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ABSTRACT
Determining the effectiveness of XML retrieval systems is
crucial for improving information retrieval from XML docu-
ment collections. Traditional effectiveness measures do not
address the problem of overlap in the recall-base. At the
Initiative for the Evaluation of XML retrieval (INEX), ex-
tended cumulated gain (XCG) was developed to address
overlap. It works by comparing the cumulated score of a
retrieval result to an ideal result. The use of XCG is con-
tingent on being able to define an ideal recall-base for every
topic.

This paper introduces an alternative approach called struc-
tural relevance (SR) which addresses overlap by extending
relevance to overlapping, non-disjoint elements. SR mod-
els the user process of browsing overlapped elements in a
ranked list using XML summaries (bisimilarity-based graph
representations of the structure of a collection of XML docu-
ments) to describe the user process in terms of the structure
of the collection. We show how SR is incorporated into tradi-
tional relevance-based measures and illustrate the behavior
of SR in comparison to XCG. Our results suggest that SR
can evaluate XML retrieval systems as effectively as XCG
without requiring an ideal recall-base.

1. INTRODUCTION
The Initiative for the Evaluation of XML retrieval (INEX)

is a collaborative, international effort to develop effective
XML retrieval systems. At INEX, a recognized challenge
in evaluating XML retrieval systems has been the overlap
problem [11]. Overlap occurs when a user finds a ranked el-
ement more than once in the process of evaluating a ranked
list of elements. Numerous proposals have been made to
address the problem [2, 20, 12]. Overlap occurs because a
user can access retrieval elements directly from either the
ranked list or from following the structural paths between
elements while browsing. Overlapped elements result in
poor user satisfaction of retrieval systems [21] because the
user perceives that the search results contain repetitive an-
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swers [5]. Moreover, overlap invalidates the use of traditional
relevance-based effectiveness measures because it repudiates
the basic information retrieval assumption of independence
of retrieval elements when determining their relevance.

The official metric for evaluation of system effectiveness
for INEX 2002 to 2004 was precall [7]. Precall is the ex-
pected precision of a result at a given recall level where the
system is weakly ordered [18] or, in other words, where a
user assesses tie-ranked elements in a random order. Pre-
call does not address overlap in the recall-base and this has
motivated the development of other measures which do. In
2005, INEX adopted the extended cumulated gain (XCG)
as its official measure [10]. XCG is based on cumulated gain
(CG) [8] where each element in a ranked list contributes to
the overall relevance, or what is referred to as the gain, of
the list. The cumulated gain is calculated by summing the
scores of elements from the head of the list to a fixed rank
position. An ideal recall-base defines the maximum possible
cumulated gain for all ranks. The ratio of cumulated gain
to ideal cumulated gain shows how closely a given ranked
list compares to the ideal list. XCG extends CG by incorpo-
rating heuristics to model the effects of overlap on relevance
scores. It is important to recognize XCG’s dependency on
the methodology used to build an ideal recall base (as shown
in [9]).

We approach the problem of overlap in the recall-base by
revisiting the notion of relevance for non-disjoint (i.e., over-
lapping) elements. In this regard, we differentiate between
the relevance of a single retrieval element and the relevance
of a retrieval element as a member of a set of elements. A
human judge assesses the relevance of an element to a topic
with the assumption that the element is independent of all
other elements; whereas, the relevance of an element in a
set of non-disjoint elements is the result of how a human
uses the set to fulfill their information need. In this regard,
isolation, which is the probability of first encountering an el-
ement from a ranked list composed of a given set of elements,
is a measure of the expected relevance of the element as a
member of the given set. The overall relevance of a ranked
list of structurally non-disjoint elements must be assessed in
terms of a user model that describes both how the list is
used and how relevant the list is to the user for answering
a given query. We call this the structural relevance of the
list. If we consider the ranked list as an affordance for a
user to traverse through retrieval results in an orderly man-
ner, then, in XML retrieval, the structural relevance is the
expected number of relevant elements found using a weakly
ordered list.



In this paper, we present the definition of structural rel-
evance, show how it is incorporated into the evaluation of
XML retrieval systems, and provide experimental results to
compare SR to XCG. We restricted our experiments here to
comparing measures for three runs for top-10 results across
many INEX topics for three reasons. The first reason was
that we noticed during the development of structural rele-
vance that our results were sometimes different from XCG
for certain topics, so we restricted the runs to systems that
have performed well over the years at INEX. We restricted
our presented results here to a small k (in our case, k=10)
over a large number of topics so that we could clearly show
through simple examples the differences between what the
XCG and SR measures capture. Thirdly, we restricted the
runs to the thorough task in INEX because it allows over-
lap. In future work, we intend to extend the application
of SR to all retrieval tasks in INEX. The next two sections
of the paper introduce SR and describe a (summary-based)
approximation technique for computing SR. Section 4 sur-
veys and compares existing measures and Section 5 presents
the experimental results. Conclusions and future work are
discussed in Section 6.

2. STRUCTURAL RELEVANCE
In this section we derive the measure of structural rel-

evance based on isolation and overlap, then we show how
structural relevance is used to modify measures such as pre-
cision and precall, and, finally, we derive a general expression
for calculating isolation for weakly ordered ranked lists.

Structural relevance is a measure of the relevance of a
group of overlapped elements. The problem of overlap oc-
curs in a ranked list when a user finds some ranked element
while browsing a different ranked element. This will occur
because the element is reachable either directly from the
ranked list or indirectly via structural paths from a differ-
ent element in the list. We define structural relevance as
the expected number of relevant elements that are found by
the user while browsing a ranked list of elements for the
first time. If there is no overlap in a group of elements,
then structural relevance reduces to the number of relevant
elements in the set. The following theorem shows how to
calculate structural relevance.

Theorem 2.1. Measure of Structural Relevance
The expected number of relevant elements up to some given
element u in the ordered set of elements R where p(e; R)
denotes the probability of the user first encountering element
e from the ranked list R is

E[nR(u)] =
X

e∈R[u]

rel(e) · p(e; R[u]) (1)

Proof. The number of relevant elements of a ranked list
R can be written as nR =

P
e∈R rel(e), where rel(e) is the

binary relevance of element e to some given topic such that,
if e is relevant then rel(e) = 1, and rel(e) = 0 otherwise.
Binary relevance is used here for simplicity and there is no
reason that other ways of measuring relevance could not be
used.

For recall-precision calculations, the number of relevant
elements are calculated at given ranks. Consider element
u ∈ R where R[u] is the ordered subset (the ranking) of
elements from R that contains elements up to an element

u from the weakly ordered list R. We can rewrite nR as a
function of the element u in list R as,

nR(u) =
X

e∈R[u]

rel(e)

Assume that system evaluation is conducted in multiple,
independent trials for each returned element. So, in top-k
search there will be k trials to determine the relevance of all
returned elements. Each trial is done in order to determine
the relevance of the element e in the ranked list R. The
trials are conducted in descending order by rank of elements.
Given that k trials are conducted for k ranked elements, it
is certain that all elements will have known relevance (i.e.,
total probability for any element having known relevance
after evaluation is 1). Consider the element e, its relevance
is determined by either first encountering it from the ranked
list, or by first encountering it from an higher or tie ranked
element. For element e we get the probabilistic relationship
of evaluation,

1 = P (encounter e first from ranked list) +

P (encounter e first from an overlapped element )

Let p(e; R) denote the probability of encountering e first
from the ranked list. Let q(e; R) denote the probability of
encountering e first from an overlapped element so, 1 =
p(e; R) + q(e; R). We refer to p(e; R) as the isolation of e in
the ranked list R. We refer to q(e; R) as the overlap of e in
the ranked list R. To find the relevance up to some element
u ∈ R, we take the expectation of relevance on the isolation
of elements in nR(u), and thus we get our desired result,

E[nR(u)] =
X

e∈R[u]

rel(e) · p(e; R[u])

2.1 Precision and Precall with SR
The measure of structural relevance (SR) can be substi-

tuted into an evaluation measure for the number of relevant
elements in a ranked list. SR makes the measure sensitive
to structural overlap among relevant retrieval elements, as-
suming a user model of ranked traversal and weak ordering.
For instance, in precision, precision = nR/k, we substitute
E[nR] from equation 1 for the number of relevant elements
to get SR in precision as SRP = E[nR]/k.

Consider now precall, which is the expected precision [18]
of weakly ordered ranked elements, where tied elements are
assessed in a random order. Based on the expected search
length [4], precall estimates the length of the ranked list that
would contain a desired number of relevant elements, s, in
terms of the expected number of irrelevant elements in the
list. Precall calculates precision using the ratio of relevant
elements r to irrelevant elements irr in the list to find the
expected number of irrelevant elements s·irr

r
to achieve the

information need of the desired number of relevant elements
s, so precall = nR/(nR + [s · irr/r]).

For SR in precall, we replace nR with E[nR] for the num-
ber of relevant elements, but not the number of relevant ele-
ments r used in the esl calculation. Substituting for r would



invalidate the esl calculation because the search length is de-
rived with the assumption of atomic elements. Substituting
SR into precall, we get the SR in precall (SRPL) as

SRPL =
E[nR]

E[nR] + s·irr
r

(2)

2.2 Isolation of Elements
We now consider some ranked list R with a user model

of browsing R as presented in precall [18]. In SR, the user
model defines the set of traversal permutations of the ranked
list. We use Raghavan’s precall model here, but as will be
seen, other user models could be similarly incorporated into
structural relevance.

Let mR denote the number of ranks in the ranked list R.
Let Ri denote the set of elements in rank i. A user browses
a ranked list by visiting elements in descending order from
the highest to lowest ranks. For elements with tied scores,
they are weakly ordered and the user visits these elements
in random order until all elements in the rank have been vis-
ited. Let Ω denote the set of traversal permutations derived
from the user model of browsing R. Let ` be the number
of permutations of traversal of the ranked list R such that
` = |Ω|. The number of permutations in Ω can be calculated
in terms of the permutations of orderings across all ranks as,

` = |Ω| =
mRY
i=1

|Ri|! (3)

The isolation of e is p(e; R) for some given ranked list. By
conditioning isolation on a permutation R′ ∈ Ω of R, we get
p(e; R) =

P
R′∈Ω [p(R′) · p(e; R|R′)].

For the user to choose a particular traversal path R′ ∈ Ω
where every element in R is visited only once, assume a
uniform distribution, so p(R′) = 1/|Ω| = 1/`. Thus, our
conditioned expression for p(e; R) becomes

p(e; R) =
1

`
·
X

R′∈Ω

p(e; R|R′) (4)

Now, let us denote p(e; R|R′) as simply p(e; R′). The dif-
ference between R and R′ is that R allows weak ordering,
but the elements in R′ are strictly ordered. The probabil-
ity of reaching e from elements in R′ can be considered a
Bernoulli process. The process works as follows; every at-
tempt to browse to e fails until e is reached in R′, at which
point e is reached with perfect certainty. Let P (e; f) be the
probability that e is encountered while browsing starting at
element f . The trivial cases are P (e; e) = 1, and P (e; f) = 0
when e is not accessible from f . So, we calculate p(e; R′) for
a given R′ as follows, where R′[e] is the set of elements in
descending rank in R′ up to e,

p(e; R′) =

2
4 Y

f∈(R′[e]−e)

1− P (e; f)

3
5 · P (e; e)

=
Y

f∈(R′[e]−e)

1− P (e; f) (5)

Example 2.2. Isolation in a strictly ordered list. What
is the probability of isolating element e in a strictly ordered

list R′ of 4 elements where the probability of encountering
element e from any other element is 0.8? Ans. Using equa-
tion 5 where P (e; f) = 0.8 we get p(e; R′) = (1−P (e; f))3 =
0.23 = 0.008.

We now have a complete expression for the isolation of
element e in ranked list R by substituting equation 5 into
equation 4 and replacing the probability of not visiting ele-
ment e from element f with 1− P (e; f). So, we get

p(e; R) =
1

`
·
X

R′∈Ω

2
4 Y

f∈(R′[e]−e)

1− P (e; f)

3
5 (6)

where R′[e]−e refers to the ranked list R′[e] minus the el-
ement e, ` is the number of permutations of orderings (equa-
tion 3), and 1 − P (e; f) is the probability of not reaching e
while browsing the element f .

Example 2.3. Isolation in a weakly ordered list. What
is the probability of isolating element e in a weakly ordered
list R = [a | b e] of 3 elements where the probability of en-
countering element e from a is 0.8 and from b is 0.4 ?

Ans. Referring to equation 6, there are 2 possible routes
to e, either a → e or b → e with probabilities 0.8 and 0.4,
respectively. So, Ω = {[a, e, b], [a, b, e]}, ` = 2, and we are
given that P (e; a) = 0.8 and P (e; b) = 0.4. Applying equa-
tion 6 we get p(e; R) = 1

2
·[(1− 0.8) + (1− 0.8) · (1− 0.4)] =

0.16.

3. APPROXIMATING ISOLATION
In this section, we introduce the integration of XML sum-

maries with structural relevance to quantitatively model the
process of browsing among elements. We show next how iso-
lation in a ranked list can be extended to multiple exclusive
sets of overlapped elements, and then using these results we
derive an approximation for isolation for calculating SR.

3.1 Incoming XML Summary
Incoming XML summaries are graphs that describe the

structure of incoming paths in an XML collection. Sum-
mary graphs are formed using XPath queries to generate
bisimulations of the elements. The nodes of the summary
graph are assigned labels that correspond to the tag paths
from the root tag to each child tag in a corpus. The extent
of a node is the set of elements in the corpus that match
the node’s label. The size of the extent is the number of
times that the label matches a tag path of an element in
the corpus. For convenience, each node is assigned a unique
structural identifier (SID). There are many types of XML
summaries and but we restrict ourselves here to using incom-
ing path summaries. In future work, we intend to extend SR
to use other summaries.

The formal definition of the XML summary (also known
as XML synopsis, see [17, 3]) is shown below.

Definition 3.1. A graph synopsis for G = (VG, EG) is a
node-labeled, directed graph S(G) = (VS , ES), where each
node v ∈ VS corresponds to a set extent(v) ⊆ VG such
that: (1) All elements in extent(v) have the same label (de-
noted by label(v), i.e., the label of the summary node); (2)
∪v∈VS extent(v) = VG and extent(u) ∩ extent(v) = � for
each u, v ∈ VS; (3) (u, v) ∈ ES if and only if there ex-
ists u′ ∈ extent(u) and v′ ∈ extent(v) such that (u′, v′) ∈



Figure 1: Example summary tree, document and
incoming summary

EG; and, (4) Each node v ∈ VS stores only an element
count(v) = |extent(v)|.

Example 3.2. Consider the summary tree S, the collec-
tion consisting of a single document and the incoming sum-
mary shown in Figure 1. The figure shows how each root-
to-child tag path in the document defines a partition with
an extent in the summary S. The extent of summary nodes
result in frequency histograms that describe the occurence
of tag paths in the collection.

If we assume that the summary graph edges are bi-directional
and equally weighted in both directions, then we can con-
sider the graph as describing a time-reversible discrete Markov-
ian process [19]. So, given a well-formed XML document
from a summarized collection, we can describe the Markov-
ian process of browsing between summary partitions in the
document based on the size of the extents of the summary.
This allows us to estimate the relative time spent browsing
in any partition, which is used later in Section 3.3 to calcu-
late the isolation of elements in the summary partition.

The probability of a user being in some summary partition
i while browsing the collection shall be denoted as πi, and
we calculate it by using the steady-state probabilities of the
time-reversible discrete Markovian process,

πi =

P
j wijP

i

P
j wij

(7)

where i, j ∈ S are partitions of the summary, and wij is
the size of the extent of the child node among the partitions
i and j. We interpret πi as the fraction of time that a user
who uses a description of the document structure (i.e. a
summary) to browse will spend πi of their time in partition
i of the document.

Example 3.3. Consider the summary shown in Figure 1.
Table 1 shows the weighting matrix and the probabilities πi

of the time-reversible Markov chain for the summary in the
figure.

Table 1: Probabilities of browsing a given summary
partition using equation 7 for Figure 1.

3.2 Multiple Sets of Overlap
In this section, we generalize SR to lists with multiple

exclusive sets of overlapped elements in a ranked list. A set
of overlapped elements refers to a weakly ordered subset of
overlapped elements in a list whose order is based on the
overlapped elements’ ranks.

Example 3.4. For the ranked list ‖e1‖e11 e2 e21‖e22‖e12‖,
where e1 overlaps with e11 and e12; and e2 overlaps with e21

and e22; there are two sets of overlapped elements: namely,
‖e1‖e11‖e12‖; and, ‖e2 e21‖e22‖.

Consider the elements that are higher ranked in R to some
element e ∈ R. Let mR denote the rank of element e. We
know that all of the higher ranked elements to rank mR

will be visited prior to e. Referring to equation 4 in section
2.2, each trial in the strictly ordered list R′ to reach e from
higher ranked elements must fail. So, the contribution to
isolation from the higher ranks is a constant factor for all
strictly ordered lists R′ ∈ Ω. Now, consider equation 5, the
isolation in a strictly ordered list R′,

p(e; R′) =
Y

f∈R′dee

1− P (e; f)
Y

f∈(R′bec−e)

1− P (e; f)

= phi(e; R) ·

2
4 Y

f∈(R′bec−e)

1− P (e; f)

3
5

where R′ bec refers to elements equally ranked to e in R′,
R′ dee refers to elements higher ranked to e in R′, and we
introduce the higher ranked isolation factor phi, where we
replace R′ with R because the higher-ranked elements to e
in R′ will be equal for all possible cases of R′. We calculate
phi for e using failed trials from the higher ranks,

phi(e; R) =
Y

f∈Rdee

1− P (e; f)

For any element f in R that is not overlapped with e, we
know that P (e; f) = 0, so these elements can be removed
from evaluation. So, in the evaluation of structural rele-
vance, for any given element e, we only need to consider the
elements overlapped with the element of interest. For multi-
ple clusters of overlap, for each element of interest, we need
only consider its higher or tie ranked elements in the list.

The set of higher-ranked elements to an element e ∈ R is
R dee = {f | e, f ∈ R ∀f ∃ G[f ] > G[e]} where G[·] is the
score of an element. Let function ov(X, x) denote the set of
overlapped elements to some element x in some list X. So,
we combine overlap with higher ranked elements to get the
set of overlapped, higher ranked elements to element e,

R deeov = ov(R dee , e) (8)

The set of tied elements for element e is R bec = {f | e, f ∈
R ∀f ∃ G[f ] = G[e]}. So, the set of overlapped, tie ranked
elements of element e, including element e, is

R becov = ov(R bec , e)
[

e (9)

For SR for some element e, we only consider the over-
lapped subset Rov(e) of the ranked list R which is found by
taking the union of equations 8 and 9,



Rov(e) = R deeov

[
R becov (10)

Thus, isolation of an element in a ranked list is strictly
dependent on its higher ranked and tie ranked overlapped
elements in the list.

3.3 Isolation Revisited
In section 2, we introduced structural relevance, showed

how it is calculated using isolation, and then showed in equa-
tion 6 how isolation is dependent on the probability P (e; f)
of encountering a specific element while browsing a differ-
ent given element. In section 3.1, we presented the XML
summary as a Markovian process of browsing the summa-
rized collection in terms of how the browser (i.e., user who
is browsing the collection) transitions between the summary
partitions. Now, we revisit isolation and using results from
section 3.2 we present a complete expression for calculating
SR.

Assume that browsing from element f to e requires en-
tering the summary partition of e (i.e., being outside of the
partition of e) and, simulateously, browsing along the struc-
tural paths in the document instance of e and f . So, P (e; f)
is the probability of being outside of element e’s partition
and the probability that structural paths are followed to
reach e. Using equation 7, let us denote the probability of
being in the partition of element e as π(e). So, being outside
of the partition is 1 − π(e). Let X denote the probability
of following a set of structural paths from element f to ele-
ment e. The limiting probability of reaching e from f over
an infinite number of trials is 1 if we assume that the num-
ber of structural paths are finite and that the browser has a
positive probability of taking any structural path whenever
possible. So, we get,

P (e; f) = (1− π(e)) ·X ≈ 1− π(e) (11)

So, referring to equation 6, substituting equation 11 into
the isolation of element e in ranked list R, we get

p(e; R) =
1

`
·
X

R′∈Ω

2
4 Y

f∈(R′[e]−e)

1− P (e; f)

3
5

=
1

`
·
X

R′∈Ω

2
4 Y

f∈(R′[e]−e)

π(e)

3
5 (12)

Recall equation 3 where ` is defined across all the elements
in the ranked list. Let R(e) be the elements in the rank of
element e. To get all cases in ` where e is fixed, we would
simply reduce the size of the rank R(e) by one, and we get
`(e) = (1/|R(e)|) · (

Q
i=1..mR

|Ri|!), where the number of
ranks in R is mR.

As we noted in equation 8, for some element e in R we
need only consider the overlapped elements in R′[e]. So, for
every ranked list R′[e] there will be `(e) number of possible
traversals with e at a given rank. Among the tie-ranked el-
ements, there will be |Rov bec | relative positions in which e
may occur. So, we substitute |Rov bec | and `(e) into isola-
tion equation 12, and then rearrange, to get

p(e; R) =
`(e)

`

|Rovbec|X
n=1

πn+m−1
(e)

=
1

|R(e)|

|Rovbec|X
n=1

πn+m−1
(e) (13)

where R(e) are the set of elements in the rank of element
e, Rov bec is the set of overlapped elements in the rank of
element e, m is the number of higher ranked, overlapped
elements to e, and 1 − π(e) is the approximated probability
of browsing to element e from any overlapped element f .

Now, referring to the modified precall and precision met-
rics in section 2.1, consider structural relevance in equation
1 and substitute in the approximated isolation for p(e; R[u])
from equation 13 to get our final expression for SR

SR[u] =
X

e∈R[u]

rel(e)

|R[u](e)|

|R[u]ovbec|X
n=1

πn+m−1
(e) (14)

4. XML RETRIEVAL METRICS
In this section we briefly present and discuss three XML

retrieval measures. XCG is presented first (a detailed ex-
perimental comparison with SR is deferred to the following
section), followed by PRUM and HiXEval.

4.1 Extended Cumulated Gain
Extended cumulated gain (XCG) is a cumulated gain (CG)

[8] measure that addresses structural dependencies in the
recall-base, such as near-misses and overlap, in content-oriented
XML retrieval evaluation [10]. It is a flexible measure that
incorporates multi-criteria assessments and modeling of user
satisfaction. The relevance assessment of elements is used
to determine the ideal recall-base, which contains elements
with the highest scores without overlapping [9], and the full
recall-base, which contains all relevant elements. Using two
recall-bases, ideal and full, requires dependency normalisa-
tion heuristics to ensure that the total score for any element
does not exceed the maximum score achievable when the
ideal node itself is retrieved [10].

The scores of elements are determined using a relevance
value function. The score is indicative of the utility of the
element to a user. The relevance value function uses quan-
tizations of relevance assessments to return a score in [0, 1].
The function takes into account overlap, ranking of elements
and provides a weighting factor α to represent the user’s in-
tolerance to overlapped elements.

The cumulated gain and ideal gain are calculated by sum-
ming the scores of ranked elements up to some prescribed
position. Denote the score of the a-th element in a list of
kR length as xG[a], a ∈ [1, kR]. Furthermore, denote the
score of the a-th element in an ideal list of kI length as
xI[a], a ∈ [1, kI ]. So, up to a given position a,we express the
cumulated score for a list (xCG) and the cumulated score
for an ideal list (xCI) as follows,

xCG[a] =

aX
i=1

xG[i], xCI[a] =

aX
i=1

xI[i]

There are a number of different ways to compare the cu-
mulated scores for a list and its ideal. In this work, we con-



sidered only the normalized extended CG (nxCG), which is
simply the ratio of the cumulated scores for the list and its
ideal, such that

nxCG[a] =
xCG[a]

xCI[a]
(15)

4.2 Precision Recall with User Modeling
Precision recall with user modeling (PRUM) is one of the

newest proposals for XML retrieval evaluation metrics. It
measures the percentage of ideal elements in a collection
that are seen by a user while browsing a ranked list [16, 15].
Like XCG, it relies on the definition of an ideal recall-base
which consists of relevant elements that do not overlap. In
addition, PRUM incorporates multi-criteria assessments and
modeling of user satisfaction based on structural constraints.
Unlike XCG, PRUM is a probabilistic measure and is defined
as the expected number of ideal elements that are seen by
the user, up to a given rank, while she browses the collection
from the ranked list [1].

SR and PRUM use similar probabilistic event models and
user models. But they differ in how relevance is considered.
In SR, there is a distinction between relevance of an element
and the relevance of a set of elements. SR does not explic-
itly include the use of multi-criteria assessments. SR em-
ploys summaries to model user satisfaction, whereas PRUM
uses browsing habits derived from the assessment process.
PRUM is at an early stage of development, and real world
results to compare with SR are not available at the present
time.

4.3 Highlighting XML Retrieval Evaluation
Highlighting XML retrieval evaluation (HiXEval) [14] is

another recently proposed approach to measure the effec-
tiveness of XML retrieval systems. HiXEval was motivated
by the need to simplify XML evaluation and make it con-
form to well-established evaluation measures such as preci-
sion and recall. HiXEval was proposed as an extension of the
traditional definitions of precision and recall to include the
knowledge obtained from the highlighting assessment proce-
dure adopted at INEX 2005. The biggest difference between
HiXEval and other measures is its contention that the pur-
pose of the XML retrieval task is to find elements that con-
tain as much relevant information as possible, without also
containing a significant amount of non-relevant information.
With the way relevance has been assessed since 2005, this
translates to the aim of returning elements that contain as
much highlighted (relevant) content as possible, and as little
non-highlighted (non-relevant) content as possible.

In calculating precision and recall, the explicit structure of
the documents is ignored because these measures are based
upon the amount of highlighted text in and across elements
and documents. We leave a comparison of SR with HiXEval
for future work.

5. SR AND XCG APPLIED TO INEX
The following investigations were conducted on a single

run from 3 different systems for top-10 results for the thor-
ough task in 114 INEX Wikipedia topics [13]. At this stage
of our work, the focussed task was not considered because
it does not allow overlapping elements, and thus SR modi-
fied measures (such as precision or precall) would have the

Table 2: System outputs for topic 295
Notation for Systems

x/- : relevant/irrelevant element

‖ : rank boundary

o[p/c/s] : overlap with ancestor/descendant/sibling

IBMHAIF A : ‖xocp‖xoc‖xop‖xoc‖xop‖xops‖xoc‖-ops‖xop‖xoc‖

172477.xml 1136198.xml 14724.xml

8: /article[1]/body[1] 0: /article[1]/body[1] 2: /article[1]/body[1]

9: /article[1] 1: /article[1] 3: /article[1]

76266.xml 5: /article[1]/body[1]/section[2]

4: /article[1]/body[1] 7: /article[1]/body[1]/section[5]

6: /article[1]

k = 10, r = 9, ranks = 10, relevant docs = 4

LIP6 : ‖-op‖-oc‖-oc‖-op‖xoc‖xop‖-oc‖-op‖-op‖-oc|

3130820.xml 196073.xml 1331267.xml

7: /article[1]/body[1] 0: /article[1]/body[1] 6: /article[1]

9: /article[1] 1: /article[1] 8: /article[1]/body[1]

14724.xml 1773624.xml

4: /article[1] 2: /article[1]

5: /article[1]/body[1] 3: /article[1]/body[1]

k = 10, r = 2, ranks = 10, relevant docs = 1

MAXP LANCK : ‖-op -‖x‖-oc‖x‖-‖-‖x‖-‖-‖

1773624.xml 1331267.xml 172477.xml

3: /article[1] 6: /article[1] 7: /article[1]

0: /article[1]/body[1]/section[1] 2251312.xml 1711143.xml

23273.xml 9: /article[1] 8: /article[1]

5: /article[1]/body[1]/section[9] 14724.xml

63285.xml 419136.xml 4: /article[1]

2:/article[1]/body[1]/section[4] 1: /article[1]/body[1]/section[6]

k = 10, r = 3, ranks = 9, relevant docs = 3

same value as unmodified measures 1. The results obtained
are illustrative of the differences between SR and XCG. The
incoming summary for calculating isolation was generated
from the Wikipedia collection using the methodology pre-
sented in section 3.1. For XCG, we used the normalized ex-
tended cumulated gain (nxCG) with the configuration gen-
Lifted, overlap on, and α = 1. The experimental measures
were structural relevance with precall (SRPL) and precision
(SRP) as described in section 2.1.

Table 3 shows the graphical results for topics 295, 307,
and 335 on the three columns on the left (discussed later
on). The right-most column shows the system rankings for
each measure in terms of the number of topics that resulted
in a given system rank order. The ranking was done for
each measure and for each topic by ordering the systems in
descending order based on the area of each system’s per-
formance curve. The histograms are labeled according to
the ranking of systems from left (best) to right (worst):
(M )AXPLANCK, (I )BMHAIFA, and (L)IP6. For instance,
the first column of the top-most histogram shows that for
SRP there were 60 topics where the systems were ranked
MIL, or in other words, were ranked in descending order
of performance: MAXPLANCK, IBMHAIFA, LIP6. The
histograms for SRP and SRPL are sub-divided to show the
number of topics for which the measure in question did not
obtain the same ranking relative to rankings in XCG. Re-
turning to the SRP histogram, for example, the first column
in the histogram shows that SRP ranked the systems as MLI

1We will investigate in future work the use of SR as a meanss
to measure relevance in the recall-base itself.



for 60 topics and 50 of those topics were also ranked as MLI
by XCG.

Overall, SRP agreed with XCG for 78 out of 114 topics
or 68%. SRPL agreed with XCG for 38 out of 114 topics or
33%. Since XCG, SRP and SRPL produce different results,
we turn our attention to a small representative subset of
topics to provide some insight into the differences.

5.1 Individual Topic Comparison
The detailed results for topic 295, including ranked list,

overlap of elements, label paths, and documents, are shown
in table 2. The notation used for representing overlapped
elements is at the top of table 2. The first column of table
3 shows the evaluations for SRP, SRPL, and XCG for topic
295. Referring to table 2, a user who either randomly ex-
plores a list or systematically explores from the head of a
list to the end would find the results of IBMHAIFA the best
for topic 295. It contains more relevant documents and rele-
vant elements occurring at earlier ranks than either LIP6 or
MAXPLANCK. This observation is reflected in both SRP
(table 3, column 1, row 1) and SRPL (table 3, column 1,
row 2). XCG (table 3, column 1, row 3) differs in that it
concludes that MAXPLANCK and IBMHAIFA are the best
and nearly equal.

Topic 295 is a good example of how overlap affects the
relevance of a list. This depends on the composition of the
ranked list in terms of elements, ranking, and overlap. For
instance, SRP for topic 295 shows a steep decline in the
output of IBMHAIFA at 20% recall because of overlapped
elements. We see SRP fluctuate across recall levels, up-
ward with novel elements and downward with overlapped
elements. At recall, it settles around 40% precision. But,
we can see that the SRP is significantly above 40% in early
ranks, and as the overlap becomes more pronounced at late
recall levels the SR precision eventually achieves the pre-
cision based on 4 documents out of 10 elements. We see
this behavior because documents are independent sets of el-
ements and this is reflected in SR-based precision. SRPL
(table 3, column 1, row 2), on the other hand, does not ex-
hibit this behavior because precall is based on the expected
search length which is strongly determined by the number
of irrelevant elements. SR does not account for irrelevant
elements, and we can see that overlap degrades SRPL for
IBMHAIFA only slightly (i.e., 9 out 10 elements in Table 2
are relevant with SRPL at about 80% for recall 1).

We recognize two general cases that we believe explain the
differences between SRP and XCG. The first case involves
over-penalization where results contain parent elements con-
sistently ranked higher than children elements; XCG seems
to over-penalize these configurations for overlap. The second
case involves early recall, where results containing relevant
elements at early ranks and results containing relevant ele-
ments at late ranks will perform overall equally in XCG. In
contrast, results containing relevant elements at early recall
score higher in SRP.

Case 1: Overlap Penalization. Topic 307 is a good
example of overlap penalization. Over-penalization occurs
because of the dependency normalisation heuristic that dif-
ferentiates between the order of parent and child elements in
a ranked list. The heuristic is that if a parent element is seen,
then its child elements are considered fully seen, whereas if
a child element is seen then its parent is only partially seen
[10]. This heuristic results in over-penalization in all config-

Table 4: System outputs for topic 307
IBMHAIF A : ‖-op‖-oc‖xop‖xop‖xoc‖xoc‖xop‖x‖xoc‖x‖

k = 10, r = 8, ranks = 10, docs = 4, relevant docs = 3

LIP6 : ‖xoc‖xop‖-oc‖-op‖-oc‖-op‖xoc‖xop‖-oc‖-op‖

k = 10, r = 4, ranks = 10, docs = 5, relevant docs = 2

MAXP LANCK : ‖x -‖-oc‖x‖-‖-‖-‖x‖-op‖-‖

k = 10, r = 3, ranks = 10, docs = 9, relevant docs = 3

Table 5: System outputs for topic 335
IBMHAIF A : ‖xop‖xoc‖-ops‖xocps‖-ocps‖xops‖-ops‖-ops‖xops‖xocps‖

k = 10, r = 6, ranks = 10, docs = 1, relevant docs = 1

LIP6 : ‖-ocs ‖-ops ‖-ocs ‖-ops ‖xocs ‖xops ‖xocs ‖xops ‖-ops ‖-ocs ‖

k = 10, r = 4, ranks = 10, docs = 5, relevant docs = 2

MAXP LANCK : ‖- - ‖- ‖- x ‖- ‖- ‖- ‖xocs ‖-ops ‖

k = 10, r = 2, ranks = 8, docs = 9, relevant docs = 2

urations of XCG except where α = 0. Referring to Table 3,
IBMHAIFA contains the best results because it returns both
more relevant documents, and more relevant elements. But
because parent elements are being ranked higher than child
elements, XCG ranks IBMHAIFA last in performance. This
example also demonstrates the inverse of this phenomena,
where LIP6 is rewarded for overlap in its first two ranks.

Case 2: Early Recall. Topic 335 is a good example
of how XCG is not sensitive to early recall in a ranked list.
XCG evaluates MAXPLANCK as the best search engine for
topic 335 (see table 3, column 2, row 3). Referring to table
5, this makes some sense because MAXPLANCK returns
the most number of relevant documents with the least over-
lap. But, MAXPLANCK is not the best list because the
relevant elements in MAXPLANCK occur at the end of the
list. In this regard, we would posit that IBMHAIFA has a
better result. This can be see in topic 335 for IBMHAIFA
that SRP is highest in early recall, although performance
degrades significantly in later recall.

6. CONCLUSIONS AND FUTURE WORK
We have presented a general model of structural relevance

and shown how it can be used to modify precall and preci-
sion for measuring effectiveness in XML retrieval. The SR
approach uses XML summaries to represent how users per-
ceive overlap in XML retrieval. The experimental results
presented suggest that SR handles situations such as over-
penalization of overlap due to heuristics and sensitivity to
results with early recall more effectively than XCG. More
significantly, we show that SR does not require an ideal
recall-base or dependency normalization, as is the case for
existing measures.

Future work includes obtaining results on the performance
of SR for a larger number of systems, carrying out additional
comparisons of SR (with XCG, PRUM, and HiXEval), un-
dertaking reliability tests for the SR metric, and further de-
veloping the application of summary-based techniques to SR
measures.
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