
(Not so) recent development in filesystems

Tomáš Hrubý

University of Otago and World45 Ltd.

March 19, 2008

Tomáš Hrubý (World45) Filesystems March 19, 2008 1 / 23



Linux Extended filesystem family

Ext2 - de facto standard

Based on MinixFS and BSD FFS
Linux native FS
Disk split in blocks and block-groups
Block-groups reduce external fragmentation, contain super-block,
free blocks bitmap, inodes and data blocks
All inodes are allocated during Ext2 creation (usually 5% of
volume size)
Direct blocks and 2 levels of indirect blocks (file size limit)

Tomáš Hrubý (World45) Filesystems March 19, 2008 2 / 23



Linux Extended filesystem family

Ext2 contd

Spread inodes of unrelated directories among different
block-groups
Subdirs of root are spread over all groups
Keep subdirectories in the same group as their parent if the group
has space
Files are kept as close as possible to the directory (heuristic)
Large hashed directories (HTrees) to speedup dir ops
Backward compatible

Tomáš Hrubý (World45) Filesystems March 19, 2008 3 / 23



Linux Extended filesystem family

VFS

Extended filesystem introduced VFS interface in Linux

Ext2 tailored (e.g. expects inodes)
Super operations
sync_fs() alloc_inode() put_inode() ...

Directory operations
create() link() unlink() rename() ...

File operations open() close() trunc() ...

vinode, dentry and other objects to make the VFS abstraction
Address space operations (prepare_write, commit_write,
. . . )

Other operations to speed up work with files implemented separately
splice() sendfile() ...

Tomáš Hrubý (World45) Filesystems March 19, 2008 4 / 23



Linux Extended filesystem family

Ext3 - journaled Ext2

Much nicer code that uses page objects instead of deprecated
buffer heads
Ext3 mountable as Ext2 and adding journal to Ext2 is trivial too
3 journaling strategies
No need to check the whole fs after crash

Tomáš Hrubý (World45) Filesystems March 19, 2008 5 / 23



Linux Extended filesystem family

Ext3

Generic journaling layer journaling block device (JBD) keeps journal in
.journal file

Journaling strategies :

Journal - all data and metadata (duplication of data)
Ordered - Only metadata logged, data written always before
metadata
Writeback - fastest, only metadata logged

Tomáš Hrubý (World45) Filesystems March 19, 2008 6 / 23



Linux Extended filesystem family

Ext4 - Ext3 fork

Addresses scalability
Filesystem for large drives (overcoming 16TiB limit of Ext3)
48-bit => JDB2 supports larger then 32-bit values
Metablock groups (clusters of block-groups - present in Ext3) to
disperse block descriptors

Extents
substitute for indirect blocks
break forward compatibility between Ext3 and Ext4
each covers up to 128MiB of contiguous space
minimize fragmentation and truncate times
constant depth tree of extents (like HTree)
good for seq access, bad for random

Tomáš Hrubý (World45) Filesystems March 19, 2008 7 / 23



Linux Extended filesystem family

Ext4 - contd

Metadata checksumming - easier corruption detection
Persistent preallocation for contiguous writes
Delayed allocation postponed till page flush time
Blocks are allocated in batches and none are allocated for
short-lived files
Online defragmentation
It’s still a work in progress and it’s not ready for production systems

Tomáš Hrubý (World45) Filesystems March 19, 2008 8 / 23



XFS

XFS - journaling by SGI

Journal
Circular buffer
Internal log in XFS data section or on a separate device
Log of logical operations performed (only metadata)
Unwritten data-blocks prior crash are zeroed after recovery
Similar to Ext3 writeback mode

Blocks management

Allocation groups similar to Ext2 block-groups, B-tree of inodes
Variable size extents (large writes) managed by 2 B+trees index
by length and first free block
Allow parallel access to data structures
Delayed allocation
Rotorstep - when to move allocation within a file to next AG

Tomáš Hrubý (World45) Filesystems March 19, 2008 9 / 23



Log-structured FS

LFS - Beyond journaling

Originally proposed by Rosenblum and Ousterhout in 1991

In-memory disk cache is huge⇒ most updates in memory
Random writes are slow⇒ large sequential writes
All data are placed sequentially in an infinite log
Disk is not infinite⇒ a garbage collector is required
Segments and partial segments
Variable number of inodes in .ifile in root directory
Everything is journaled, which results in fast crash recovery
Implementing read-only snapshots is trivial
Journal within the log to inform the roll-forward utility about
directory operations

Tomáš Hrubý (World45) Filesystems March 19, 2008 10 / 23



Log-structured FS

Filesystems for NAND flash memories

Another use of Log-structured file systems

NAND page must be written at once, writing to a clean page is
simpler than read-clean-modify-writeback
Writes are damaging pages⇒ wear levelling
JFFS & JFFS2

I To make wear levelling fair, garbage collector can occasionally
move clean blocks as well

I The whole fs must be scanned at mount time
YAFFS & YAFFS2

I Also keeps a tree of blocks in RAM
I Version 2 uses checkpointing to avoid scanning at mount time

LogFS
I A new project that is motivated by rising size of SSDs
I Wasn’t originally designed as log, but . . .

Tomáš Hrubý (World45) Filesystems March 19, 2008 11 / 23



Transactions

XFS transactions

Still not transactions in database-like sense

Transaction per inode and operation
Allocates required space beforehand

I Allocating thread cannot sleep
I Linux does not like allocation of many contiguous MiBs
I In order to flush dirty pages allocation might be required!!!

Makes changes
Writes inode and other info (e.g., superblock) to the log
Commits changes to data area

sync(2) optimization - writes metadata to log, not necessarily to fs

Tomáš Hrubý (World45) Filesystems March 19, 2008 12 / 23



Transactions

NTFS transactions - Vista

Beyond low level transactions (journaling)

Atomic operations on a single file - preventing corrupted files
when application crashes while updating a file
Atomic operations spanning multiple files - if a collection of files
must be updated and consistency is an issue

Tomáš Hrubý (World45) Filesystems March 19, 2008 13 / 23



ZFS

ZFS : the last word in file systems

Developed by SUN in 2004
128-bit (should be enough for some time ;-)
Uses virtual storage pools to span more disks (no volume mgr)
End-to-end checksumming - upper structures contain checksum
of lower structures, checked on every access!
Copy-on-write transactional model (do all changes or nothing)
Mimics LogFSs without need of garbage collector
Simple implementation of snapshots and writable clones
Dynamic striping automatically expands to new devices
Variable blocksizes

Tomáš Hrubý (World45) Filesystems March 19, 2008 14 / 23



ZFS

ZFS : the last word in file systems

Transactions
All file-system level operations on virtual disks
Operations are grouped in transactional objects
All interactions occur through Data Management Unit (DMU)
All transactions through DMU are atomic⇒ data always
consistent
ZFS internally keeps an intentions log (ZIL)
In case of power outage, COW keeps old data till the end of the
update operation

Interface
ZPL - POSIX layer
ZVOL - raw virtual device backed by ZFS

Tomáš Hrubý (World45) Filesystems March 19, 2008 15 / 23



ZFS

BTRFS - ZFS by Oracle

Started in 2007, still in early stage
Looks like reworking ZFS (similar set of features)
Everything is a B+Tree
Groups all items of an object in the same part of the B+Tree
Different indexing of directories for readdir() and other ops
Back references for easy validation and faster corruption recovery
CRFS (consistent NFS) uses Btrfs as on-disk system

Tomáš Hrubý (World45) Filesystems March 19, 2008 16 / 23



FUSE - filesystems in userspace

FUSE - writing FS in userspace

Primarily for virtual file systems
(e.g, GmailFS, WikipediaFS, iTuneFS, . . . )
used by NTFS-G3 driver, considered for ZFS Linux port
Very thin kernel layer relays fs syscalls to the userspace driver
Driver is an executable linked with FUSE library
Access via /dev/fuse file
Multiple mounts with different file descriptors

Tomáš Hrubý (World45) Filesystems March 19, 2008 17 / 23



UnionFS

UnionFS - why?

Union mount of filesystems in Linux
Transparent overlay of files and directories of separate file
systems (branches)
A single coherent file system
Content of directories with the same path is merged
Each branch has a priority (for lookups)
Writes to read-only files are redirected to highest-priority writable
branch
Read-only root on Live-CDs can be changed in tmpfs
Still work in progress, not in mainline kernel

Tomáš Hrubý (World45) Filesystems March 19, 2008 18 / 23



UnionFS

UnionFS - how?

A stackable FS (virtual - does not store data itself)
Unlike BSD, Linux does not have any generic stackable layer
Based on FiST template language (to ease porting, like eCryptFS)
Implements functionality of VFS and acts as VFS in the same time
Problems with coherency if the lower fs is used to change data
Uses a separate partition or loopback device to store persistent
information instead of in the branches (ODF)
ODF is generic for stackable but used only by UnionFS, more or
less like JBD is used only by Ext3
As a result this allows stacking of UnionFS on top of itself

Tomáš Hrubý (World45) Filesystems March 19, 2008 19 / 23



FS repair

What if FS gets corrupted?

Problems
We have fsck (or similar) ... which takes ages
reported xfs_repair runtime of up to 8 days!
Size of disks is growing mush faster than their speed
Some FSs can heal themselves in run time (from mirrors)
Repair utility may need to read all FS objects

What next?
1 Repair must get smarter
2 File systems must be redesigned for easier repair

Tomáš Hrubý (World45) Filesystems March 19, 2008 20 / 23



FS repair

XFS troubles

Problems
IRIX with many slow CPUs with good I/O throughput
Allocation groups can be processed in parallel
Smart prefetching of objects and data blocks associated with
processed inodes (fast until OOM happens)
Both makes it even slower on Linux! (2-3x faster CPU bad I/O)
Exploiting metadata patterns - contiguous, lots of single blocks
Bad I/O patterns - backward seeks, long seeks

Solution
1 Prefetch threads use bandwidth instead of seeks, large I/O, throw

away non-metadata
2 Unified cache for all phases⇒ no purge

Tomáš Hrubý (World45) Filesystems March 19, 2008 21 / 23



FS repair

ChunkFS : repair driven FS design

Problem
xfs_repair and e2fsck improvement erased in 1-2 years

Solution
1 Incremental check, checksums, redundancy, metadata isolation
2 Divide FS into metadata isolation groups (chunks)
3 Continuation inodes when files outgrow chunks (dirs are files!)
4 Smart and sparse allocation limits the number of continuation

inodes
5 Fixing only broken chunks and following backward links to update

other chunks

Research still in progress, proof-of-concept based on Ext2 exists!

Tomáš Hrubý (World45) Filesystems March 19, 2008 22 / 23



Thank you for your attention

Questions ...

Tomáš Hrubý (World45) Filesystems March 19, 2008 23 / 23


	Linux Extended filesystem family
	XFS
	Log-structured FS
	Transactions
	ZFS
	FUSE - filesystems in userspace
	UnionFS
	FS repair
	

