
The Structure of (some!) Permutation
Classes

Michael Albert
Department of Computer Science

University of Otago
Dunedin, New Zealand
malbert@cs.otago.ac.nz

Paris, 12/11/08

mailto:malbert@cs.otago.ac.nz


Permutation and Subpermutation



Permutation and Subpermutation

42735 6 8 1 9



Permutation and Subpermutation

27 6 8 1 9 435



Permutation and Subpermutation

1 423



Permutation and Subpermutation

1324 � 537268194

1 423



Definition

If we construe permutations as sequences, then the
involvement order on permutations is defined by:

α � β iff

{
β contains a subsequence
whose terms are in the same
relative order as those of α

}

A permutation class, C is a down-closed set for �. Its basis X
consists of the �-minimal permutations not in C, and then:

C = Av(X )
def
= {β : ∀α ∈ X α 6� β}.



The Questions

I Where do permutation classes come from?

I How can we describe them? (other than by giving a basis.)
I How many permutations of length n does the class Av(X )

contain?
I What algorithms can we apply to recognize elements in

such a class? To construct them? To find maximal
subpermutations of arbitrary ones that belong to a given
class?

I . . .



The Questions

I Where do permutation classes come from?
I How can we describe them? (other than by giving a basis.)

I How many permutations of length n does the class Av(X )
contain?

I What algorithms can we apply to recognize elements in
such a class? To construct them? To find maximal
subpermutations of arbitrary ones that belong to a given
class?

I . . .



The Questions

I Where do permutation classes come from?
I How can we describe them? (other than by giving a basis.)
I How many permutations of length n does the class Av(X )

contain?

I What algorithms can we apply to recognize elements in
such a class? To construct them? To find maximal
subpermutations of arbitrary ones that belong to a given
class?

I . . .



The Questions

I Where do permutation classes come from?
I How can we describe them? (other than by giving a basis.)
I How many permutations of length n does the class Av(X )

contain?
I What algorithms can we apply to recognize elements in

such a class? To construct them? To find maximal
subpermutations of arbitrary ones that belong to a given
class?

I . . .



The Questions

I Where do permutation classes come from?
I How can we describe them? (other than by giving a basis.)
I How many permutations of length n does the class Av(X )

contain?
I What algorithms can we apply to recognize elements in

such a class? To construct them? To find maximal
subpermutations of arbitrary ones that belong to a given
class?

I . . .



The Answers

I Far too few!

I I will concentrate on trying to understand some sufficient
conditions for when a class C has sufficiently nice structure
to answer some or all of the questions above.

I The idea is, where possible, to look for general results
rather than specific ad hoc examples.

I But, we are not unhappy with solving specific examples if
they are interesting!



The Answers

I Far too few!
I I will concentrate on trying to understand some sufficient

conditions for when a class C has sufficiently nice structure
to answer some or all of the questions above.

I The idea is, where possible, to look for general results
rather than specific ad hoc examples.

I But, we are not unhappy with solving specific examples if
they are interesting!



The Answers

I Far too few!
I I will concentrate on trying to understand some sufficient

conditions for when a class C has sufficiently nice structure
to answer some or all of the questions above.

I The idea is, where possible, to look for general results
rather than specific ad hoc examples.

I But, we are not unhappy with solving specific examples if
they are interesting!



The Answers

I Far too few!
I I will concentrate on trying to understand some sufficient

conditions for when a class C has sufficiently nice structure
to answer some or all of the questions above.

I The idea is, where possible, to look for general results
rather than specific ad hoc examples.

I But, we are not unhappy with solving specific examples if
they are interesting!



So What is Structure?

I I was hoping you wouldn’t ask!

I We know it when we see it – but typically identified with
some clear understanding of what it means for a
permutation to belong to a class C, which goes beyond
saying “none of the patterns in X occur.”

I Take inspiration from algebra, graph theory, model theory –
search for constructions, building blocks, and relationships.

I It is probably not the case that there is a single correct
notion of “structure” for permutation classes.

I Time for some examples!



So What is Structure?

I I was hoping you wouldn’t ask!
I We know it when we see it – but typically identified with

some clear understanding of what it means for a
permutation to belong to a class C, which goes beyond
saying “none of the patterns in X occur.”

I Take inspiration from algebra, graph theory, model theory –
search for constructions, building blocks, and relationships.

I It is probably not the case that there is a single correct
notion of “structure” for permutation classes.

I Time for some examples!



So What is Structure?

I I was hoping you wouldn’t ask!
I We know it when we see it – but typically identified with

some clear understanding of what it means for a
permutation to belong to a class C, which goes beyond
saying “none of the patterns in X occur.”

I Take inspiration from algebra, graph theory, model theory –
search for constructions, building blocks, and relationships.

I It is probably not the case that there is a single correct
notion of “structure” for permutation classes.

I Time for some examples!



So What is Structure?

I I was hoping you wouldn’t ask!
I We know it when we see it – but typically identified with

some clear understanding of what it means for a
permutation to belong to a class C, which goes beyond
saying “none of the patterns in X occur.”

I Take inspiration from algebra, graph theory, model theory –
search for constructions, building blocks, and relationships.

I It is probably not the case that there is a single correct
notion of “structure” for permutation classes.

I Time for some examples!



So What is Structure?

I I was hoping you wouldn’t ask!
I We know it when we see it – but typically identified with

some clear understanding of what it means for a
permutation to belong to a class C, which goes beyond
saying “none of the patterns in X occur.”

I Take inspiration from algebra, graph theory, model theory –
search for constructions, building blocks, and relationships.

I It is probably not the case that there is a single correct
notion of “structure” for permutation classes.

I Time for some examples!



Av(312)

Av(312) = {α 1β : α < β both avoiding 312}



But also Av(312) is . . .

I The set of permutations that can be produced from the
input 123 · · · n by a single pass through a stack (last in -
first out.)

I In obvious one to one correspondence with Dyck words.
I Or with plane binary trees with n nodes.
I Enumerated by the Catalan numbers.



But also Av(312) is . . .

I The set of permutations that can be produced from the
input 123 · · · n by a single pass through a stack (last in -
first out.)

I In obvious one to one correspondence with Dyck words.

I Or with plane binary trees with n nodes.
I Enumerated by the Catalan numbers.



But also Av(312) is . . .

I The set of permutations that can be produced from the
input 123 · · · n by a single pass through a stack (last in -
first out.)

I In obvious one to one correspondence with Dyck words.
I Or with plane binary trees with n nodes.

I Enumerated by the Catalan numbers.



But also Av(312) is . . .

I The set of permutations that can be produced from the
input 123 · · · n by a single pass through a stack (last in -
first out.)

I In obvious one to one correspondence with Dyck words.
I Or with plane binary trees with n nodes.
I Enumerated by the Catalan numbers.



Av(321)

Av(321) = {π : π a union of two monotone sequences}



But also Av(321) is . . .

I The set of permutations that can be produced from the
input 123 · · · n by a single pass through a pair of queues in
parallel, or a single queue plus a shortcut.

I Enumerated by the Catalan numbers.



But also Av(321) is . . .

I The set of permutations that can be produced from the
input 123 · · · n by a single pass through a pair of queues in
parallel, or a single queue plus a shortcut.

I Enumerated by the Catalan numbers.



Av(4123, 4132, 4213, 4231, 4312, 4321)

π ∈ Av(4•••) if each symbol of π is among
the three smallest of its suffix.



Av(4123, 4132, 4213, 4231, 4312, 4321)

π ∈ Av(4•••) if each symbol of π is among
the three smallest of its suffix.



But also Av(4 • ••) is . . .

I The set of permutations that can be produced from the
input 123 · · · n by a buffer capable of holding no more than
three items at a time.

I Enumerated by 3n−2 × 2× 1.
I Easily encoded over a three symbol alphabet.



But also Av(4 • ••) is . . .

I The set of permutations that can be produced from the
input 123 · · · n by a buffer capable of holding no more than
three items at a time.

I Enumerated by 3n−2 × 2× 1.

I Easily encoded over a three symbol alphabet.



But also Av(4 • ••) is . . .

I The set of permutations that can be produced from the
input 123 · · · n by a buffer capable of holding no more than
three items at a time.

I Enumerated by 3n−2 × 2× 1.
I Easily encoded over a three symbol alphabet.



C is Finite

If, and only if, for some n and k :

123 · · · n /∈ C
k(k − 1) · · · 321 /∈ C.

(or, more briefly, for some n, neither 123 · · · n nor n · · · 321 is in
C.)

(Erdős-Szekeres).



Structure So Far

I Recursive structure – permutations in the class
constructed from smaller permutations in the class
(Av(312) – generalization to come.)

I Building from simpler classes (Av(321) consists of all
merges of two increasing sequences.)

I Permutations produced by “machines” (or data structures).
So long as removing items always makes it easier to work
the machine, these will always give classes. If operation
sequences are uniquely (or nearly so) determined by their
output that’s great. If not . . . (perhaps later!)

I Correspondences with languages over finite alphabets (via
some sort of encoding.)

I Conditions on the basis to give structure.



Structure So Far

I Recursive structure – permutations in the class
constructed from smaller permutations in the class
(Av(312) – generalization to come.)

I Building from simpler classes (Av(321) consists of all
merges of two increasing sequences.)

I Permutations produced by “machines” (or data structures).
So long as removing items always makes it easier to work
the machine, these will always give classes. If operation
sequences are uniquely (or nearly so) determined by their
output that’s great. If not . . . (perhaps later!)

I Correspondences with languages over finite alphabets (via
some sort of encoding.)

I Conditions on the basis to give structure.



Structure So Far

I Recursive structure – permutations in the class
constructed from smaller permutations in the class
(Av(312) – generalization to come.)

I Building from simpler classes (Av(321) consists of all
merges of two increasing sequences.)

I Permutations produced by “machines” (or data structures).
So long as removing items always makes it easier to work
the machine, these will always give classes. If operation
sequences are uniquely (or nearly so) determined by their
output that’s great. If not . . . (perhaps later!)

I Correspondences with languages over finite alphabets (via
some sort of encoding.)

I Conditions on the basis to give structure.



Structure So Far

I Recursive structure – permutations in the class
constructed from smaller permutations in the class
(Av(312) – generalization to come.)

I Building from simpler classes (Av(321) consists of all
merges of two increasing sequences.)

I Permutations produced by “machines” (or data structures).
So long as removing items always makes it easier to work
the machine, these will always give classes. If operation
sequences are uniquely (or nearly so) determined by their
output that’s great. If not . . . (perhaps later!)

I Correspondences with languages over finite alphabets (via
some sort of encoding.)

I Conditions on the basis to give structure.



Structure So Far

I Recursive structure – permutations in the class
constructed from smaller permutations in the class
(Av(312) – generalization to come.)

I Building from simpler classes (Av(321) consists of all
merges of two increasing sequences.)

I Permutations produced by “machines” (or data structures).
So long as removing items always makes it easier to work
the machine, these will always give classes. If operation
sequences are uniquely (or nearly so) determined by their
output that’s great. If not . . . (perhaps later!)

I Correspondences with languages over finite alphabets (via
some sort of encoding.)

I Conditions on the basis to give structure.



Block Decomposition



Block Decomposition

463592178 = 2413[2413,1,21,12]



Simple Permutations

I A permutation (of length n > 1) is simple if there is no
non-trivial proper interval whose image is also an interval.

I The first few: 12,21,2413,3142,24153, . . .
I Every permutation is the inflation of a unique simple

permutation, called its skeleton. This is called its block
decomposition. The blocks are also uniquely determined if
the skeleton is not 12 or 21. In that case we can enforce
uniqueness by requiring that the first block not be so
decomposable (so 21354 = 12[21,132].)



Simple Permutations

I A permutation (of length n > 1) is simple if there is no
non-trivial proper interval whose image is also an interval.

I The first few: 12,21,2413,3142,24153, . . .

I Every permutation is the inflation of a unique simple
permutation, called its skeleton. This is called its block
decomposition. The blocks are also uniquely determined if
the skeleton is not 12 or 21. In that case we can enforce
uniqueness by requiring that the first block not be so
decomposable (so 21354 = 12[21,132].)



Simple Permutations

I A permutation (of length n > 1) is simple if there is no
non-trivial proper interval whose image is also an interval.

I The first few: 12,21,2413,3142,24153, . . .
I Every permutation is the inflation of a unique simple

permutation, called its skeleton. This is called its block
decomposition. The blocks are also uniquely determined if
the skeleton is not 12 or 21. In that case we can enforce
uniqueness by requiring that the first block not be so
decomposable (so 21354 = 12[21,132].)



Random Question

The total number of simple permutations of length n is
asymptotically n!/e2, i.e. a positive proportion of all
permutations are simple. But, it appears that in any infinite
class C, the simple elements of C have density 0.

Is that true? If so, why?



Wreath Closed Classes

I A class, C, is wreath closed if, whenever σ (of length k ) and
π1, π2, . . . , πk (of arbitrary lengths) are in C, then so is
σ[π1, π2, . . . , πk ].

I Equivalently, every basis element of C is simple.
I Equivalently, C is the closure of a downward closed set of

simple permutations under inflation.



Wreath Closed Classes

I A class, C, is wreath closed if, whenever σ (of length k ) and
π1, π2, . . . , πk (of arbitrary lengths) are in C, then so is
σ[π1, π2, . . . , πk ].

I Equivalently, every basis element of C is simple.

I Equivalently, C is the closure of a downward closed set of
simple permutations under inflation.



Wreath Closed Classes

I A class, C, is wreath closed if, whenever σ (of length k ) and
π1, π2, . . . , πk (of arbitrary lengths) are in C, then so is
σ[π1, π2, . . . , πk ].

I Equivalently, every basis element of C is simple.
I Equivalently, C is the closure of a downward closed set of

simple permutations under inflation.



Finitely Many Simples

If C is a class with finitely many simple permutations then:

I C has a finite basis,
I C has an algebraic generating function
I and much much more (Brignall, Huczynska, Vatter)



Finitely Many Simples

If C is a class with finitely many simple permutations then:
I C has a finite basis,

I C has an algebraic generating function
I and much much more (Brignall, Huczynska, Vatter)



Finitely Many Simples

If C is a class with finitely many simple permutations then:
I C has a finite basis,
I C has an algebraic generating function

I and much much more (Brignall, Huczynska, Vatter)



Finitely Many Simples

If C is a class with finitely many simple permutations then:
I C has a finite basis,
I C has an algebraic generating function
I and much much more (Brignall, Huczynska, Vatter)



Furthermore

There is an effective procedure, given a finite basis X to
determine whether or not Av(X ) contains only finitely many
simple permutations (Brignall, Ruškuc, Vatter).

This is based on the existence of certain unavoidable structures
in large simple permutations, not unlike the Erdős-Szekeres
characterization of finite classes.

Are classes with finitely many simples then “finis”?



Separable Permutations

I S = Av(2413,3142) is the wreath closure of 12 and 21. It
is called the class of separable permutations, and is
enumerated by the large Schroeder numbers.

I The degree over Q(t) of the generating function of any
subclass of S is a power of 2.

I If π1 = 132, and

πn+1 =

{
12[1, πn] n even,
21[1, πn] n odd.

(so: 132, 4132, 15243, 615243, . . . ) then the degree of the
generating function of Av(2413,3142, πn) over Q(t) is
precisely 2n.



Separable Permutations

I S = Av(2413,3142) is the wreath closure of 12 and 21. It
is called the class of separable permutations, and is
enumerated by the large Schroeder numbers.

I The degree over Q(t) of the generating function of any
subclass of S is a power of 2.

I If π1 = 132, and

πn+1 =

{
12[1, πn] n even,
21[1, πn] n odd.

(so: 132, 4132, 15243, 615243, . . . ) then the degree of the
generating function of Av(2413,3142, πn) over Q(t) is
precisely 2n.



Separable Permutations

I S = Av(2413,3142) is the wreath closure of 12 and 21. It
is called the class of separable permutations, and is
enumerated by the large Schroeder numbers.

I The degree over Q(t) of the generating function of any
subclass of S is a power of 2.

I If π1 = 132, and

πn+1 =

{
12[1, πn] n even,
21[1, πn] n odd.

(so: 132, 4132, 15243, 615243, . . . ) then the degree of the
generating function of Av(2413,3142, πn) over Q(t) is
precisely 2n.



But . . .

I Can we characterize exactly the subclasses of S which
have rational generating functions? (I think we’re close . . . )

I What is the recipe that takes an input X and gives us the
degree of the generating function of Av(X )?

I What sorts of restrictions are there on these generating
functions?

I What can be said about the set of growth rates of
separable classes?



But . . .

I Can we characterize exactly the subclasses of S which
have rational generating functions? (I think we’re close . . . )

I What is the recipe that takes an input X and gives us the
degree of the generating function of Av(X )?

I What sorts of restrictions are there on these generating
functions?

I What can be said about the set of growth rates of
separable classes?



But . . .

I Can we characterize exactly the subclasses of S which
have rational generating functions? (I think we’re close . . . )

I What is the recipe that takes an input X and gives us the
degree of the generating function of Av(X )?

I What sorts of restrictions are there on these generating
functions?

I What can be said about the set of growth rates of
separable classes?



But . . .

I Can we characterize exactly the subclasses of S which
have rational generating functions? (I think we’re close . . . )

I What is the recipe that takes an input X and gives us the
degree of the generating function of Av(X )?

I What sorts of restrictions are there on these generating
functions?

I What can be said about the set of growth rates of
separable classes?



Encodings

I Another place to search for structure is to look for
encodings of classes over finite alphabets.

I The k-rank bounded permutations Bk = Av((k + 1) • · · · •)
are an obvious example.

I Alternatively, we can use “histoires de Laguerre” (X.
Viennot), restricted in various ways.

I Other examples include the W -classes (where the number
of monotone runs is bounded.)



Encodings

I Another place to search for structure is to look for
encodings of classes over finite alphabets.

I The k-rank bounded permutations Bk = Av((k + 1) • · · · •)
are an obvious example.

I Alternatively, we can use “histoires de Laguerre” (X.
Viennot), restricted in various ways.

I Other examples include the W -classes (where the number
of monotone runs is bounded.)



Encodings

I Another place to search for structure is to look for
encodings of classes over finite alphabets.

I The k-rank bounded permutations Bk = Av((k + 1) • · · · •)
are an obvious example.

I Alternatively, we can use “histoires de Laguerre” (X.
Viennot), restricted in various ways.

I Other examples include the W -classes (where the number
of monotone runs is bounded.)



Encodings

I Another place to search for structure is to look for
encodings of classes over finite alphabets.

I The k-rank bounded permutations Bk = Av((k + 1) • · · · •)
are an obvious example.

I Alternatively, we can use “histoires de Laguerre” (X.
Viennot), restricted in various ways.

I Other examples include the W -classes (where the number
of monotone runs is bounded.)



A Metatheorem

Suppose that an encoding of a class C over a finite alphabet Σ
is such that the relation:

σ � π

(for σ, π ∈ C) is accepted by a finite state transducer.

Then a subclass of C is a regular set in Σ∗ if and only if its basis
(relative to C) is regular.

In particular, . . .



Rank Bounded Classes

I The required transducer commits in advance to which of
the k smallest remaining symbols must be deleted.

I Think of its states as encoded by bit strings b1b2 . . . bk with
bj = 1 meaning “I promise to delete the j-th smallest
remaining symbol.”

I To process an input symbol, check first if it is to be deleted.
If so, output nothing; if not, output its value minus the
number of smaller items to be deleted. Then, in either
case, eliminate its bit from the string, and add a new final
bit of your choice.

I Do some minor tinkering to handle end cases.



But . . .

I This does not mean that all rank-bounded classes have
good structure.

I Already, B3 contains an infinite antichain, and therefore has
2ℵ0 subclasses not all of which can have good structure.

I But, every finitely based subclass of B3 has a rational
generating function.

I (A new question?) Is there a subclass of B3 with an
algebraic, but not rational, generating function?



But . . .

I This does not mean that all rank-bounded classes have
good structure.

I Already, B3 contains an infinite antichain, and therefore has
2ℵ0 subclasses not all of which can have good structure.

I But, every finitely based subclass of B3 has a rational
generating function.

I (A new question?) Is there a subclass of B3 with an
algebraic, but not rational, generating function?



But . . .

I This does not mean that all rank-bounded classes have
good structure.

I Already, B3 contains an infinite antichain, and therefore has
2ℵ0 subclasses not all of which can have good structure.

I But, every finitely based subclass of B3 has a rational
generating function.

I (A new question?) Is there a subclass of B3 with an
algebraic, but not rational, generating function?



But . . .

I This does not mean that all rank-bounded classes have
good structure.

I Already, B3 contains an infinite antichain, and therefore has
2ℵ0 subclasses not all of which can have good structure.

I But, every finitely based subclass of B3 has a rational
generating function.

I (A new question?) Is there a subclass of B3 with an
algebraic, but not rational, generating function?



Other sorts of structure

I A class, C, is atomic (a.k.a. “has the joint embedding
property”) if, for all α, β ∈ C, there exists π ∈ C with
α, β � π.

I Equivalently, there are two linear orders D and R and a
bijection π : D → R such that C is the class of all patterns
occurring in π. Call such a π a representation of C.

I We can ask: what extra properties can be demanded of a
representation? For example, every class C has a
representation with the property that any atomic subclass
of C occurs as a “subrepresentation”. This is a simple
application of the compactness theorem – but in case C
has uncountably many such subclasses, can we always
find a countable representation of this type?

I This is the model theoretic approach and is very much in
its infancy.



Other sorts of structure

I A class, C, is atomic (a.k.a. “has the joint embedding
property”) if, for all α, β ∈ C, there exists π ∈ C with
α, β � π.

I Equivalently, there are two linear orders D and R and a
bijection π : D → R such that C is the class of all patterns
occurring in π. Call such a π a representation of C.

I We can ask: what extra properties can be demanded of a
representation? For example, every class C has a
representation with the property that any atomic subclass
of C occurs as a “subrepresentation”. This is a simple
application of the compactness theorem – but in case C
has uncountably many such subclasses, can we always
find a countable representation of this type?

I This is the model theoretic approach and is very much in
its infancy.



Other sorts of structure

I A class, C, is atomic (a.k.a. “has the joint embedding
property”) if, for all α, β ∈ C, there exists π ∈ C with
α, β � π.

I Equivalently, there are two linear orders D and R and a
bijection π : D → R such that C is the class of all patterns
occurring in π. Call such a π a representation of C.

I We can ask: what extra properties can be demanded of a
representation? For example, every class C has a
representation with the property that any atomic subclass
of C occurs as a “subrepresentation”. This is a simple
application of the compactness theorem – but in case C
has uncountably many such subclasses, can we always
find a countable representation of this type?

I This is the model theoretic approach and is very much in
its infancy.



Other sorts of structure

I A class, C, is atomic (a.k.a. “has the joint embedding
property”) if, for all α, β ∈ C, there exists π ∈ C with
α, β � π.

I Equivalently, there are two linear orders D and R and a
bijection π : D → R such that C is the class of all patterns
occurring in π. Call such a π a representation of C.

I We can ask: what extra properties can be demanded of a
representation? For example, every class C has a
representation with the property that any atomic subclass
of C occurs as a “subrepresentation”. This is a simple
application of the compactness theorem – but in case C
has uncountably many such subclasses, can we always
find a countable representation of this type?

I This is the model theoretic approach and is very much in
its infancy.



Are Av(312) and Av(321) different?

Well . . .

Yes!

I The first is a subclass of S and hence contains no infinite
antichains, while the second does.

I Every proper subclass of the first has a rational generating
function.

I Not much (really, next to nothing) is known about the
behaviour of even finitely based subclasses of the second.



Are Av(312) and Av(321) different?

Well . . .

Yes!

I The first is a subclass of S and hence contains no infinite
antichains, while the second does.

I Every proper subclass of the first has a rational generating
function.

I Not much (really, next to nothing) is known about the
behaviour of even finitely based subclasses of the second.



Are Av(312) and Av(321) different?

Well . . .

Yes!

I The first is a subclass of S and hence contains no infinite
antichains, while the second does.

I Every proper subclass of the first has a rational generating
function.

I Not much (really, next to nothing) is known about the
behaviour of even finitely based subclasses of the second.



Are Av(312) and Av(321) different?

Well . . .

Yes!

I The first is a subclass of S and hence contains no infinite
antichains, while the second does.

I Every proper subclass of the first has a rational generating
function.

I Not much (really, next to nothing) is known about the
behaviour of even finitely based subclasses of the second.



Are Av(312) and Av(321) different?

Well . . .

Yes!

I The first is a subclass of S and hence contains no infinite
antichains, while the second does.

I Every proper subclass of the first has a rational generating
function.

I Not much (really, next to nothing) is known about the
behaviour of even finitely based subclasses of the second.



The Frontier

Is wide open:

I What about Av(4231)?
I What about “simple” machines (two stacks in series, for

example.)
I What about detailed understanding of S? (prediction of

degree of algebraicity without computation;
characterization of growth rates, . . . )

I How well can we “approximate” arbitrary classes with ones
having structure?


