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o 132 £, 5247316 "5247316 avoids 132"

o < is a partial order on permutations.

e Cav(I) is the set of permutations that avoid every
permutation of I1.

@ All generating functions are exponential generating functions.
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o <. is a partial order on permutations.

e Cav(I) is the set of permutations that avoid every
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Example: the up-down and down-up permutations

e Cav(123,321)

@ Permutation shapes: up-down-up-down-up--- or
down-up-down-up-down- - -

@ 2secx + 2tanx — x — 1 (André 1879)
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Some previous work

e [Kitaev, 2003]
o Results for Cav([M), M contains length 3 permutations
o Incomplete for Cav(123,231,312), Cav(123,231),
Cav(132,312), Cav(132, 213), Cav(123), Cav(132)
[Kitaev and Mansour, 2005]
o Cav(123,231,312)
[Elizalde and Noy, 2003]
o Cav(12---k)
o Cav(132)
o Cav(123,231)
[Elizalde, 2006]

e For M =1, limp—00 \/% exists, and

o lies strictly between 0 and 1
[Liese and Remmel, 2010]
e Many results for |M] =1
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Revisiting 12 - - - k consecutive avoidance

e Elizalde and Noy enumeration of Cav(12--- k) did much
more: the entire distribution of permutations according to
length and number of occurrences of 12--- k

@ Another way of obtaining Cav(12--- k) via a different
“more”: the entire distribution of permutations in
Cav(12--- k) according to length and value of the last term
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Major steps 1

° u,(,ta) defined as the number of permutations 7 such that

@ 7 avoids 12--- k

Q |n|=n

© mendsina

@ 7 ends with t ascents

@ Recurrences

ufg) = Z <uf,0_)1,b + uf,l_)l’b 4+ u(k_2))

n—1,b
b:b>a

t t—1
£ = >
b:b<a
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Major steps 2

@ Change of variable: v’ = u

(e _ (0

ij ij41,t41

o Recast as equations for the generating functions V(t)(x, y)
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Major steps 3

o Change of variables w = (x + y)/2, z = (x — y)/2

@ This gives

oy
0z

ALY
0z

av(2)
0z

ov(k=2)
0z
k=1 giy(k—2)

_ (V(O) Lyv@® g V(k—z))
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Major steps 4

o Solve for all V(!) in terms of exp()\;z), \; = k™ roots of 1
@ Matrix of coefficients has van der Monde form

@ Explicit solutions now computable
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Major steps 4

o Solve for all V(!) in terms of exp()\;z), \; = k™ roots of 1
@ Matrix of coefficients has van der Monde form

@ Explicit solutions now computable

With k =4

cos x — sin x + exp(—x)
cos(x +y) —sin(x + y) + exp(—x — y)

VO(x,y) =

2
cos(y) — sin(y) + exp(—y)

VvO(0,y) =

10
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Wilf-Stanley limits

o If limt,/t,—1,lim \/t, both exist, then they are equal
@ For classical pattern avoidance (of a finite) set
@ It is unknown whether lim,_, . v/t, exists
@ Convergence of t,/t,_1 to this limit is rather slow
@ For consecutive pattern avoidance
Q lim, \/m always exists (Sergi's proof for singleton Il
works in general)
@ Convergence of t,/(nt,_1) to this limit is rapid
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Wilf-Stanley limits

o If limt,/t,—1,lim \/t, both exist, then they are equal
@ For classical pattern avoidance (of a finite) set
@ It is unknown whether lim,_, . v/t, exists
@ Convergence of t,/t,_1 to this limit is rather slow
@ For consecutive pattern avoidance
Q lim,_ 0 /t,/n! always exists (Sergi's proof for singleton I1
works in general)
@ Convergence of t,/(nt,_1) to this limit is rapid

e Av(132): 1.02.02.52.83.03.13.23.33.43.45353.54
3.57 3.6 3.62 3.65 3.67 3.68 3.70 3.71 3.73 3.74 3.75 3.76
3.77 3.78 3.786 3.793 3.800 (30 terms)

e Cav(132): 1.0 0.83 0.85 0.82 0.83 0.826 0.828 0.827 0.827
0.827 0.827 0.827 0.827 0.826987 0.826996 0.826992
0.826994 0.826993 0.8269935 0.8269932 0.82699339
0.82699332 0.82699336 0.82699334 0.826993346
0.826993342 0.826993344 0.826993343 (28 terms)
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What they are
Limits a la Wilf-Stanley Numerical results

Some empirical Wilf-Stanley limits

@ Remaining unsolved cases with I1 having two permutations of
length 3. Find recurrences and compute numerically:
© Cav(312,132): lim t,/(nt,_1) = 0.601730727943943
@ Cav(312,231): limt,/(nt,_1) = 0.676388228094035

@ When I1 has one permutation of length 4. Recurrences again:

Cav(IT) limt,/(nt,—1)
Cav(1234) | 0.963005 E&N
Cav(2413) | 0.957718

Cav(2143) | 0.956174

Cav(1324) | 0.955850

Cav(1423) | 0.954826

Cav(1342) | 0.954611 E&N
Cav(1243) | 0.952891 E&N
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What it is
A specialised result

" K A general theorem
Wilf-equivalence &

Wilf-equivalence

@ Many equalities of enumeration sequences are explained by
symmetries

@ “Wilf-equivalence” generally refers to equalities that are not
explained by symmetries

@ Best example: Av(123) and Av(231)

@ Probably no over-arching theory to explain all
Wilf-equivalences
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Beyond Wilf-equivalence

@ «f any permutation such that
a®lg fand16 B L a

o M, B, k) ={ayf : |y| = k}
e [ any set of t permutations in M(«, 3, k)

aff = 316|425, k =3, t =2, I = {316|978|425,316|987|425}
How many permutations of length n have exactly 7 occurrences of
316|978|425 and exactly 9 occurrences of 316|987|4257

This depends only on «, 5, k, t, “7", “9".
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What it is
A specialised result
A general theorem

Wilf-equivalence

The (t + 1)-variate distribution of permutations according to
length and number of occurrences of each permutation of [
depends on «, B, k, t alone
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Some sources

[d R.E.L.Aldred, M. D. Atkinson, D. J. McCaughan
Avoiding consecutive patterns in permutations
Advances in Applied Mathematics 45 (2010) 449-461.

[ S. Elizalde
Asymptotic enumeration of permutations avoiding generalized

patterns
Advances in Applied Mathematics 36 (2006) 138-155.

[§ S. Elizalde, M. Noy
Consecutive Patterns in Permutations
Advances in Applied Mathematics 30 (2003) 110-125.
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Wilf-equivalence

1 S. Kitaev
Multi-avoidance of generalised patterns
Discrete Mathematics 260 (2003) 89-100.

[§ S. Kitaev, T. Mansour
Simultaneous avoidance of generalized patterns
Ars Combinatoria 75 (2005) 267-288.

@ J. Liese, J. Remmel

Generating functions for permutations avoiding a consecutive
pattern
Annals of Combinatorics 14 (2010) 123-141.
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