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A problem

Can the packages be delivered in the same order as the
target?

Target:
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A problem

Can the packages be delivered in the same order as the
target?

Target:

Oops!
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What went wrong?

The problem came in trying to convert

2 31

into

3 1 2

The remaining colours didn’t hurt, but couldn’t help.
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312-avoidance

Definition: A permutation

π = π1π2 · · · πn

contains the pattern 312, if, for some i < j < k, πj < πk < πi.

Proposition: (Knuth, ∼1970) The permutations of an input

sequence which can be generated by a single stack are ex-

actly those that avoid the pattern 312.
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Enumeration of 312 avoiders

Consider the push-pop operation sequence of a stack in
producing a 312-avoider. This provides a bijection between
312-avoiders of length n and balanced bracket sequences
with n pairs of brackets. Therefore the number of such is
given by the Catalan numbers:

1

n + 1

(

2n

n

)

.

Alternatively, a bijection with binary trees by considering:

α
β

avoid 312 π = 
α

1

β
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The research frontier

Note that Knuth’s result also gives a linear time
algorithm for recognizing a 312-avoider. Just run the
stack and see if it works.

Given a permutation, determine whether it can be
generated by two stacks in series.

Essentially nothing is known about this.

It is known, that there are infinitely many permutations
which cannot be generated by two stacks in series, but
which have the property that the deletion of any single
element produces a permutation which can be
generated.
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Involvement

Definition: A permutation σ is involved in a permutation π

(σ � π) if some subsequence of π has the same relative
ordering as all of σ.
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Involvement

Definition: A permutation σ is involved in a permutation π

(σ � π) if some subsequence of π has the same relative
ordering as all of σ.

5 6 4 2 3 1 

involves

3 1 2 
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Pattern Classes

A pattern class, C, is a collection of permutations closed
downwards under the involvement relation.

The minimal permutations (if any) not belonging to C
are called its basis.

Note that the basis of a pattern class is an antichain
with respect to the involvement ordering. Conversely,
given any such antichain, A, we can define the pattern
class of which this is the basis. It consists of all those
permutations that do not involve any member of A.
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Examples

The permutations which we can generate from 12 · · · n
by a stack (basis {312})

The permutations which we can generate from 12 · · · n
by two parallel queues (basis {321}).

The permutations which we can generate from 12 · · · n
by a “riffle shuffle” (basis {321, 2143, 2413}).

The permutations whose graphs can be decomposed
(recursively) into high-low, or low-high blocks (basis
{2413, 3142}).
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Questions

Basis Problem Given a pattern class C determine its
basis. Is it finite? How many elements of size n does it
contain?

Membership problem Is there an algorithm for
deciding membership in a given pattern class? Is there
an efficient algorithm?

Enumeration Problem Given a pattern class,
determine how many permutations of length n it
contains.
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Enumeration (successes)

All classes with a basis elements all of length 3 (Simion
and Schmidt)

Exact formulas are known for all classes with a single
basis element of length 4 (Gessel, Bona), except 1324
and 4231.

Asymptotic formulas (based on tableaux) are known for
all classes with single basis element 123 · · · k (Regev).

One basis element of length 3 and one of length 4
(West).
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Wilf-Stanley

Conjecture: If C is a proper pattern class, then for some
constant q:

lim
n→∞

|C ∩ Sn|
1/n = q.
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Wilf-Stanley

Conjecture: If C is a proper pattern class, then for some
constant q:

lim
n→∞

|C ∩ Sn|
1/n = q.

Theorem: (Alon, Friedgut) If C is a proper pattern class,
then there exists a constant q such that for all n

|C ∩ Sn| ≤ qnγ(n)

where γ is a very slowly growing function.
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Bounded memory machines

Consider machines for generating permutations whose
memory is only capable of holding say M items of input
at one time. Each symbol in the permutation is among
the first M by rank of the remaining symbols.

Output: ?, ?, ?, ...

Input: 1, 2, 3, ...
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M -bounded permutations

The collection of M -bounded permutations is a pattern
class.

Its basis consists of all the permutations of length M + 1
which begin with M + 1.

It is generated by the “machine” which consists of a
desk large enough to hold M pieces of paper.

M -bounded permutations can be represented by their
rank-encoding. This gives a representation over a finite
alphabet:

341526 −→ 331211.
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Regular classes

A regular language is one which is recognized by a
finite automaton.

A regular permutation class (A, Atkinson, Ruškuc) is
one whose rank encoding gives a regular language.

For instance, the classes provided by bounded memory
machines are regular if the machine has only finitely
many internal states.
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Theorems about regular classes

A bounded class is regular if and only if its basis is
regular.

Given (an automaton for) the class, we can construct
(an automaton for) the basis (and vice versa).

A regular class has a rational generating function. That
is, the number of permutations of length n satisfies a
linear recurrence.

There are linear time algorithms for recognizing and
generating the permutations belonging to a regular
class.
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And yet . . .

Regular classes can still be very complicated.

Consider the basis of the class generated by the
machine consisting of two stacks, one of capacity 2, the
other of capacity 3, operating in parallel. This is the first
explicit example of an antichain in the involvement
ordering whose size grows as a function of length.

The procedure for passing from a class to its basis and
vice versa typically starts and ends with “small”
automata (up to a few hundred states), but intermediate
steps often involve automata with > 106 states.
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Object moving environments

Generalizing the first example of a single stack, we
might consider environments in which there is a richer
supply of methods of moving data.

In this generality there is little that can be said (and in
some sense “most” problems are PSPACE-hard).
However . . .

By considering simple “toy” environments some general
principles about data manipulation can be abstracted
and/or illustrated.
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Where to from here?

A “structure theory” for pattern classes.

General principles for manipulating and analysing
bounded memory machines.

Good algorithms for simple cases of object moving
environments (eg. directed networks of queues).
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Where to from here?

A “structure theory” for pattern classes.

General principles for manipulating and analysing
bounded memory machines.

Good algorithms for simple cases of object moving
environments (eg. directed networks of queues).

Thank you!
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