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Definition

If we construe permutations as sequences, then the
involvement order on permutations is defined by:

α � β iff

{
β contains a subsequence
whose terms are in the same
relative order as those of α

}

A permutation class, C is a down-closed set for �. Its basis X
consists of the �-minimal permutations not in C, and then:

C = Av(X )
def
= {β : ∀α ∈ X α 6� β}.



Av(21)

Av(21) = {1,12,123, . . .}
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Av(21)

Av(21) = {1,12,123, . . .}



Av(321, 2143, 3142)

Av(321,2143,3142) = {αβ : both α and β are increasing}



Av(312)

Av(312) = {α 1β : α < β both avoiding 312}



Av(312, 231)

Av(312,231) = {α1α2 · · ·αk : αi decreasing layers}



Prehistory I

Theorem (Erdős-Szekeres)
Every permutation of length larger than (n − 1)(k − 1) contains
either the pattern 123 . . . n or the pattern k(k − 1) . . . 321.

In particular, a permutation class is finite if and only if its basis
contains both an increasing and a decreasing permutation.
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Prehistory II

Theorem (Knuth)
The permutations that can be generated by a single stack
operating on the input sequence 1, 2, . . . , n are precisely the
ones that avoid the pattern 312. There is a one to one
correspondence between such permutations and allowable
operation sequences of the stack.

In particular, there is a one to one correspondence between
permutations of length n avoiding 312 and Dyck paths of length
2n. The class is thus enumerated by the Catalan numbers.

The structural decomposition of these permutations illustrated
earlier also translates naturally into an equation for their
generating function C:

C = 1 + CtC.
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Observations

I Av(321) has the same enumeration sequence as Av(312).
I By symmetries, all Av(π) with |π| = 3 have the same

enumeration
I In principal classes with a single basis element of length

four, other such enumerative coincidences exist. Up to
symmetry there should be seven such classes, in fact there
are only three.

I All these classes have an exponential bound to their size.



Stanley-Wilf Conjecture

Every proper subclass of the class of all permutations has size
O(cn) for some constant c > 0 (c can depend on the class of
course!)

I Initially felt that, for principal classes Av(π) with |π| = k ,
c = (k − 1)2 was always the best possible. This was
refuted by Miklós Bóna who enumerated Av(1342) (JCT
(A), 80, 1997)

I Proven in 2004 by Marcus and Tardos (JCT (A), 107, 2004)
I For principal classes with a basis element of length k , they

proved that

c ≤ 152k4(k2

k )

I Arratia had conjectured c ≤ (k − 1)2, the actual value for
the class Av(123 · · · k), but this was refuted for π = 4231
by MA et al.
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What now?

For every proper class C we may define the (upper) growth rate:

gr(C) = lim sup
n→∞

|C ∩ Sn|1/n.

Après Marcus-Tardos, we know that 0 ≤ gr(C) <∞.

I What values can occur?
I Is the limit superior always a limit?
I How do the growth rates of subclasses of C compare with

the growth rate of C itself?
I Can we compute or estimate the growth rates of

“interesting” classes?
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gr(C) ≤ 2

These were classified by Kaiser and Klazar (EJC 9, 2003):

Theorem
If gr(C) < 2 then:

I C contains no “infinite alternation”
I gr(C) satisfies a polynomial:

1− x − x2 − · · · − xk = 0

for some k ≥ 1.
I More specifically Fn,k ≤ |C ∩ Sn| ≤ Fn,knc .
I All such classes have rational generating functions.



The Fibonacci Dichotomy

We will illustrate the structural dichotomy that splits the classes
of polynomial growth (growth rate 1) from those of properly
exponential growth. Throughout, we are considering a class C.
The permutation π is called an up-down permutation if:

π(1) < π(2) > π(3) < π(4) > π(5) < · · ·

Observation
If C contains only finitely many up-down permutations, then it is
contained in a W-class.



What’s a W -class?

Here there are a fixed number of segments.



Fibonacci Dichotomy (cont’d)

Conversely, if C contains infinitely many up-down permutations,
then the tree of up-down permutations belonging to C (where
the children of a node are its one point extensions), contains an
infinite branch.

This gives rise to a one to one map γ : N −→ R with

γ(1) < γ(2) > γ(3) < γ(4) > γ(5) < . . .

such that C contains every subpermutation of γ.



Enter Ramsey

Consider pairs (γ(2k), γ(2k + 1)) and the four element patterns
formed by two such pairs. As there are only finitely many
possibilities for these patterns, there exists an infinite set of
such pairs all creating the same pattern. This implies that C
would contain one of the classes:

The first four of these have growth rate 2, while the last is
enumerated by the Fibonacci numbers.



Back to Work

So now, C either has at least Fibonacci growth, or is contained
in a W -class.

If a segment in a W class is “cut” arbitrarily often, then a
pigeonhole argument shows that C contains one of the
subclasses:

all of growth rate 2. What if there is a bound on the number of
times each segment is cut?
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The end of the story

Since this applies to each segment, C is contained in a class
obtained from a permutation matrix, replacing each non-zero
element by an increasing or decreasing segment.

As the segments do not interact, these classes have polynomial
growth.



Moving above 2

Theorem
Let κ ∼ 2.20557 be the unique positive root of

1 + 2x2 − x3 = 0.

There are only countably many classes of growth rate less than
κ (and these growth rates can be explicitly described as the
roots of certain polynomials), and there are uncountably many
permutation classes of growth rate κ.

The proof, shows that such small classes have “good
structure”, while, at κ infinite antichains appear.

V. Vatter, Small Permutation Classes, arXiv:0712.4006v2



Here there be dragons

Theorem
(MA, Steve Linton) There is a perfect set of growth rates in the
interval [2.47,3].

To provide a quick overview of the arguments leading to this
result, just a few more definitions are requred.



Sum of permutations

I The sum α⊕ β of permutations α and β is obtained by
stacking the graph of β above and to the right of that of α.

231⊕ 4132 = 231 7465.

I A permutation is plus indecomposable if it cannot be
written as a sum of shorter permutations.

I A class C is plus closed if

α, β ∈ C implies α⊕ β ∈ C.



Plus closed classes

If a class C is plus closed, let its generating function be C(t)
and the generating function of its plus indecomposables be
C+(t). Then of course:

C(t) =
1

1− C+(t)

If, for some s inside the radius of convergence of C+(t),
C+(s) = 1, then s will be the radius of convergence of C(t)
(and hence the reciprocal of its growth rate.)

The plan is to construct a variety of plus closed classes
satisfying this condition including ones whose plus
indecomposables are the same up to some (arbitrary) length n.



First catch your antichain



Remaining highlights

I Consider classes whose bases are subsets of this
antichain, plus a few extra elements for structural
convenience.

I Argue that all such classes are plus closed and satisfy the
condition mentioned previously.

I Argue that, for all ε > 0 there exists n such that if the bases
agree through length n, then the corresponding radii of
convergence are within ε.

I Compute actual growth rates of the smallest and largest
classes in this group to give the range in which the perfect
set lies.



Late breaking news

I Vince Vatter (personal communication, 20/6/2008) has
reported an interval of growth rates from 2.51002 to
2.51534.

I It appears to be correct, and uses sharpenings of the
previous ideas (allowing one to control the plus
indecomposables in the classes directly rather than via a
basis.)

I (24/6/2008) This has almost certainly been extended to
show that all growth rates above 2.6 exist.



Classes and Subclasses

Now consider the relationship between the growth rate of a
class and those of its subclasses. First some definitions:

I A class, C, is growth rate critical if, for every proper
subclass D of C, gr(D) < gr(C).

I A class, C, is rough if

sup{gr(D) : D a proper subclass of C} < gr(C).

I A class, C is smooth if it is growth rate critical, but not
rough.
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Av(321, 2143, 3142) is rough

Av(321,2143,3142) = {αβ : both α and β are increasing}



Av(321, 2143, 3142) is rough

In a subclass, there can be only a bounded number
of segments on each side, hence polynomial growth.



Av(312, 231) is smooth

Av(312,231) = {α1α2 · · ·αk : αi decreasing layers}



Av(312, 231) is smooth

We could take a subclass in which each layer contains at
most t elements. As t →∞ their growth rates converge to 2.



Av(312) is also smooth

But for a more interesting reason . . .

I The generating function of Av(312) has radius of
convergence 1/4 and converges to a finite limit as
t → 1/4−.

I The generating function of any proper subclass of Av(312)
is rational.

I Therefore, it cannot have radius of convergence 1/4 as the
limiting behaviour at 1/4 is wrong.

I And, it is easy to build subclasses whose growth rates
converge to 4.
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Commercial announcement

For all your class counting needs, please visit:

http://www.cs.otago.ac.nz/staffpriv/mike/
HomePages/classcounter/ClassCounterApplet.html

Shorter URL (and google-ability) coming soon . . .

For instance Av(4231,35142,42513,351624):

1 2 6 23 101 477
2343 11762 59786 306132 1574536 8120782
41957030 217021682 . . .

http://www.cs.otago.ac.nz/staffpriv/mike/HomePages/classcounter/ClassCounterApplet.html
http://www.cs.otago.ac.nz/staffpriv/mike/HomePages/classcounter/ClassCounterApplet.html


Av(4231, 35142, 42513, 351624)

I Enough terms to conjecture (thanks to M. Rubey) that the
generating function f satisfies:

(4t4−5t3 +6t2− t)f 2 +(8t3−2t2−5t +1)f +4t2 +4t−1 = 0

I This yields f ∈ Q(
√

1− 4t).
I “Semi-automatic” methods (generating trees/insertion

encoding) make the confirmation of this a (moderate)
exercise.



Av(4231)

I The last principal class with a four element basis element
whose growth rate/generating function is unknown.

I Known to have growth rate at least 9.47 (MA, M. Elder, A.
Rechnitzer, P. Westcott, M. Zabrocki, Adv. in Appl. Math.,
36, 2006).

I Obtained by approximating the class with certain others
that are recognized by finite state machines.



Terra incognita

I What is the growth rate of Av(4231)?
I Does every permutation class have a true growth rate?
I Is every sufficiently large number the growth rate of a

permutation class?
I What are the boundaries between structure and chaos in

permutation classes?


