
From Passages into Elements in XML Retrieval

Kelly Y. Itakura
David R. Cheriton School of Computer Science,

University of Waterloo
200 Univ. Ave. W.

Waterloo, ON, Canada
yitakura@cs.uwaterloo.ca

Charles L. A. Clarke
David R. Cheriton School of Computer Science,

University of Waterloo
200 Univ. Ave. W.

Waterloo, ON, Canada
claclark@plg2.uwaterloo.ca

ABSTRACT
Trotman and Geva [8] suggest that XML retrieval must move
from element-based to passage-based because human asses-
sors see passages when judging relevance. Since the current
XML retrieval evaluation involves returning XML elements,
they suggest ways to convert passage retrieval results into
XML elements. In this paper, we implemented one of their
algorithms and argue that the algorithm returns a lot of ex-
cessive text. We also implemented an element-based XML
retrieval algorithm and analyze why it works better, linking
its behavior to the other algorithm of Trotman and Geva.
We finally compare the results of these two implemented al-
gorithms to a gold standard obtained by passage retrieval to
compare the excess and the lack of text in the result sets. We
conclude the paper by suggesting a better way to represent
results of XML retrieval.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - retrieval models.

General Terms
Algorithms, Experimentation, Theory

Keywords
XML retrieval, passage retrieval

1. INTRODUCTION
INEX [1] is an evaluation forum for XML retrieval. In

the adhoc track, a topic contains a user’s information need,
including structural information as well as a set of query
terms called a title. A title is what we normally type into a
search engine; phrases are contained within double quotes,
terms that must be in the returned elements are headed
by the plus sign, terms that must not be in the returned
elements are headed by the minus sign. The content-oriented
(CO) task requires processing only titles. In the focused
task, the result must be a set of single elements that are
“the most exhaustive and specific” [6]. In this paper, we
address adhoc, content-oriented, focused task.

Trotman and Geva [8] mentions that human assessors see
passages when making a relevance judgement on results of

SIGIR 2007 Workshop on Focused Retrieval
July 27,2007, Amsterdam, The Netherlands.
Copyright of this article remains with the authors..

XML retrieval. To transition into passage based XML re-
trieval, they propose how to convert elements into passages
and passages into elements. In particular, they suggest a
couple of ways to convert passages into XML elements for
the focused retrieval task. This process involves finding an
appropriate size of an XML element to return that is not
redundant but contains necessary passages. The first algo-
rithm of Trotman and Geva [8] to convert a passage into an
XML element, takes the smallest XML element that con-
tains the passages. The second algorithm takes the largest
XML element that is contained in the passages. We call
the first algorithm TG+ retrieval and the second algorithm
TG− retrieval. Trotman and Geva cast doubts on specificity
of the TG+ algorithm and exhaustivity of the TG− algo-
rithm. That is, even though TG+ retrieval returns elements
that contains relevant text, it may contain too much irrel-
evant text as well. On the other hand, TG− retrieval may
return elements without much irrelevant text, but it may
miss too much relevant text. In this paper, we implemented
the TG+ algorithm to show that the returned results contain
a lot of irrelevant text. We also implemented an algorithm
analogous to TG− retrieval, and compared the exhaustiv-
ity and specificity of these two algorithms against a defined
gold standard, a set of passages retrieved by a variant of
BM25 [7].

2. METHODOLOGY
As a test collection, we used INEX 2005 IEEE collection

and the query topics provided for the INEX 2005 adhoc
track. The corpus contains 16, 819 files from various IEEE
journals from 1995 to 2004. There are 39 topics, each con-
taining a set of query terms. In INEX 2005, the results were
assessed using the nxCG metric [5]. We only consider the
generalized quantization because this is the only metric with
published ranking in both INEX 2005 and 2006. In addition,
we only ran the focused task because this task requires bal-
ancing exhaustivity and specificity, which is the topic of this
paper.

In this section, we describe three different algorithms to
obtain passages/XML elements. All these algorithms pro-
cess a title into a set of disjunctive terms, separating phrases
into terms, removing the plus sign, and ignoring terms pre-
ceded by the minus sign. We did not remove duplicate query
terms within a topic and across topics. Finally, we used the
Wumpus Information Retrieval System [2] to stem query
terms and retrieve all positions of query term occurrences in
the collection.

All three algorithms used a variant of Okapi BM25 [7]

to score passages or elements. Normally, Okapi BM25 is
used for scoring documents. Its effectiveness against passage
retrieval is not yet fully established. When used in passage
retrieval, a score of a passage or an element P is defined as
follows:

score(P) ≡
∑
t∈Q

Wt
fP,t(k1 + 1)

fP,t + k1(1− b + b |P |
avgdl

)
, (1)

For a weight of a query term t, Wt, we used a document-level
IDF value,

Wt = log
total # of documents

of documents containing a term t
.

When none of the documents contain a term t, we set the
IDF of the term to zero. The average document length,
avgdl is also computed at the document level. In our cor-
pus, the average document length is 6147.97 terms. When
computing the length of an XML element or a passage, we
ignored XML tags. The number of time a term t appears
in the passage P is denoted fP,t. Parameters k1 is positive,
and 0 < b < 1. This way, we can view scoring P as scor-
ing a small document in the context of all documents in the
collection.

2.1 Passage Retrieval
In passage retrieval, we disregarded all XML structures,

and retrieved passages that start and end with query terms.
First, we scored all such passages and ignored those that are
less than 25 words long. Then we removed all the nested
passages to return the top 1500 passages for each topic.
The elimination of nesting involved adding to the ranking
only when a passage does not contain the higher ranking
passages within it and the passage is not contained in the
higher ranking passages. We call the resulting set the gold
standard, used as the basis for comparison because assessors
look for elements that contain what they consider important
passages.

2.2 Element Retrieval
In element retrieval, we computed the scores of all XML

elements of interest taken from [3]. These are abs app ar-

ticle bb bdy bm fig fm ip1 li p sec ss1 ss2 vt. We
ignored elements that are less than 25 words long, or have a
zero score. We then eliminated the nesting of XML elements
to get the top 1500 XML elements to return.

2.3 TG+ Retrieval
In this section, we describe how we implemented the TG+

algorithm, the first algorithm of Trotman and Geva [8] to
convert passages into XML elements.

In the TG+ algorithm, after computing all passage scores,
we assigned to an XML element the score of the highest
scoring passages whose smallest ancestor is the XML ele-
ment. We ignored XML elements that are not of interest,
and those that are less than 25 words. Finally, we elimi-
nated the nestings of the XML elements to return the top
1500 XML elements.

Figure 1 illustrates this approach. Suppose we have four
passages with Okapi scores; passage 1 with a score of 5.2
to passage 4 with a score of 4.0. Passage 1 spans through
paragraph 1, 2, and 3, which are under section 1 and an arti-
cle. Similarly for other passages. After we computed Okapi

article

sec1 sec2 sec3

p1 p2 p3 p4 p5 p6 p7 p8

4: 4.0

3: 4.72: 5.0
1: 5.2

Figure 1: Assigning Scores and Nesting Elimination
in TG+ Retrieval

Table 1: TG+ and Element Retrieval at k1 = 10 and
b = 0.9 in INEX 2005 CO-focused

nxCG[10] nxCG[25] nxCG[50] MAep iMAep
TG+ 0.1856 0.1774 0.1633 0.0612 0.0387

Element 0.2586 0.2323 0.217 0.0929 0.0715

scores for these passages, we assigned scores to correspond-
ing XML elements. The score of 5.2 is assigned to sec[1],
the smallest element containing passage 1. Similarly, the
score of 5.0 is assigned to article. Because passage 3 has a
higher score than passage 4, we assign the score of passage 3,
4.7 to p[7]. Next, we get rid of nesting while taking the top
scored elements. We first take the element with the high-
est score, sec[1] and assign a rank of 1. The element with
the second highest score, article is eliminated because it
causes a nesting of sec[1] within it. We can safely take the
element with the next highest score, p[7] because it does
not cause a nesting with sec[1], and assign a rank of 2.

3. EVALUATION AND ANALYSIS

3.1 Performance Against INEX 2005
We trained both element retrieval and TG+ retrieval over

the INEX 2005 corpus and the query set. Figure 2 and Fig-
ure 3 show the scores for different values of k1 with b = 0.8
using the nxCG metric, mean average precisions (MAep)
and interpolated MAep (iMAep) in the CO.Focused task.
We then chose k1 = 10 for TG+ retrieval and k1 = 4 for
element retrieval for training b as seen in Figure 4 and Fig-
ure 5. The results of nxCG and MAep/iMAep metrics seem
correlated as both have similar curves and give maximum
values at the same parameters. The values of both k1 and b
need to be quite large for both algorithms to perform well.
Clarke [3] also points out this phenomenon for his Okapi-
based passage retrieval algorithm that is quite different from
these two. Having a large k1, therefore, seems to be neces-
sary for using Okapi BM25 for passage retrieval.

These figures suggest that the simple element retrieval
performs much better than TG+ retrieval. To see why, we
compared the results of both algorithm at k1 = 10 and
b = 0.9, which are optimal parameters for TG+ retrieval.
Table 1 shows that even if at an optimal setting, TG+ re-

0.12

0.14

0.16

0.18

0.2

0.22

0.24

1 4 7 10 13

k1

n
x
C

G

TG+: nxCG[10]
TG+: nxCG[25]
TG+: nxCG[50]
E: nxCG[10]
E: nxCG[25]
E: nxCG[50]

Figure 2: nxCG: Training on Different k1 with b = 0.8
in INEX 2005 CO-Focused

trieval performs significantly worse than element retrieval.
We analyzed the submission files of TG+ and element re-

trieval and realized that in the TG+ algorithm, the majority
of the elements returned had a large granularity; many of
them were either /article or /article/bdy. In the ele-
ment retrieval, however, the returned elements had much
finer granularity such as paragraphs and sections.

For example, as wee see in Figure 6, the first element re-
turned for the first topic in both retrieval methods is from
the same file, ex/2001/x1026 that spans through positions
27040000 and 27046835. In TG+ retrieval, the element re-
turned was /article/bdy, corresponding to positions 27040246
through 27045776 with a score of 42.53. The passage corre-
sponding to this element that gives the score of 42.53 spans
through positions 27042389 and 27043619. In element re-
trieval, the element returned was /article/bdy/sec[4] cor-
responding to positions 27042506 through 27043559 with a
score of 40.90. We see that /article/bdy, the smallest el-
ement that contains the highest scoring passage, is much
longer than the passage. However, /article/bdy/sec[4], the
element returned in element retrieval contains much of the
passage without much excessive text.

The element, /article/bdy/sec[4], returned by element
retrieval was not returned by TG+ retrieval because the
highest scoring passage within the element that spans through
positions 27042550 and 27043534 only scored 41.02, lower
than the highest passage contained in /article/bdy. On the
other hand, element retrieval did not return /article/bdy

because its score, 39.44 is lower than the score of /arti-

cle/bdy/sec[4], 40.90.

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 4 7 10 13

k1

M
A

e
p

 &
 i
M

A
e
p

TG+: MAep
TG+: iMAep
E: MAep
E: iMAep

Figure 3: MAep/iMAep: Training on Different k1

with b = 0.8 in INEX 2005 CO-Focused

The above observation suggests that the TG+ algorithm
is not a good approach for converting passages into an XML
element because it returns a lot of excessive text. The TG−
algorithm, taking the largest XML element contained in a
passage, would likely perform well for the same reason ele-
ment retrieval performs well; the returned elements would be
unlikely to contain too much excessive text. However, both
element retrieval and TG− retrieval may miss too much text
to reduce the overall performance.

3.2 Performance Against the Gold Standard
In the previous section, we observed that TG+ retrieval

tends to return excessive text. We also speculate that ele-
ment retrieval may be missing too much text. To measure
how much text is missing or in excess for both algorithms, we
compared their results against our gold standard as follows.

First, because our goal is to convert passages into XML el-
ements, and human assessors see passages when making rel-
evance judgement, the gold standard must be passages. The
best XML elements are those that cover the gold-standard
passages sufficiently, but not much more. We created the
gold standard using passage retrieval with the same param-
eters as TG+ retrieval, k1 = 10 and b = 0.9.

Next, we compared a set of passages/XML elements re-
turned by both TG+ and element retrieval against the gold
standard at each rank up to 1500. The percent lack at rank
r is defined as the percentage of the gold standard up to
rank r that is not covered by the returned elements up to
rank r. We can think of percent lack at rank r as how much
text a user is missing (the user wants to read passages in

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0 0.2 0.4 0.6 0.8 1

Rank

n
x
C

G

TG+: nxCG[10]
TG+: nxCG[25]
TG+: nxCG[50]
E: nxCG[10]
E: nxCG[25]
E: nxCG[50]

Figure 4: nxCG: Training on Different b in INEX
2005 CO-Focused

the gold standard) when the user reads from rank 1 to rank
r. Similarly, the percent excess at rank r is defined as the
percentage of the returned elements up to rank r that does
not cover the gold standard up to rank r. We can think of
percent excess as how much text a user reads that the user
did not have to read (because the user only wants to read
passages in the gold standard) when the user reads from
rank 1 to rank r. We averaged both the percent lack and
the excess over all topics.

Figure 7 show that overall, the excessive text returned
by TG+ retrieval is larger than the excessive text returned
by element retrieval. However, as the rank increases, the
amount of excessive text for element retrieval increases to
the point that towards the end of the ranking, the level of
excess for both algorithms are about the same. Figure 8
shows that element retrieval misses much more text than
TG+ retrieval does, and the general trend for both algo-
rithms is to have less missing text as rank increases.

The reason that element retrieval performs better on the
nxCG, MAep, and iMAep metric for the focused task is
because having excessive text is punished more than missing
text. In the INEX focused task, specificity is preferred to
exhaustivity [6]. In the same manner, the TG− algorithm,
that takes the largest element contained in the passage, will
likely score high in the focused task. The TG+ algorithm
would score high in other tasks that place preference on
exhaustivity over specificity.

4. DISCUSSION

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.2 0.4 0.6 0.8 1

b
M

A
e
p

 &
 i
M

A
e
p

TG+: MAep
TG+: iMaep
E: MAep
E: iMAep

Figure 5: MAep/iMAep: Training on Different b in
INEX 2005 CO-Focused

27040000 27046835

27040246 27045776

2042389 27043619

27042506 27043559

27042550 27043534

39.44 /article/bdy

41.02 Best In /article/bdy/sec[4]

42.53 Best in /article/bdy

40.90 /article/bdy/sec[4]

Figure 6: Elements and Passages Relating to Rank
One Result

0

10

20

30

40

50

60

70

80

90

100

1 125 249 373 497 621 745 869 993 1117 1241 1365 1489

Rank

P
e
rc

e
n

t
E

x
c
e
s
s

Element Retrieval
TG+ Retrieval

Figure 7: Percent Excess of the Gold Standard

0

10

20

30

40

50

60

70

80

90

100

1 125 249 373 497 621 745 869 993 1117 1241 1365 1489

Rank

P
e
rc

e
n

t
L

a
c
k

Element Retrieval
TG+ Retrieval

Figure 8: Percent Lack of the Gold Standard

Table 2: Average Length in Passage, Element, and
TG+ Retrieval

Final Intermediate Nested
Passage 1760.56 N/A 2424.85
Element 750.87 N/A 1354.69
TG+ 3322.06 770.72 874.56

In this section, we discuss the behavior of parameters k1

and b in passage retrieval. We used an average document
length for avgdl in computing an Okapi score for a passage
in Equation 1. Because most passages are less than a size of
a document, |P |/avgdl is less than 1 most of the time. The
result is that in the denominator, we multiply k1 with some-
thing very small. Then if k1 is also small, the denominator
approaches to fP,t, turning Equation 1 into

score(P) ≡
∑
t∈Q

Wt1. (2)

Therefore, one reason for a large k1 value is to prevent Equa-
tion 1 from degenerating into Equation 2 when the length
of P is smaller than the average document length. Simi-
larly, a large b augments the effect of length normalization
in b|P |/avgdl in the denominator, and this sets off the large
gap between the average document length and a passage
length. Therefore, it appears that the choice of the average
document length is balanced by the choices of k1 and b.

To see how small the passage lengths are compared to
the average document length, we computed various passage
lengths. Table 2 shows the average length of the top 1500
final results (Final), the passages that produced the top
1500 final results (Intermediate) (only applicable to TG+),
and the top 1500 results before the elimination of nesting
(Nested), for passage, element, and TG+ retrieval. From the
average document length of 6147.97, we compute the average
passage length to be 1538.47. Then both the TG+ and the
element algorithms retrieve fairly small elements/passages,
770.72 for TG+ retrieval, and 750.87 for element retrieval,
compared to the average passage length of 1538.47. How-
ever, the average length of the elements returned by TG+
retrieval is about four times as large (3322.06) as the average
length of the corresponding passages (770.72). This shows
that the TG+ algorithm is inherently ineffective for the fol-
lowing reasons. The passages returned by TG+ algorithm
is about the right size because this is about the same size
as the elements returned by element retrieval that performs
well. Therefore, it is the way we assign passage scores to
elements, rather than the choice of avgdl, k1, and b, that
makes TG+ retrieval less effective than element retrieval.

Finally, it is interesting to note that the average length
of the passages returned by the passage retrieval, 1760.56 is
close to the average passage length of 1538.47. The differ-
ence between the average lengths of the passages returned
by TG+ and passage retrieval may be accounted for by how
nesting was eliminated. In passage retrieval, we eliminated
nestings of the passages that eliminates more nesting than
nesting elimination of elements in TG+ retrieval. Further-
more, the fact that the average passage length returned by
passage retrieval is close (in fact more) than the average pas-
sage length implies that TG− retrieval would likely be able
to find the largest element within the passages. However,
we believe that the best elements to return in XML retrieval

is multiple consecutive elements that contain passages just
enough.

5. RELATED WORK
Huang et al. [4] implemented their own version of the

TG+ algorithm, where the method of identifying passages
are different from ours. Instead of considering all possible
passages as we did, they considered a fixed size passages
obtained from sliding windows. Moreover, they first per-
formed document retrieval, and then ran passage retrieval
on the top scoring documents, whereas we directly retrieved
high scoring passages. When scoring passages, they used a
simple term frequency approach and two language modeling
approaches, whereas we adopted a variant of Okapi BM25,
which is used for document retrieval.

The effectiveness of the TG+ algorithms of Huang et al.
and ours can be easily compared because both of us used the
same test set, the INEX 2005 IEEE collection, ran the same
CO.Focused task, and used the nxCG generalized quanti-
zation to score the results. Huang et al. compared their
passage based XML retrieval results against the INEX 2005
CO-Focused task submissions of IBM Haifa that ranked 4th
and of University of Amsterdam that ranked 28th in the
Mean Average Precision (MAep) ranking. They concluded
that their algorithm ranked between these two. Our results
of the TG+ algorithm at k = 10 and b = 0.9 with MAep
of 0.0612 also ranks between these two. On the other hand,
our element retrieval algorithm with the same parameters
that has a MAep of 0.0929 easily ranks the first preceding
the first result of IBM Haifa ranked 1st, that has a mean
average precision of 0.0917.

Huang et al. conclude the paper by mentioning that a
passage retrieval algorithm can produce effective element
retrieval results because it ranked between the 4th and the
28th out of 44 submissions. However, the fact that both
versions of TG+ retrieval, despite with very different im-
plementations of passage retrieval, only ranked between the
4th and the 28th implies that TG+ retrieval is not a good
idea for turning passages into an element. The comparison
of our TG+ retrieval against our gold standard along with
the average length statistics in Section 4 also implicate that
it does not perform well because of excessive text inherent
to the very idea of TG+ retrieval.

6. CONCLUSIONS AND FUTURE WORK
We implemented three algorithms to test the effective-

ness of the first algorithm of Trotman and Geva [8], which
converts the results of passage retrieval into XML elements.
This TG+ algorithm takes the smallest XML elements that
contains the passages. It appears that the parameter k1 in
Okapi BM25 must be high for any passage retrieval to yield
a good performance. We showed that the TG+ algorithm
does not perform as well as the simple element retrieval,
where we scored all XML elements, not passages. By com-
paring the result sets of the TG+ and the element retrieval
algorithm, we realized that the TG+ algorithm tends to re-
turn a lot of excessive text. Even though element retrieval
performs well, we speculated that it may miss too much text.

To see how much of text is missing or excessive, we created
the gold standard, a set of results obtained from passage re-
trieval using the same Okapi BM25 parameters. We then
computed an average percent excess and an average percent

lack of text for returned results over all topics. Although el-
ement retrieval does miss out a lot of text, it scores well on
the focused task of INEX because the task has a preference
of specificity over exhaustivity. Because the TG− algorithm
that returns the largest XML elements contained in the pas-
sages will not have much excessive text as in the case of ele-
ment retrieval, the performance of the TG− algorithm may
be similar to the one obtained by element retrieval. Ulti-
mately though, the best elements to return must be a series
of XML elements.

Future work involves studying the effectiveness of Okapi
BM25 in passage retrieval setting, including analyzing why
a large k1 value works. We also would like to implement
the TG− algorithm to compare it against the TG+ and the
element algorithms. Finally, we would like to implement
multiple passage retrieval and measure its performance.

7. REFERENCES
[1] INEX: INitiative for the Evaluation of XML Retrieval .

Accessible at
http://inex.is.informatik.uni-duisburg.de, 2007.

[2] S. Büttcher. the Wumpus Search Engine. Accessible at
http://www.wumpus-search.org, 2007.

[3] C. L. A. Clarke. Controlling overlap in content-oriented
XML retrieval. In SIGIR ’05: Proceedings of the 28th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 314–321, New York, NY, USA, 2005. ACM Press.

[4] W. Huang, A. Trotman, and R. O’Keefe. Elemement
retrieval using a passage retrieval approach. In the 11th
Australian Document Computing Symposium, 2006.

[5] G. Kazai and M. Lelmas. INEX 2005 evaluation
metrics. Springer-Verlag, Lecture Notes in Computer
Science, 3977:16–29, 2006.

[6] S. Malik, G. Kazai, M. Lelmas, and N. Fuhr. Overview
of INEX 2005. Springer-Verlag, Lecture Notes in
Computer Science, 3977:1–15, 2006.

[7] S. Robertson, S. Walker, and M. Beaulieu. Okapi at
trec-7: Automatic ad hoc, filtering, vlc and interactive
track. 7th Text REtrieval Conference, 1998.

[8] A. Trotman and S. Geva. Passage retrieval and other
XML-retrieval tasks. SIGIR 2006 Workshop on XML
Element Retrieval Methodology, August 2006.

