Chromatic Tuner widget running on Linux, showing a

pitch 25 cents above note C. The slider indicates no pitch smoothing (the default).

The highlighted letter indicates the nearest defined note with the dial indicating

how far the pitch is from that note. The needle indicates the pitch with its angle,

making it easily understood by the user at varying distances from the screen, as even

though the user’s perceived size of an object changes with distance, angles remain

constant.

The tuner shows no sign of octave, making it only a reduced pitch problem. Even if

the pitch measurement is off by an octave the tuner will still show the correct reading.

Currently the Chromatic Tuner only tunes to the even tempered scale; however, its

usage with other temperaments is likely to be implemented in the near future.

10.3.4 Vibrato Widget

The Vibrato widget is a new interface aiming to display the information available from

the vibrato analysis discussed in Chapter 9. The goal of this widget is to show detailed

information about the vibrato of the current note, providing a tool for future musicians
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and researchers to investigate the use of vibrato more thoroughly, including its musical

and psychological effects.

Figure 10.4: A screenshot of the Vibrato widget showing some violin vibrato around a D5.

Notice how the dials indicate a vibrato speed of 5 Hz, and a vibrato width of 51 cents.

Figure 10.4 shows a screenshot of the Vibrato widget. The lower half of the widget

shows the variation with time of the pitch of the current note at a higher magnification

than the Pitch Contour widget. A grey line indicates the vibrato’s moving centre pitch,

as calculated from the Prony offset in Section 9.3.3.

The dials in the upper left show the instantaneous speed and width of the vibrato.

This is useful for practising consistency or trying to match a target vibrato. A musician

can see how their changes in playing affect these important parameters, watching them

increase and decrease over time. Future work might investigate using a two dimensional

plot for these parameters instead of dials, allowing the user to see the history of changes

throughout the note all at once.

The top right of the widget shows the vibrato period view. This contains an extreme

magnification of the vibrato pitch, drawn in red, with its trace always starting from

the minimum part of the cycle, and its amplitude normalised. Initially the display

method consisted of drawing the current pitch cycle as it was being played, making a

tracing effect across the view. However, this was not found to be helpful as it changed

too quickly, distracting the user. It was found that drawing only the completed cycles

worked better. Other reference lines were added, including a grey centre line and a

yellow curve indicating the phase of a sinusoid with the same frequency. The user can
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compare how the phase of their vibrato cycle advances or recedes relative to a perfect

sinusoidal shape. This vertical difference, called the sine-difference, is also indicated

by the green curve.

The centre top of the widget shows the vibrato circle, a novel idea for displaying

vibrato phase information. The basic concept is that over the course of one vibrato

cycle, 360 degrees of a circle are carved out. The radius of the circle at any given angle

is offset by the sine-difference described above. For instance, a perfectly sinusoidal

vibrato would produce a perfect circle, whereas a slower curve up and faster curve

down would produce a lop sided, egg-like shape. In fact, any pattern of sine-difference

creates a unique solid shape. It was thought that a solid shape might be easier for a

user to comprehend than the sine-difference curve, although so far this has not been

tested. However, variations between successive vibrato cycles could be clearly seen.

Finally, the idea of morphing the circle from one shape to the next was introduced to

reduce the sudden jumping between cycles, creating a more pleasant user experience.

The vibrato circle and the sine-difference concept are still at an early experimental

stage. As future work, we hope to investigate ways of displaying the volume variations

which are often associated with vibrato, in conjunction with the pitch variations.

10.3.5 Pitch Compass Widget

Figure 10.5: A screenshot of the Pitch Compass widget running on Linux.

The Pitch Compass widget was a novel idea that shows the instantaneous pitch as

a direction needle on a compass. Its use is intended for people, especially children, who

are learning music. The use of a circle helps indicate the repeating nature of notes

in an octave. Figure 10.5 show a screenshot of the Pitch Compass widget. Initially,

the needle remained fixed upward with the note names revolving around the outside.

However, it was later found that rotating the needle whist keeping the note names fixed
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seemed better at giving a sense of pitch bearing without disorienting the user. Notice

how the Pitch Compass has no concept of the pitch’s octave in a similar manner to

the Chromatic Tuner widget in Section 10.3.3, which removes some complexity and

emphasises the similarity of the same note in different octaves.

10.3.6 Harmonic Track Widget

The Harmonic Track widget is an attempt to bring the information about harmonic

structure into a realm familiar to musicians. Figure 10.6 shows a 3D piano keyboard

with the current note depressed and highlighted yellow. Protruding from the back of

the keyboard are vertical walls, or tracks. Each track represents a harmonic frequency

component of the note. Over time the tracks move further away from the keyboard,

with the frontmost height of a track representing the strength of the harmonic at the

current time. Odd harmonics are coloured blue and even harmonics green for ease of

distinguishing tracks.

Figure 10.6: A screenshot of the Harmonic Track widget running on Linux.

Note that the second harmonic is one octave above the first, and the fourth har-

monic is one octave above the second, and so on. The natural logarithmically scaled

frequency axis of the keyboard makes the linear frequency spacing of the harmonics
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appear increasingly close together. Figure 10.6 contains lower harmonics which are

stronger and higher harmonics which fading into the noise level at the right-hand side.

This is a typical pattern; however, different instruments produce different patterns.

Figure 10.7: A screenshot of the Harmonic Track widget containing cello with vibrato.

Figure 10.7 shows the ability to change the camera’s viewing angle. Note that the

tracks look corrugated, depicting the vibrato, and some tracks take on height variations

due to an induced tremolo affect on certain harmonics.

10.3.7 Musical Score Widget

The Musical Score widget provides a very basic representation of the notes played.

There is an option to transpose the notes up or down an octave, and an option to hide

any extreme notes. Also there is an option to draw notes with translucency based on

their clarity measure, similar to pitch-fading in Section 10.3.2. A screenshot of the

Musical Score widget is shown in Figure 10.8.

The widget was made to show the potential usage of the higher level information

from the algorithms in this thesis, such as a note’s beginning, length and average

pitch. However, further work on combining the pitch techniques in this thesis with

other note onset/offset methods are required for a more robust note detection scheme.

Future work could include producing MIDI output that contains the expressive nature

of pitch and volume variations within the notes.
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Figure 10.8: A screenshot of the Musical Score widget running on Linux.

10.3.8 Other Widgets

Tartini contains a number of other widgets which display some of the more technical

information contained within the analysis phases. These include:

• An Oscilloscope widget which displays the waveform data of the current window

as used for analysis.

• An FFT widget which shows the frequency spectrum of the current window.

• A Correlation widget which shows the result of the current autocorrelation-type

function.

• A Cepstrum widget which shows the cepstrum, or modified cepstrum, of the

current window.

Tartini also contains some more experimental widgets including:

• A Harmonic Circle widget which shows radial spikes indicating the instantaneous

normalised harmonic structure. The pitch frequency points up, with each 360

degrees clockwise representing an octave. The length of the lines indicate the

strength of a harmonic in decibels. As a frequency component becomes flat or

sharp of the expected harmonic frequency its angle changes with respect to the

expected angle.
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• A Harmonic Block widget which shows the instantaneous strength of each har-

monic. The width of the lowest rectangle, or block, indicates the strength of the

first harmonic; higher up blocks represent increasingly higher harmonics. Blocks

offset from the centre line indicate that a harmonic is flatter or sharper than its

expected frequency at an integer multiple of the fundamental frequency.

• A Harmonic Stack widget which shows how the strength of all the harmonics

of a note change over time. The first harmonic is white, with higher harmonics

gaining a darker green. Horizontal lines indicate the amplitude in decibels.

Note that around 5% of Tartini’s code was produced by other authors, and thanks go

to Rob Ebbers, Stuart Miller and Maarten van Sambeek for their contributions to the

programming of graphical elements within the Vibrato widget, Pitch Compass widget,

Harmonic Circle widget and Harmonic Stack widget.
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Chapter 11

Conclusion

This thesis describes the first step in a larger project to provide an automatic analysis

of many aspects of musical sound that would be of practical use to musicians. We

set out to improve existing techniques for measuring pitch and its variations that can

work well over a range of musical instruments, with the goal to develop a real-time

tool which can aid musicians. We believe these goals have been achieved, although we

have not yet conducted formal studies to prove the tool can aid musicians.

Our main contribution is in the development of algorithms to find the continuous

musical pitch in a fast, accurate and robust manner. These algorithms have been shown

to work well over a range of instruments through both systematic testing on sound

databases such as the Iowa dataset, and through their practical use by instrumentalists.

Also we have designed a method for measuring the parameters of vibrato, i.e. higher

level information about repeating pitch variations. Our work is summarised in the

following material.

We have developed a special normalisation of the autocorrelation (SNAC) function

and windowed SNAC (WSNAC) function described in Chapter 4. These functions

were shown in Chapter 5 to measure the short-time periodicity of signals with greater

accuracy than existing autocorrelation methods. With a steady signal the pitch can

be detected accurate to less than 0.1 cents with only 2 cycles. The algorithms were

stress tested under fast variations in pitch, volume and different harmonic structure and

maintained an accuracy within 5 cents. Chapter 4 also shows how these new functions

can be calculated efficiently through use of the fast Fourier transform (FFT).

We developed a modified cepstrum, a warped aggregate lag domain (WALD) and a

peak picking algorithm described in Chapters 6 and 7. When these are combined with

a middle/outer ear filter, the algorithms achieved a 99.88% success rate of detecting
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the correct octave associated with the perceived pitch on our test data. This com-

bination, together with the SNAC or WSNAC function methods, can make accurate

measurements of a varying musical pitch.

We describe in Section 7.3.1 a method for detecting note changes in a channel

based on the pitch information. This method can detect note changes even when the

volume is constant. It is designed to be used in conjunction with other note onset/offset

detectors. Further experimentation is desirable to find to what extent this idea can

improve existing methods. In the future we hope to implement a more robust note

onset/offset detection system into Tartini.

We describe in Chapter 8 how the SNAC and WSNAC functions can be calculated

incrementally - resulting in an efficient calculation of the pitch values at a sampling

rate equal to the input sampling rate.

The algorithms described have proved effective at finding the pitch of single ‘voiced’

sounds across a range of instruments; however, in practice it can be difficult to restrict

the user to a single voice on certain instruments, such as guitar - where plucking a

series of single notes can leave several strings ringing at the same time. These types of

polyphonic sounds can cause unexpected results, such as Tartini-tones or octave errors.

The complex moving-average (CMA) filter we developed is an algorithm for effi-

ciently convolving certain large windows to smooth a signal. This method, described

in Section 8.3, could have application in many fields of research.

In Chapter 9 we present a method for estimating the musical parameters of vibrato

over a short-time, including the vibrato’s speed, height, phase and centre offset. Using

this method the shape of a vibrato’s envelope can be found as it changes throughout

the duration of a note.

We have created an application called ‘Tartini’ that implements these techniques

into a tool for musicians and made it freely available. We have also shown numerous

ways to display the pitch information to the user, providing musicians, researchers and

teachers with new tools to help advance their fields.

Tartini can be found at http://www.tartini.net and has already had over 9000

unique visitors to the web site - as of April 2008, including some reputable musicians.

Note that the most recent version of Tartini, which contains all the algorithms discussed

in this thesis, will be released to the public on the conclusion of the marking process.

Some published parts of the Tartini algorithm have been ported into third party

programs - this includes a SuperCollider [McCartney, 2006] plugin, thanks to Nick

Collins [Collins].
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In future research we would like to conduct further studies into how and what tools

the Tartini users find most useful, and whether it helps them to learn faster. This also

leads to the inclusion of teaching material, such as basic musical exercises and tutorials

into Tartini.

With a solid foundation of pitch, we would like to see further investigation into the

relationship between pitch variations and volume variations during vibrato, and how a

musician can use these to control the emotion portrayed in a sound.
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Marek Dziubiński and Bożena Kostek. High accuracy and octave error immune pitch

detection algorithms. In Archives of Acoustics, volume 29, pages 1–21, 2004.

Epinoisis Software. Digital ear, 2007. URL http://www.digital-ear.com.

John Fitch and Wafaa Shabana. A wavelet-based pitch detector for musical signals. In

Proceedings 2nd COSTG6 Workshop on Digital Audio Effects DAFx99, 1999.

URL http://citeseer.ist.psu.edu/395242.html.

Matteo Frigo and Steven G. Johnson. Fastest Fourier transfom in the west, 2005.

URL http://www.fftw.org/.

B. Gold and L. R. Rabiner. Parallel processing techniques for estimating pitch periods

of speech in the time domain. Journal of the Acoustical Society of America, 46(2, Pt

2):442–448, August 1969.

158



Amalia De Götzen, Nicola Bernardini, and Daniel Arfib. Traditional (?) implementa-

tions of a phase-vocoder: The tricks of the trade. In Proceedings of the COST G-6

Conf. on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9 2000.

S. Griebel. Multi-channel wavelet techniques for reverberant speech analysis and en-

hancement. Technical Report 5, HIMMEL, Harvard University, Cambridge, MA,

Feb 1999. URL http://citeseer.ist.psu.edu/griebel99multichannel.html.

F. Harris. On the use of windows for harmonic analysis with the discrete Fourier

transform. Proc. of the IEEE, Vol 66(No 1), Jan 1978.

Hermann von Helmholtz. On the Sensations of Tone as a Physiological Basis for the

Theory of Music. London, New York, Longmans Green, 4th edition, 1912. Trans. A.

J. Ellis.

Dik J Hermes. Measurement of pitch by subharmonic summation. The Journal of the

Acoustical Society of America, 83(1):257–264, January 1988.

F. B. Hildebrand. Introduction to Numerical Analysis. New York: McGraw-Hill, 1956.

Masanao Izumo and Tuukka Toivonen. Timidity++, 2007.

URL http://timidity.sourceforge.net.

G Jacovitti and G Scarano. Discrete time techniques for time delay estimation. IEEE

Trans. on Signal Processing, 41(2):525–533, February 1993.

Sir James Jeans. Science and Music. Cambridge University Press, 1943.

Joint Photographic Experts Group. Jpeg 2000 standard, 2000.

URL http://www.jpeg.org/jpeg2000/.

S. M. Kay and JR. S. L. Marple. Spectrum analysis - a modern perspective. In

Proceedings of the IEEE, volume 69, pages 1380 – 1419. IEEE, November 1981.

Florian Keiler and Sylvain Marchand. Survey on extraction of sinusoids in stationary

sounds. In Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02),

Hamburg, Germany, September 26-28 2002.

Sylvain Marchand. An efficient pitch-tracking algorithm using a combination of Fourier

transforms. In Proceedings of DAFX-01, Limerick, Ireland, 2001.

URL http://citeseer.ist.psu.edu/marchand01efficient.html.

159



Sylvain Marchand. Improving spectral analysis precision with enhanced phase vocoder

using signal derivatives. In Proc. DAFX98 Digital Audio Effects Workshop, pages

114–118, Barcelona, November 1998.

URL http://citeseer.ist.psu.edu/marchand98improving.html.

M. Marolt, A. Kavcic, and M. Privosnik. Neural networks for note onset detection in

piano music. In Proc. Int. Computer Music Conference, Gothenberg, Sweden, 2002.

URL citeseer.ist.psu.edu/marolt02neural.html.

MathWorks. Matlab, 2006. URL http://www.mathworks.com/.

James McCartney. Supercollider, 2006.

URL http://supercollider.sourceforge.net/.

Philip McLeod and Geoff Wyvill. Visualization of musical pitch. In Proceedings of the

Computer Graphics International, pages 300–303, Tokyo, Japan, July 9-11 2003.

Philip McLeod and Geoff Wyvill. A smarter way to find pitch. In Proceedings of

the International Computer Music Conference, pages 138–141, Barcelona, Spain,

September 5-9 2005.

Adriano Mitre, Marcelo Queiroz, and Regis R. A. Faria. Accurate and efficient fun-

damental frequency determination from precise partial estimates. In Proceedings of

the 4th AES Brazil Conference, pages 113–118, 2006.

Brian C. J. Moore. An Introduction to the Psychology of Hearing. Academic Press,

forth edition, 2003.

R Nave. Equal-loudness curves, 2007.

URL http://hyperphysics.phy-astr.gsu.edu/hbase/sound/eqloud.html.

Truong Q. Nguyen. A tutorial on filter banks and wavelets. In International Conference

of Digital Signal Processing, Cypress, Giugno, 1995.

URL http://citeseer.ist.psu.edu/nguyen95tutorial.html.

A. Michael Noll. Cepstrum pitch determination. The Journal of the Acoustical Society

of America, Vol. 41:239–309, February 1967.

R. Plomp. Pitch of complex tones. The Journal of Acoustical Society America, 41:

1526–1533, 1967.

160



L. R. Rabiner. On the use of autocorrelation analysis for pitch detection. IEEE Trans.

Acoustics, Speech, and Signal Processing, ASSP-25(1):24–33, February 1977.

L. R. Rabiner and R. W. Schafer. Digital Processing of Speech Signals. Prentice-Hall

Signal Processing Series. Prentice Hall, 1978.

Uwe Rathmann and Josef Wilgen. Qt widgets for technical applications, 2005.

URL http://qwt.sourceforge.net/.

David Robinson. Equal-loudness antenuation filter design, matlab code, 2001.

URL http://www.David.Robinson.org.

Xavier Rodet. Musical sound signals analysis/synthesis: Sinusoidal+residual and ele-

mentary waveform models. Applied Signal Processing, 4:131–141, 1997.

Myron J Ross, Harry L Shaffer, Andrew Cohen, Richard Freudberg, and Harold J Man-

ley. Average magnitude difference function pitch extractor. IEEE Trans. Acoustics,

Speech, and Signal Processing, ASSP-22(5):353–362, October 1974.

Thomas D. Rossing. The Science of Sound. Addison-Wesley, second edition, 1990.

Gary P. Scavone. Rtaudio, 2006.

URL http://www.music.mcgill.ca/~gary/rtaudio/.

Raymond A. Serway. Physics for Scientists and Engineers with Modern Physics. Saun-

ders College Publishing, 4th edition, 1996.

M. M. Sondhi. New methods of pitch extraction. IEEE Trans. Audio and Electroa-

coustics, AU-16(2):262–266, June 1968.

Sony Computer Entertainment Europe. Singstar, 2007.

URL http://www.singstargame.com.

Xuejing Sun. A pitch determination algorithm based on subharmonic-to-harmonic ra-

tio. In The 6th International Conference of Spoken Language Processing, pages 676–

679, Beijing, China, 2000. URL http://citeseer.ist.psu.edu/sun00pitch.html.

Xuejing Sun. Pitch determination and voice quality analysis using subharmonic-to-

harmonic ratio. In Proc. of IEEE International Conference on Acoustics, Speech,

and Signal Processing, Orlando, Florida, May 2002.

URL http://citeseer.ist.psu.edu/sun02pitch.html.

161



Trolltech. Qt, 2004. URL http://trolltech.com/products/qt.

Martin Vetterli and Cormac Herley. Wavelets and filter banks: Theory and design.

IEEE Trans. on Signal Processing, 40(9):2207–2232, September 1992.

Eric W. Weisstein. Convolution theorem. From MathWorld - A Wolfram Web Resource,

2006a. URL http://mathworld.wolfram.com/ConvolutionTheorem.html.

Eric W. Weisstein. Wiener-khinchin theorem. From MathWorld - A Wolfram Web

Resource, 2006b.

URL http://mathworld.wolfram.com/Wiener-KhinchinTheorem.html.

Eric W. Weisstein. Moore-penrose matrix inverse. From MathWorld - A Wolfram Web

Resource, 2006c.

URL http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html.

Pat H Wilson, Kerrie Lee, Jean Callaghan, and C W Thorpe. Learning to sing in tune:

Does real-time visual feedback help? In CIM07: 3rd Conference on Interdisciplinary

Musicology, Tallinn, Estonia, 15-19 August 2007.

Alexander Wood. The Physics of Music. Methuen, London, 1944.

162



Appendix A

Pitch Conversion Table

Table A.1: Pitch conversion table

Pitch MIDI note number Frequency (Hz) Period (samples at 44100 kHz)

A0 21 27.50 1603.64

A♯0 22 29.14 1513.63

B0 23 30.87 1428.68

C1 24 32.70 1348.49

C♯1 25 34.65 1272.81

D1 26 36.71 1201.37

D♯1 27 38.89 1133.94

E1 28 41.20 1070.30

F1 29 43.65 1010.23

F ♯1 30 46.25 953.53

G1 31 49.00 900.01

G♯1 32 51.91 849.50

A1 33 55.00 801.82

A♯1 34 58.27 756.82

B1 35 61.74 714.34

C2 36 65.41 674.25

C♯2 37 69.30 636.40

D2 38 73.42 600.68

D♯2 39 77.78 566.97

E2 40 82.41 535.15

Continued on next page
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Table A.1 – continued from previous page

Pitch MIDI note number Frequency (Hz) Period (samples at 44100 kHz)

F2 41 87.31 505.11

F ♯2 42 92.50 476.76

G2 43 98.00 450.01

G♯2 44 103.83 424.75

A2 45 110.00 400.91

A♯2 46 116.54 378.41

B2 47 123.47 357.17

C3 48 130.81 337.12

C♯3 49 138.59 318.20

D3 50 146.83 300.34

D♯3 51 155.56 283.49

E3 52 164.81 267.57

F3 53 174.61 252.56

F ♯3 54 185.00 238.38

G3 55 196.00 225.00

G♯3 56 207.65 212.37

A3 57 220.00 200.45

A♯3 58 233.08 189.20

B3 59 246.94 178.58

C4 60 261.63 168.56

C♯4 61 277.18 159.10

D4 62 293.66 150.17

D♯4 63 311.13 141.74

E4 64 329.63 133.79

F4 65 349.23 126.28

F ♯4 66 369.99 119.19

G4 67 392.00 112.50

G♯4 68 415.30 106.19

A4 69 440.00 100.23

A♯4 70 466.16 94.60

B4 71 493.88 89.29

C5 72 523.25 84.28

Continued on next page
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Table A.1 – continued from previous page

Pitch MIDI note number Frequency (Hz) Period (samples at 44100 kHz)

C♯5 73 554.37 79.55

D5 74 587.33 75.09

D♯5 75 622.25 70.87

E5 76 659.26 66.89

F5 77 698.46 63.14

F ♯5 78 739.99 59.60

G5 79 783.99 56.25

G♯5 80 830.61 53.09

A5 81 880.00 50.11

A♯5 82 932.33 47.30

B5 83 987.77 44.65

C6 84 1046.50 42.14

C♯6 85 1108.73 39.78

D6 86 1174.66 37.54

D♯6 87 1244.51 35.44

E6 88 1318.51 33.45

F6 89 1396.91 31.57

F ♯6 90 1479.98 29.80

G6 91 1567.98 28.13

G♯6 92 1661.22 26.55

A6 93 1760.00 25.06

A♯6 94 1864.66 23.65

B6 95 1975.53 22.32

C7 96 2093.00 21.07

C♯7 97 2217.46 19.89

D7 98 2349.32 18.77

D♯7 99 2489.02 17.72

E7 100 2637.02 16.72

F7 101 2793.83 15.78

F ♯7 102 2959.96 14.90

G7 103 3135.96 14.06

G♯7 104 3322.44 13.27

Continued on next page
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Table A.1 – continued from previous page

Pitch MIDI note number Frequency (Hz) Period (samples at 44100 kHz)

A7 105 3520.00 12.53

A♯7 106 3729.31 11.83

B7 107 3951.07 11.16

C8 108 4186.01 10.54
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Appendix B

Equal-Loudness Filter Coefficients

The two filters from Robinson [2001] that are used in Tartini for outer/middle ear

anttenuation. Firstly, a second-order high-pass filter was created in Matlab using

[B,A]=butter(2,(150/(sampleRate/2)),’high’);

The resulting coefficients at 44100 Hz are

A = 1.0,

-1.9697785558261799998547303403029218316078186035156250,

0.9702284756634975693145861441735178232192993164062500

B = 0.9850017578724193922923291211191099137067794799804688,

-1.9700035157448387845846582422382198274135589599609375,

0.9850017578724193922923291211191099137067794799804688

Secondly, a 10th order IIR filter was constructed using the Yulewalk method. The

resulting coefficients at 44100 Hz are

A = 1.0,

-3.47845948550071,

6.36317777566148,

-8.54751527471874,

9.47693607801280,

-8.81498681370155,

6.85401540936998,

-4.39470996079559,

2.19611684890774,
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-0.75104302451432,

0.13149317958808

B = 0.05418656406430,

-0.02911007808948,

-0.00848709379851,

-0.00851165645469,

-0.00834990904936,

0.02245293253339,

-0.02596338512915,

0.01624864962975,

-0.00240879051584,

0.00674613682247,

-0.00187763777362

168



Appendix C

Detailed Results Tables

The following shows more detailed results from Experiments 9-17. However a summary

of the key terms used in the tables is first given.

c - the threshold constant.

s - the scaler coefficient.

m - the median filter window size.

Correct - values which matched the expected pitch (within 1.5 semitones).

-1 - values 1 octave below the expected pitch (within 1.5 semitones).

-2 - values 1.5 octaves below the expected pitch (within 1.5 semitones).

-3 - values 2 octaves below the expected pitch (within 1.5 semitones).

+1 - values 1 octave above the expected pitch (within 1.5 semitones).

+2 - values 1.5 octaves above the expected pitch (within 1.5 semitones).

+3 - values 2 octaves above the expected pitch (within 1.5 semitones).

Other - values where a pitch was found that did not fall into the previous categories.

n/a - no pitch was found.

Error - The percentage of the of all non-correct values.

SNAC - the special normalisation of the autocorrelation algorithm.

SNAC-ALD - the SNAC used in combination with the aggregate lag domain.

SNAC-WALD - the SNAC used in combination with the warped aggregate lag domain.

MC - the modified cepstrum algorithm.

MC-ALD - the MC used in combination with the aggregate lag domain.

MC-WALD - the MC used in combination with the warped aggregate lag domain.
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Iowa Dataset

Algorithm Correct -1 -2 -3 +1 +2 +3 Other n/a Error

ACF 153477 2939 735 212 1120 138 5 1116 30 3.94%

SNAC(Sloped) 153259 2964 732 219 1230 140 7 1197 24 4.08%

MIDI Dataset

Algorithm Correct -1 -2 -3 +1 +2 +3 Other n/a Error

ACF 47762 568 192 16 1 1 1 25 0 1.66%

SNAC(Sloped) 47739 581 202 13 2 1 1 27 0 1.7%

Table C.1: Experiment 9a - no outer/middle ear filtering

Iowa Dataset

Algorithm Correct -1 -2 -3 +1 +2 +3 Other n/a Error

ACF 155883 1673 286 18 600 261 3 1030 18 2.43%

SNAC(Sloped) 155695 1705 291 22 628 281 6 1130 14 2.55%

MIDI Dataset

Algorithm Correct -1 -2 -3 +1 +2 +3 Other n/a Error

ACF 47748 564 212 11 3 1 1 26 0 1.68%

SNAC(Sloped) 47748 567 210 8 4 1 1 27 0 1.68%

Table C.2: Experiment 9b - with outer/middle ear filtering
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Iowa Dataset

c Correct -1 -2 -3 +1 +2 +3 Other n/a Error

0.80 156038 108 60 8 2291 613 148 498 8 2.34%

0.85 157432 150 71 17 1495 280 2 317 8 1.46%

0.90 158245 233 108 20 814 183 2 159 8 0.96%

0.95 158294 879 205 35 146 44 0 161 8 0.93%

1.00 118059 20275 10645 4220 12 2 0 6551 8 26.1%

MIDI Dataset

c Correct -1 -2 -3 +1 +2 +3 Other n/a Error

0.80 48244 134 81 16 50 0 1 40 0 0.66%

0.85 48065 221 163 43 8 0 1 65 0 1.03%

0.90 47656 335 330 100 0 0 1 144 0 1.87%

0.95 46625 631 703 239 0 0 1 367 0 4.00%

1.00 37260 3852 3499 1377 1 0 1 2576 0 23.3%

Table C.3: Experiment 10 - the SNAC function with peak picking
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Iowa Dataset

c Correct -1 -2 -3 +1 +2 +3 Other n/a Error

0.4 125681 1090 63 7 941 1231 1125 29633 1 21.3%

0.5 134497 1581 161 15 622 694 690 21511 1 15.8%

0.6 139715 2360 335 43 338 253 490 16237 1 12.6%

0.7 141712 3926 695 94 227 142 375 12600 1 11.3%

0.8 141395 6180 1355 206 73 77 293 10192 1 11.5%

0.9 138343 9576 2367 409 51 43 251 8731 1 13.4%

1.0 133219 14036 3751 777 32 49 182 7725 1 16.6%

MIDI Dataset

c Correct -1 -2 -3 +1 +2 +3 Other n/a Error

0.4 38319 161 70 0 132 187 28 9669 0 21.1%

0.5 41618 407 242 1 59 116 15 6108 0 14.3%

0.6 43275 400 723 0 48 60 11 4049 0 10.9%

0.7 44207 658 909 5 23 40 7 2717 0 8.98%

0.8 44605 978 1015 7 12 22 0 1927 0 8.16%

0.9 44252 1668 1093 6 7 14 0 1526 0 8.88%

1.0 43243 2694 1271 56 2 9 0 1291 0 11%

Table C.4: Experiment 11 - the cepstrum
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Iowa Dataset

c Correct -1 -2 -3 +1 +2 +3 Other n/a Error

0.3 156838 243 43 16 1656 379 43 553 1 1.84%

0.4 158215 292 51 19 794 97 2 301 1 0.975%

0.5 158759 356 60 24 282 46 2 242 1 0.634%

0.6 158786 528 77 30 124 5 2 219 1 0.617%

0.7 158491 819 130 34 79 4 2 212 1 0.802%

0.8 157689 1486 283 52 39 0 2 220 1 1.3%

0.9 155652 2985 777 117 12 0 2 226 1 2.58%

1.0 147715 8113 2879 725 5 0 1 333 1 7.55%

MIDI Dataset

c Correct -1 -2 -3 +1 +2 +3 Other n/a Error

0.3 47993 12 6 4 11 0 1 539 0 1.18%

0.4 48343 27 7 0 0 0 1 188 0 0.459%

0.5 48383 53 23 2 0 0 1 104 0 0.377%

0.6 48318 99 51 8 0 0 1 89 0 0.511%

0.7 48150 215 93 19 0 0 1 88 0 0.857%

0.8 47787 454 182 39 0 0 1 103 0 1.6%

0.9 47058 890 414 72 0 0 1 131 0 3.11%

1.0 44172 2382 1629 177 0 0 1 205 0 9.05%

Table C.5: Experiment 12 - the modified cepstrum
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Iowa Dataset

s Correct -1 -2 -3 +1 +2 +3 Other n/a Error

10 158696 570 68 31 164 6 2 234 1 0.673%

1 158759 356 60 24 282 46 2 242 1 0.634%

0.1 158635 344 59 24 388 76 2 243 1 0.712%

0.01 158622 343 59 24 402 76 2 243 1 0.72%

0.001 158616 343 59 24 408 76 2 243 1 0.724%

Linear 158616 343 59 24 408 76 2 243 1 0.724%

MIDI Dataset

s Correct -1 -2 -3 +1 +2 +3 Other n/a Error

10 48300 78 42 4 0 0 1 141 0 0.548%

1 48383 53 23 2 0 0 1 104 0 0.377%

0.1 48395 46 21 2 0 0 1 101 0 0.352%

0.01 48396 46 20 2 0 0 1 101 0 0.35%

0.001 48396 46 20 2 0 0 1 101 0 0.35%

Linear 48396 46 20 2 0 0 1 101 0 0.35%

Table C.6: Experiment 13 - the modified cepstrum with varied scaling
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Iowa Dataset

m Correct -1 -2 -3 +1 +2 +3 Other n/a Error

1 158759 356 60 24 282 46 2 242 1 0.634%

5 158741 361 52 23 307 62 1 225 0 0.645%

7 158807 327 48 20 306 59 3 202 0 0.604%

9 158834 312 40 18 301 61 4 202 0 0.587%

15 158817 293 52 26 280 61 4 231 8 0.598%

51 158129 392 166 121 260 57 0 523 124 1.03%

MIDI Dataset

m Correct -1 -2 -3 +1 +2 +3 Other n/a Error

1 48383 53 23 2 0 0 1 104 0 0.377%

5 48394 41 23 1 0 0 1 106 0 0.354%

7 48436 33 12 0 0 0 1 84 0 0.268%

9 48476 24 4 0 0 0 1 61 0 0.185%

15 48489 24 4 0 0 0 1 48 0 0.159%

51 40441 319 0 0 406 7 2 7391 0 16.7%

Table C.7: Experiment 14 - the modified cepstrum with median smoothing
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Iowa Dataset

Algorithm Correct -1 -2 -3 +1 +2 +3 Other n/a Error

SNAC 158191 228 90 22 888 182 4 159 8 0.99%

SNAC-ALD 158635 31 21 3 550 161 1 362 8 0.712%

SNAC-WALD 158581 42 18 3 550 161 1 408 8 0.745%

MC 158759 356 60 24 282 46 2 242 1 0.634%

MC-ALD 159250 41 11 5 67 0 3 394 1 0.327%

MC-WALD 159583 41 11 5 67 0 1 63 1 0.118%

MIDI Dataset

Algorithm Correct -1 -2 -3 +1 +2 +3 Other n/a Error

SNAC 47656 335 330 100 0 0 1 144 0 1.87%

SNAC-ALD 47076 744 597 54 0 0 0 95 0 3.07%

SNAC-WALD 46916 850 661 68 0 0 0 71 0 3.4%

MC 48383 53 23 2 0 0 1 104 0 0.377%

MC-ALD 48548 1 0 0 0 0 1 16 0 0.0371%

MC-WALD 48548 1 0 0 0 0 1 16 0 0.0371%

Table C.8: Experiment 15 & 16 - a comparison of un-warped, warped and no aggregate lag

domain
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MIDI Dataset - No Reverb

Algorithm Correct -1 -2 -3 +1 +2 +3 Other n/a Error

SNAC 47656 335 330 100 0 0 1 144 0 1.87%

SNAC-ALD 47076 744 597 54 0 0 0 95 0 3.07%

SNAC-WALD 46916 850 661 68 0 0 0 71 0 3.4%

MC 48383 53 23 2 0 0 1 104 0 0.377%

MC-ALD 48548 1 0 0 0 0 1 16 0 0.0371%

MC-WALD 48548 1 0 0 0 0 1 16 0 0.0371%

MIDI Dataset - With Reverb

Algorithm Correct -1 -2 -3 +1 +2 +3 Other n/a Error

SNAC 47252 528 509 95 4 4 1 173 0 2.71%

SNAC-ALD 46374 1046 1050 42 0 0 0 54 0 4.51%

SNAC-WALD 46322 1073 1034 68 0 0 0 69 0 4.62%

MC 48240 74 33 0 0 2 1 216 0 0.671%

MC-ALD 48498 15 0 0 0 0 1 52 0 0.14%

MC-WALD 48513 15 0 0 0 0 1 37 0 0.109%

Table C.9: Experiment 17 - with and without reverberation
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Appendix D

Glossary

ACF Autocorrelation function or just autocorrelation.

ALD Aggregate lag domain. Discussed in Section 7.2.1.

attack The beginning part of a note where the volume increases sharply.

autocorrelation A method in which a signal is convolved with itself. Described in

section 2.3.2.

cepstrum The Fourier transform of the log power spectrum. See Section 2.5.1.

cent 1/100th of a semitone in the even tempered scale. So 1200 cents equals one

octave.

channel A single stream of a sound recording. For example a mono sound recording

contains one channel, stereo two.

CMA Complex moving average filter. Discussed in Section 8.3.

critical band The bandwidth of an auditory filter from which individual frequencies

cannot be resolved.

DFT Discreate Fourier transform. Discussed in Section 2.4.

double stop Two strings played together, on a violin for example.

FFT Fast Fourier transform. An efficient method for calculating a DFT.

FIR filter Finite impulse response filter.
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frame An index which describes a window’s given position, although often refers to

the data in the window at that position. Note that the window’s position is

frame ∗ hopsize.

frequency bin A small range of continuous frequencies which fall largely into the

same Fourier coefficient during a DFT.

fundamental or fundamental frequency, is the lowest frequency in a harmonic series.

It is the inverse of the period.

harmonic A sinusoidal component of a sound that has a frequency which is an integer

multiple of the fundamental frequency.

hop size The number of samples a window is slid to the right between frames, al-

though often expressed in terms of window size.

IIR filter Infinite impulse response filter.

impuse A function that is zero everywhere except for a single non-zero value or spike.

impuse train A function that zero everywhere except for systematic spikes at a reg-

ular interval.

interval A musical interval describes the difference in pitch between two notes.

key A musical key is often used to describe the root, or tonic, note name along with

its scale type. For example, in the key of G-major.

MIDI Musical instrument digital interface - a protocol for transmitting musical ‘event

messages’.

MIDI number A number in the range 0-127, of which is unique for each semitone on

the even tempered scale. Appendix A lists the most common numbers. In this

thesis real values are used to indicate pitches between the common notes, e.g.

69.12 indicates 12 cents sharper than a A4.

NSDF Normalised square difference function. This is equivalent to the SNAC function

described in section 4.1.

octave error An error in pitch detection which is caused from choosing the incorrect

peak in the frequency, lag or cepstrum domain. It does not have to be an octave

from the expected result, it just happens to be common.
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octave estimate An estimate of the pitch for a given frame. This estimate is expected

to be robust in its choice of octave, but is not expected to be accurate in its exact

pitch value.

offset A small region of time in which a note is considered to be ending.

onset A small region of time in which a note is considered to be starting, usually

associated with a rise in amplitude from near zero to an initial peak.

partial Any sinusoidal component of a complex sound, even if it is not a harmonic.

peak A region encompassing a local maximum in a function.

period The smallest repeating unit of a periodic signal, or the length in time of this

unit.

periodic A period which is an integer multiple of the fundamental period.

pitch fundamental The frequency of a sine wave that is perceived to be the same

height as a complex harmonic tone.

pitch period An approximately repeating unit of a signal that is associated with the

perceived pitch of a note. Also used to describe its length in time. This is the

inverse of the pitch fundamental.

pizzicato The technique of plucking a stringed instrument instead of bowing.

quefrency The unit of the cepstrum axis. It is analogous to time.

sample One unit of data from a single channel within a sound.

sample rate The number of samples that occur in a second for a given channel within

a sound. These samples usually occur at a constant rate e.g. 44100 Hz.

SDF Square difference function. Described in section 2.3.3.

SNAC function Specially normalised autocorrelation function, described in Section

4.1.

STFT Short-time Fourier transform, that is the Fourier transform of a signal which

has been windowed to finite length.
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sub-periodic A high peak that appears before the first periodic, which may be mis-

taken as the periodic.

super-periodic A periodic greater than the first periodic, which may be mistaken as

the periodic.

Tartini The name of the software created during this work, as well as the name of the

larger project that has grown out of it.

Tartini-tone An audible tone obtained from the beating of two other tones. Discussed

in Section 2.2.

timbre The quality of a sound that distinguishes it from other sounds with the same

pitch and volume. It is sometimes referred to as tone colour.

tonic The name of the root note in a key, i.e. the tonic of C-major is C.

transient A short segment of sound characterised by non-stationary spectral content,

usually during note transitions or onset. The pitch can often be hard to define

during a transient.

tremolo A cyclic change in amplitude, usually in the range of 5 to 14 Hz.

vibrato A cyclic change in pitch, usually in the range of 5 to 14 Hz.

WALD Warped aggregate lag domain. Discussed in Section 7.2.2.

window A small segment of a larger data set that is currently being viewed or pro-

cessed on.

windowed A window which has been multiplied by a windowing function.

windowing The process of multiplying a window elementwise by a windowing func-

tion.

windowing function A function used to smoothly localise data about a point in time.

Usually with a maximum in the centre, tending towards zero on either side. For

example the Hamming window discussed in Section 2.3.2.

window size The number of data samples within a window.

WSNAC function Windowed SNAC function, described in Section 4.2.
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