
Sound ranking algorithms for XML search

Djoerd Hiemstra1, Stefan Klinger2, Henning Rode3, Jan Flokstra1, and Peter Apers1

1University of Twente, 2University of Konstanz, and 3CWI
hiemstra@cs.utwente.nl, klinger@inf.unikonstanz.de,

henning@cwi.nl, flokstra@cs.utwente.nl, apers@cs.utwente.nl

ABSTRACT
We argue that ranking algorithms for XML should reflect
the actual combined content and structure constraints of
queries, while at the same time producing equal rankings
for queries that are semantically equal. Ranking algorithms
that produce different rankings for queries that are seman-
tically equal are easily detected by tests on large databases:
We call such algorithms not sound. We report the behaviour
of different approaches to ranking content-and-structure que-
ries on pairs of queries for which we expect equal ranking re-
sults from the query semantics. We show that most of these
approaches are not sound. Of the remaining approaches,
only 3 adhere to the W3C XQuery Full-Text standard.

1. INTRODUCTION
Models for ranked retrieval of XML data should comprise
four parts: 1) a model of the text, 2) a model of the struc-
ture, 3) a query language, and 4) a ranking algorithm. Rank-
ing is of the utmost importance if an effective XML search
system is needed. Some queries might match millions of el-
ements from the text database, but users will only be able
to inspect a few. Many of the early structured text retrieval
models do not consider ranked retrieval results, or if they do
only as an afterthought, i.e., by ranking the retrieval results
using a text-only query disregarding the structural condi-
tions in the query [6]. A simple but powerfull way to take
the structure of the results into account is to apply a stan-
dard information retrieval model to the retrieved content,
and then propagate or aggregate the scores based on the
structure [7, 13]. In several of these approaches to ranking,
the propagation is guided by weighting paths to elements dif-
ferently by so-called augmentation weights [8, 9], to model
for instance that a title element is more likely to contain
important information than a bibliography item. Instead of
propagating or aggregating the scores from the leaf nodes,
algebraic approaches include the ranking functionality in-
side each operator of the query language [2, 16]. Ranking
might also include relaxation of the queries’ structural con-
ditions, for instance by rewriting complex queries step-wise
to simpler queries [4]. The development of effective rank-
ing algorithms for XML information retrieval is studied in
the workshops of the Initiative for the Evaluation of XML
retrieval (INEX) [14].

This paper studies mathematical properties of ranking algo-
rithms. While we pursue effective algorithms as described
above, in this paper we additional pursue sound ranking al-

gorithms. Ranking algorithms for structured information
retrieval are sound if the following two conditions are met:

1. Ranking should reflect the actual, combined content
and structure constraints;

2. Two queries that are semantically equal (from a stan-
dard –unranked– XPath or XQuery perspective) should
produce the same ranked results.

An example of a system that violates Condition 1 would
be a system that first runs the query as a Boolean selec-
tion, and then ranks the resulting elements using a standard
text retrieval model, i.e., a ranking algorithm that ignores
the structure. Suppose we are looking for articles that talk
about ranked xml retrieval which were supported in one way
or another by John Doe. This might be formulated as fol-
lows using the NEXI query language [18] (Similar examples
will be provided for XQuery Full-text [1] below).

//article[about(.//p, ranked xml retrieval) and

about(.//ack, john doe)]
(1)

NEXI stands for Narrowed Extended XPath I, a version of
XPath that only supports the descendant and self steps, but
that is extended by a special about() function. The results
of a NEXI query are not in document order, but ranked
by estimated relevance to the about() parts. If the system
first performs a Boolean selection, then it suffers from the
well-known disadvantages of Boolean systems: if we inter-
pret the about() function as a conjunctive query for which
all three words ranked, xml and retrieval should occur in
the document, then it is for long queries unlikely that any
article matches the query (not because there are no relevant
articles, but because they discuss for instance probabilistic
xml retrieval, or ranked structured retrieval, or ranked xml
search, etc. In that case the result would be empty. If
we however interpret the about() function as a disjunctive
query for which the matching of a single word suffices, then
the ranking (i.e., a ranking that ignore the structure) would
ignore the paragraphs and acknowledgments. In this case,
the top document might very well discuss the holiday di-
ary of John Doe, in which he acknowledges the top ranked
XML systems for retrieval (i.e., it might be the paragraph
the matches john doe and the acknowledgments that match
ranked xml retrieval).

We believe a true XML retrieval system should meet Condi-
tion 1 above. Suppose such a system executes the following

query.

//article[about(.//p1, xml)]|//article[about(.//p, xml)] (2)

If Condition 1 is met then the system’s ranking reflects the
actual, combined content and structure constraints, so the
ranking will reflect a match in the p1 elements or a match
in the p elements. These queries occur a lot in complex
documents, such as the IEEE journal data used in the Ini-
tiative for the Evaluation of XML Retrieval (INEX) from
2002 to 2005 [14]. In this collection the elements p1 and
p both refer to types of paragraphs, as do the elements p2,
ip1, ip2, etc. In queries, the user usually does not want to
distinguish these different kinds of paragraphs, hence the
query above. In fact, such cases were that frequent in INEX
that the organization introduced tag equivalence classes [14],
and additional query syntax to ease the formulation of such
queries (which is also allowed in XPath 2.0). The following
NEXI query is equivalent to the query above:

//article[about(.//(p1|p), xml)] (3)

Suppose the system ranks the returned articles for the sec-
ond query differently than for the first query, resulting in
8 articles in the top 10 that were previously not in the top
10. In that case, the system violates Condition 2: Because
the queries are semantically equal, they should result in the
same ranking. In order for a ranking algorithm to be sound
it should meet Condition 1 and Condition 2. We will show
in this paper that for systems that meet Condition 1, it is
not trivial to meet Condition 2 as well. In fact, we believe
it might be impossible to come up with a ranking approach
that meets Condition 2 in all cases, especially in the case of
XQuery full-text for which there are many ways of formu-
lating the same query.

In this paper, we will investigate the soundness of ranking
algorithms by systematically comparing the retrieval results
of ranking algorithms that meet Condition 1 for two queries
that are semantically equal. As a starting point of our study,
we hypothesize that all ranking algorithms meet Condition
2 as well. Only if we find an example that violates Condition
2 we will drop the hypothesis. We will show that for almost
all reasonable ranking algorithms, there are examples of two
semantically equal queries and a data set for which the two
queries produce a different ranking.

The paper is organized as follows. Section 2 describes the
queries used for analysing the soundness of ranking algo-
rithms, and how they are executed. Section 3 presents the
test data used. Section 4 presents the ranking approaches
we evaluated. In Section 5 the experimental results are pre-
sented. Finally, Section 6 concludes this paper.

2. THE TEST QUERIES
Our analysis of the problem follows that of Mihajlovic [15,
Chapter 3], who identifies three requirements for scoring
in structured retrieval models. XML ranking algorithms
should provide:

Score computation: Given a text query and a set of nodes,
compute the score of each node. This is provided by
traditional information retrieval models.

Score propagation: This is needed for all XPath axis steps.
To do an axis step from a node for which a score was
computed, the scores need to propagate to the result
nodes. For some axis steps, for instance the parent
step, the score of several children needs to propagate
to a single result node.

Score combination: Score combination is needed if the
same set of nodes is scored multiple times and the fi-
nal score should reflect the scores of the nodes in both
sets.

As an example, consider the following XQuery Full-Text
query, that ranks the acknowledgments elements (ack) that
thank John Doe in articles about XML, similar to the query
in Example 1 above:

for $d score $s in doc("test.xml")//ack

where ../article ftcontains "xml"

and . ftcontains ("John", "Doe")

order by $s desc

return $d

(4)

Here, score computation is needed for the article elements
(scored by the similarity to xml) and for the ack elements
(scored by the the similarity to John Doe). The query should
rank ack elements, so the scores of the article elements
needs to be propagated to their child ack elements. Finally,
the two scores for each ack element need to be combined in
a final score.

If the user wants to rank the acknowledgments from articles
about XML that thank John Doe, he/she might as well pose
the following query.

for $d score $s in

doc("test.xml")//article[. ftcontains "xml"]/ack

where . ftcontains ("John", "Doe")

order by $s desc

return $d

(5)

In fact, several queries are possible that are semantically
equal as meant by Condition 2 above. We define semantic
equality as follows: The XPath representation of a NEXI
query is defined as the query produced by replacing every
NEXI function about(n, s) with fn:contains(fn:string(n),

"s"). Two NEXI queries are semantically equal if and only if
their XPath representations are equivalent, i.e., return the
same result when evaluated. Similarly, the XQuery represen-
tation of an XQuery Full-Text query is defined as the query
produced by replacing every XQuery Full-Text function n

ftcontains "s" by fn:contains(fn:string(n), "s"), and two
Full-Text queries are semantically equal if and only if their
XQuery representations are equivalent. However, because
of the properties of score computation, propagation, and
combination, two semantically equal queries might produce
different rankings, and might therefore return different (top)
elements to the user, i.e., the ranking algorithm is not sound.

Case 1: The semantics of score computation
In our first case we look at the semantics of score compu-
tation. Score computation is the most important of Miha-
jlovic’s requirements. Here, we only consider simple scoring,
i.e., scoring of queries without using proximity or phrases (in

NEXI, phrases can be marked as with double quotes), i.e.,
the following query.

//article[. ftcontains ("xml", "ir", "db")] (6)

In XQuery Full-text, this query retrieves articles that match
any of the terms, i.e., the standard behavior is that of a
Boolean OR query. Given these semantics, we expect scor-
ing to be compositional, that is, if we select article contain-
ing “xml” and union those with articles containing “ir”, “db”
as shown in the following query, then we expect the same
results as the query above.

//article[. ftcontains "xml"]|//article[.

ftcontains ("ir", "db")]
(7)

Several alternative formulations are possible in XQuery Full-
Text, for instance //article[. ftcontains "xml" ftor ("ir",

"db")] or //article[. ftcontains "xml" or . ftcontains("ir",

"db")]. The alternative formulations select the exact same
articles, and if simple scoring behaves as a Boolean OR
query, then we expect a sound ranking approach to produce
the same rankings for all these formulations.

However, from the user’s point of view, we might argue
that scoring should have the semantics of the Boolean AND:
the best documents are the ones containing all three query
terms, not just many occurrences of either query term. If
simple scoring behaves as a Boolean AND query, then we
expect a sound ranking of Query 6 approach to produce the
same rankings as the following query:

//article[. ftcontains "xml"][.

ftcontains("ir", "db")]
(8)

or alternative formulations: //article[. ftcontains "xml"

ftand ("ir", "db")], or //article[. ftcontains "xml" and .

ftcontains ("ir", "db")]. These queries (and similar NEXI
queries) correspond to different query plans in the PF/Tijah
XML search system [11]. These plans use so-called score re-
gion algebra to process these queries. Figure 1 contains the
query trees for the three plans. Instead of putting the region
algebra operators in the trees (the exact definition of alge-
braic operators in outside the scope of this paper), the figure
contains the partial queries that represent the intermediate
results at that stage of the query plan.

//article

//article[xml db ir]

//article[xml db ir]

//article[xml]

//article

//article[ir db]

//article//article

//article[xml]

//article[xml]|//article[db ir]

Figure 1: Query plans 1a, 1b and 1c for Case 1

Following the line of reasoning of sound ranking algorithms
presented above, the simple scoring plan shown in Figure
1a should either produce the same ranking as the disjunc-
tive plan shown in Figure 1b, or it should produce the same
ranking as the conjunctive plan shown in Figure 1c. If Plan

1a produces a result different from both Plan 1b and 1c,
then the score computation is not sound: Users of retrieval
systems should be able to understand the difference between
OR-queries and AND-queries, however, it is hard to antici-
pate on semantics that is different from these two.

Case 2: Score propagation – downwards
In the second case we look at downwards score propagation:
Suppose the user is interested in sections about “databases”
from articles about “xml”. In this case, the scores of the
article elements have to be propagated to the section ele-
ments. Such a query can be processed in two ways. Either
first score all articles, propagate the scores to the contained
sections, and score those, as shown in the following query:

//article[. ftcontains "xml"]//section[.

ftcontains "db"]
(9)

... or, first score all sections, and then score the articles that
contain these sections, as follows:

//section[. ftcontains "db"][./ancestor::article

ftcontains "db"]
(10)

The query trees of the actual query plans are shown in Fig-
ure 2.

//article

//article[xml]//section[db]

//article[xml]//section

//article[xml]

//section

//section[db]

//article[xml]//section[db]

//article

//article[xml]

Figure 2: Query plans for Case 2

Following the line of reasoning of sound ranking algorithms
presented above, there is no reason why both queries and
both query plans above should not produce the exact same
ranking of section elements.

Case 3: Score propagation – upwards
In the second case we look at upwards score propagation:
Suppose the user that was interested in articles about “xml”
with sections about “databases” now wants to retrieve the
articles. In this case, the scores of the section elements have
to be propagated upwards to the article elements. Again,
the query can be processed in two ways. Either first score
all articles, and then propagate the scores to the contained
sections upwards as shown in the following query:

//article[. ftcontains "xml"][.//section

ftcontains "db"]
(11)

... or, first score all sections and propagate the score to
articles that contain these sections, as follows:

//section[. ftcontains "db"]/ancestor::article[.

ftcontains "xml"]
(12)

The query trees of the actual query plans are shown in Figure
3. Again, a sound ranking approach would produce the exact
same ranking for both queries.

//article

//article[xml]

//article[xml][.//section[db]]

//section[db]

//section

//article[.//section[db]][xml]

//article[.//section[db]]

//section[db]

//section

Figure 3: Query plans for Case 3

Case 4: Score Combination – union
Case 4 looks at score combination, more specifically at score
combination when the union of two node sets is taken. Sup-
pose the user wants articles that mention “xml” in a section,
or that mention “db” in the title:

//article[.//section ftcontains "xml" or .//title

ftcontains "db"]
(13)

As discussed above, both XQuery/XPath Full-Text and NE-
XI support a union operator “|” that might be used as well.
For instance, an alternative formulation of the query above
would union two sets of article nodes, one of which the sec-
tions contain “xml” and another set of article nodes which
titles contain “db”.

//article[.//section ftcontains "xml"]|//article[

.//title ftcontains "db"]
(14)

For article nodes that are in both sets, the union operator
should somehow combine the scores. The query trees of the
actual query plans are shown in Figure 4. A sound ranking
approach produces the exact same ranking for both queries.

//article[.//title[db]]

//title

//title[db]

//section

//section[xml]

//section[xml]|//title[db]

//section[xml]

//section

//article[.//section[xml]]|//article[.//title[db]]

//article[.//section[xml]]

//article[.//section[xml] or .//title[db]]

//title[db]

//title

Figure 4: Query plans for Case 4

Mihajlovic’ score region algebra [15] supports an intersection
operator similar to the union operator above. Such an oper-
ator is not supported by the XQuery/XPath Full-Text and
NEXI, since it is unnecessary in practice. Therefore, we will
not consider score combination in the case of intersecting
two node sets.

Case 5: XQuery Full-text scoring properties
The XQuery Full-text standard imposes very few restric-
tions on scoring: The numeric score computed by queries is
implementation-dependent, i.e, scoring may differ between
implementations; scoring is not specified by the W3C speci-
fication, and scoring is not required to be specified by the im-
plementor for any particular implementation. The standard
however imposes the following two restrictions on full-text
contains expressions [1]:

A full-text contains expression returns a Boolean value.

So, a full-text contains expression always distinguishes the
matching nodes from the non-matching nodes. In Miha-
jlovic’s score region algebra [15], operators compute scores
for all nodes, that is, all nodes always match the expression.
One might argue that this follows the XQuery Full-text stan-
dard (each full-text expression always returns true), but at
least it is not in the spirit of XQuery Full-text. We will call
the semantics of the score region algebra operators ranking
semantics and the semantics suggested by XQuery Full-text
matching semantics. In practice, matching semantics is of-
ten required in practical systems. The current PF/Tijah
implementation has default matching semantics. We inves-
tigate both matching semantics and ranking semantics to see
which of the two is more likely to produce sound ranking.

Score values are of type xs:double in the range [0, 1].

This restriction is not imposed by score region algebra [15].
In fact, many well-performing ranking functions – for in-
stance Okapi’s BM25 [17] – produce scores greater than 1
in some cases, and even if they do not, the approach might
produce scores greater than 1 after score propagation and
score combination.

Case 5 does not define an extra set of queries. The sound-
ness of rankings produced by the queries in Case 1 to 4 above
are checked when using matching semantics and ranking se-
mantics. Furthermore, we check if the scores of the results
of the queries in Case 1 to 4 are in the range [0, 1].

3. THE TEST DATA
We will evaluate the test cases on artificial data to en-
sure that we control the circumstances in which queries fail.
Some ranking algorithms might be sound in most cases, for
instance, they might be sound, unless the elements that are
ranked are nested. In the examples above, we would ex-
pect every article to have only one acknowledgments section;
which might actually be defined in a DTD or XML schema.
The schema might also contain elements that have a many-
to-one relation to article elements, such as paragraph ele-
ments, or elements that might be nested inside themselves,
such as section elements (i.e., sections, subsection, and sub-
subsections might all be ambiguously referred to as section.
When element scores are propagated through the document
structure, they might have to be aggregated in case of many-
to-one relations, or divided in case of one-to-many relations,
or both aggregated and divided in case of nested relations.
The following DTD contains several of such cases:

<!ELEMENT root (article | report)* >

<!ELEMENT article (title, section+) >

<!ELEMENT report (title, section+) >

<!ELEMENT section (heading, (section+ | paragraph+)) >

<!ELEMENT title (#PCDATA) >

<!ELEMENT heading (#PCDATA) >

<!ELEMENT paragraph (#PCDATA | list)* >

<!ELEMENT list (item | list)* >

<!ELEMENT item (#PCDATA) >

We distinguish the following 5 cases in which elements from
two node sets can be nested: 1:1, 1:n, 1:n where the elements
of the second node set are nested, n:m where the elements
of first node set are nested, and n:m where the elements of
both sets are nested.

article vs. title 1 : 1
article vs. paragraph 1 : n

article vs. section 1 : n nested
section vs. paragraph n nested : m

section vs. list n nested : m nested

The queries presented in the cases above are all examples
of the “1:n nested” type, i.e., the queries refer to article

elements and section elements. Each query is run as in one
of the above five types; so, article and section are replaced
by: 1) article elements and title, 2) article elements and
paragraph, 3) article elements and section, 4) section ele-
ments and paragraph, 5) section elements and list.

4. THE RANKING APPROACHES
We test a total number of 200 ranking approaches for XML
search. These approaches are for an important part the
same as the approaches Mihajlovic [15] evaluated in oder
to find effective ranking approach for XML search. So, our
ranking approaches are motivated mostly by testing those
approaches for which we expect good recall and precision
values in standard information retrieval evaluations, such as
those provided by INEX. The number of ranking approaches
that can be defined for XML search is endless however, and
we do not attempt in anyway to test a complete (sub-)set of
all possible ranking functions.

The choices of our ranking approaches are restricted by
PF/Tijah’s algebraic approach to XML search. Each op-
erator in score region algebra follows the same pattern: It
operates on a context node set (context region set), and a
target node set (target region set). Both the context nodes
and the target nodes might have scores already from pre-
vious operations. Each operator has to combine the score
of target node with the scores of (possibly) multiple match-
ing context nodes. For each target node, we distinguish
three situations: 1) the target node does not match any
context node: In this case the target node is not returned
(matching semantics) or it is returned with a default score
(ranking semantics); 2) the target node matches one and
only one context node: In this case, the target node is re-
turned with the combined score of the target node and the
matching context node; 3) the target node matches more
than one context node: In this case, scores of the matching
context nodes are first aggregated, and then combined with
the score of the target node. Aggregation and combination
define two of the dimensions along which we define ranking

approaches, the other dimensions are the retrieval model,
and ranking/matching semantics:

Score combination
We test 5 different ways to combine the scores of the context
node and the target node: adding, multiplying, maximum,
minimum, and average.

Score aggregation
We test the same 5 different ways to aggregate the scores
of the matching context nodes: sum, product, maximum,
minimum, and average. This brings the total number of
approaches to 25.

The retrieval model
We test four different retrieval models, bringing the total
number of approaches to 100: LMS, a standard language
model using linear interpolation smoothing [10]; LM, a stan-
dard language model without smoothing; NLLR: normalized
log-likelihood ratio (a simple derivation of LMS that pro-
duces log-linear scores) [12]; BM25: Okapi’s BM25 ranking
formula [17].

Ranking semantics vs. matching semantics
We test each approach with ranking semantics (each opera-
tor returns all nodes with a score), and matching semantics
(each operator returns a selection of the nodes), so 200 ap-
proaches in total over all four dimensions.

5. INVESTIGATING THE SOUNDNESS IN
PRACTICE

Using the DTD described in Section 3, a 100kB artificial test
collection with articles and reports was generated. The text
nodes were generated from a simple language model of three
words (“ir”, “db”, and “xml”), where each word is generated
by some probability. This way, almost every element will
match a query to some extent, with scores similar to other
elements, possibly resulting in different rankings. Each of
the 200 ranking approaches from Section 4 was tested on
a pair of queries from one of the four cases from Section 2,
where each query followed one of the five ways in which data
can be nested described in Section 3, defining in total 5000
queries. We summarize the results by reporting the most
important lessons learned.

Lessons for Case 1: Score computation
In all cases that used the NLLR retrieval model, we detected
unsound ranking behavior on the test data. The NLLR re-
trieval model differs from the LMS retrieval model mainly
because it uses query length normalization. Apparently, re-
trieval models that use some form of query length normal-
ization are not sound. Other examples of retrieval models
that uses query length normalization are vector space mod-
els that use the cosine similarity.

For almost all ranking approaches that use matching seman-
tics, we detected unsound ranking behavior when comparing
Plan 1a to 1c. Apparently, matching semantics excludes the
possibility to follow the semantics of AND-queries, which
seems logical because most models retrieve elements even if

they do not contain all query terms. An exception is the LM
retrieval model, i.e., the language model without smoothing:
this is the only model that does not produce unsound rank-
ings behavior when comparing Plan 1a to 1c.

Unsound ranking behavior was occassionally detected when
comparing Plan 1a to 1b. The ranking approaches tested
are more likely to follow the semantics of OR-queries.

Lessons for Case 2: Score propagation – down
In most cases that used the BM25 retrieval model, we de-
tected unsound ranking behavior, except when score combi-
nation uses the product or the maximum. We believe the un-
sound behavior can be explained by the fact that the BM25
retrieval model uses the number of documents as one of its
parameters. This was implemented in the system as the size
of the target node set (i.e., the size of the set that needs
to be ranked). We believe implementing BM25’s N (the
number of documents) by taking the size of the set to be
ranked is the only sensible thing to do. We cannot take a
predefined N , because the set might be the result of a com-
plex selection query, possible combining for instance article
elements and report elements and then restricting them on
some other criterion.

The size of the sets, however, differs depending on the query
plan used. This is even the case in more simple queries
such as //article//section[. ftcontains "xml"]: If the sys-
tem first selects the sections that are contained by articles
(excluding the sections contained by reports in our test data)
then the size of the set to be ranked is obviously smaller than
the size of the complete set of sections as represented by the
query //section[. ftcontains "xml"][./ancestor::article]

Interestingly, all tf.idf term weighting algorithms use the
number of documents to be ranked in their definition. The
results indicate that all such approaches would produce un-
sound rankings.

We did not detect unsound ranking for BM25 if score combi-
nation uses the product or the maximum. If the maximum
is used for score combination, then the approach would of-
ten ignore the BM25 score, so this approach is useless in
practice. We are unable to explain the behavior when score
combination uses the product: It might be an artefact of the
data. This needs to be analyzed in the future.

Lessons for Case 3: Score propagation – up
In almost all cases that used the BM25 retrieval model, we
detected unsound ranking behavior of the queries on the test
data, except when score combination uses the maximum. As
above, we have strong indication that this is due to the use of
the size of the set that needs to be ranked in the definition of
the model, which differs depending on the query plan used.

Lessons for Case 4: Score Combination – union
Unsound ranking was detected if score aggregation uses the
average score of all matching context nodes. This might
be due to the fact that taking the average function is not
associative, and produces different values depending on the
order in which it is evaluated.

Lessons for Case 5: XQuery FT properties
By design, the ranking approaches using ranking semantics
(half of the approaches) do not adhere to the XQuery Full-
text standard, or at least they are not in the spirit of the
standard. A bigger problem might be the restriction that
scores should be between 0 and 1. The retrieval models
NLLR and BM25 produced scores greater than 1 in all cases,
the score aggregation that uses the sum of scores also pro-
duced scores greater than 1 in most cases. The score combi-
nation that uses the sum of scores produced scores greater
than 1 in some cases.

Overall lessons learned
If we only consider ranking approaches that: 1) did not pro-
duce unsound rankings; 2) did never produce scores greater
than 1; and 3) use matching semantics, then only 3 ap-
proaches remain: These three approaches use the language
model without smoothing (LM), multiply for score combi-
nation and either product, minimum or maximum for score
aggregation. Whereas approaches based on language mod-
els without smoothing might be sound, it is likely that the
search quality of the systems is below average: It is well-
known, that smoothing is important for getting high quality
retrieval results.

If we drop the requirement that scores should never by grea-
ter than 1, then 4 ranking approaches remain. Again, all of
them use the LM retrieval model.

If we however drop the requirement that scoring should uses
matching semantics, then 13 ranking approaches remain,
among which several approaches use the language model
with smoothing (LMS).

6. CONCLUSIONS
We report the behavior of 200 ranking approaches to ranking
content-and-structure queries on pairs of queries for which
we expect equal ranking results from the query semantics.
We show that most of these approaches are not sound, i.e.,
they fail to produce equal rankings in the cases studied.
Of the remaining approaches, only 3 adhere to the W3C
XQuery Full-Text standard, which requires so-called match-
ing semantics, and which requires retrieval scores to be smal-
ler or equal than 1 at all times. The difficulties in implement-
ing effective and sound ranking for XQuery Full-Text might
affect its acceptance as a standard in the future.

Is ranking really necessary?
The XQuery Full-Text standard was largely motivated by
complex retrieval queries. The XQuery Full-Text Use Cases
[3] discuss for instance querying across element boundaries,
wild cards, stop words, stemming, sensitivity to diacritics,
cardinalities, existential quantification, proximity, implicit
sentences and paragraphs, the use of thesauri, etc. Only a
small part of the Use Cases consider scoring. So, maybe
scoring is not really necessary in XML search?

Table 1 presents the average precision at 10 elements re-
trieved over 114 NEXI queries provided by the INEX 2006
evaluation. If we treat each about()-clause in NEXI as a
Boolean OR (this is the default behavior of XQuery Full-
text), then 97 out of 114 queries do not find any relevant

Approach P@10 queries failed?
Boolean OR 0.053 97 (85%)
Boolean AND 0.200 59 (52%)
LMS/MULT/MAX/Matching 0.361 22 (19%)
BM25/ADD/MAX/Matching 0.379 18 (16%)
LMS/MULT/MAX/Matching/prior 0.439 15 (13%)

Table 1: Retrieval quality on 114 INEX 2006 content-and-

structure queries

element in their top 10, the average precision at 10 be-
ing 0.053. The best language model and BM25 approaches
tested in this paper reduce the number of failed queries to
respectively 22 and 18 (about five times less errors) and re-
spectively 0.361 and 0.379 average precision at 10 (about
500% performance increase). If we add an element length
prior to the language modeling approach (longer elements
are more likely to be relevant; this was not tested for sound-
ness in this paper), then the number of failed queries is down
to 15 and the average precision is up to 0.439 (more than
700% improvement in performance). Clearly, a system with-
out ranking is useless compared to the system that includes
high quality ranking algorithms.

Other effective ranking techniques
We ignored many effective ranking techniques in this pa-
per, for instance techniques using spans of words to handle
the proximity queries defined in the XQuery Full-Text stan-
dard, but also the element length priors mentioned in the
previous paragraph which are not covered by the standard.
Our current definition of soundness (two Full-Text queries
are semantically equal if and only if their XQuery represen-
tations produce the same results) does not directly provide
ways to reason about the soundness of ranking given these
techniques and/or options. For future research, we hope to
provide a definition of soundness that does not refer to a
non-Full-Text version of the query, but instead allows us to
reason about the soundness of ranking in XQuery Full-Text
directly.

Acknowledgments
This work was funded in part by the Dutch BSIK research
program MultimediaN: Semantic Multimedia Access. Many
thanks to participants of the Dagstuhl Seminar “Ranked
XML Querying” [5] for helpful comments and discussions.

7. REFERENCES
[1] S. Amer-Yahia, C. Botev, S. Buxton, P. Case,

J. Doerre, M. Holstege, J. Melton, M. Rys, and
J. Shanmugasundaram. XQuery 1.0 and XPath 2.0
full-text 1.0. Technical report, World Wide Web
Consortium, May 2008.
http://www.w3.org/TR/xpath-full-text-10/

[2] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram.
Texquery: a full-text search extension to XQuery. In
Proceedings of the 13th international World Wide Web
conference, 2004.

[3] S. Amer-Yahia and P. Case. XQuery and XPath Full
Text 1.0 use cases. Technical report, World Wide Web
Consortium, May 2008.
http://www.w3.org/TR/xpath-full-text-10-use-cases/

[4] S. Amer-Yahia, L.V.S. Lakshmanan, and S. Pandit.
Flexpath: flexible structure and full-text querying for
XML. In Proceedings of the 2004 ACM SIGMOD
international conference, 2004.

[5] S. Amer-Yahia, D. Hiemstra, T. Roelleke,
D. Srivastava, and G. Weikum. DB& IR Integration:
Report on the Dagstuhl Seminar “Ranked XML
Querying”. In SIGMOD Record 37, 2008. (to appear)

[6] F.J. Burkowski. Retrieval activities in a database
consisting of heterogeneous collections of structured
text. In Proceedings of the 15th ACM Conference on
Research and Development in Information Retrieval
(SIGIR’92), pages 112–124, 1992.

[7] D. Carmel, Y.S. Maarek, M. Mandelbrod, Y. Mass,
and A. Soffer. Searching XML documents via XML
fragments. In Proceedings of the 26th ACM Conference
on Research and Development in Information
Retrieval (SIGIR’03), pages 151 – 158, 2003.

[8] N. Fuhr and K. Großjohann. XIRQL: A query
language for information retrieval in XML. In
Proceedings of the 24th ACM Conference on Research
and Development in Information Retrieval
(SIGIR’01), pages 172–180, 2001.

[9] T. Grabs. Generating vector spaces on-the-fly for
flexible XML retrieval. In Proceedings of the SIGIR
workshop on XML and Information Retrieval, pages
4–13, 2002.

[10] D. Hiemstra and W. Kraaij. Twenty-One at TREC-7:
Ad-hoc and cross-language track. In Proceedings of the
seventh Text Retrieval Conference TREC-7, pages
227–238. NIST Special Publication 500-242, 1998.

[11] D. Hiemstra, H. Rode, R .van Os, and J. Flokstra.
PF/Tijah: Text search in an XML database system.
In Proceedings of the 2nd International Workshop on
Open Source Information Retrieval, 2006.

[12] W. Kraaij. Variations on Language Modeling for
Information Retrieval. PhD thesis, University of
Twente, 2004.

[13] M. Lalmas. Dempster-Shafer’s theory of evidence
applied to structured documents: modelling un-
certainty. In Proceedings of the 20th ACM Conference
on Research and Development in Information
Retrieval (SIGIR’97), pages 110 – 118, 1997.

[14] M. Lalmas and A. Tombros. Evaluating XML retrieval
effectiveness at INEX. SIGIR Forum 41(1):40–57, 2007.

[15] V. Mihajlovic. Score Region Algebra: A flexible
framework for structured information retrieval. PhD
thesis, University of Twente, 2006.

[16] V. Mihajlovic, H.E. Blok, D. Hiemstra, and P.M.G.
Apers. Score region algebra: Building a transparent
XML-IR database. In Proceedings of the 14th
International Conference on Information and
Knowledge Management (CIKM), pages 12–19, 2005.

[17] S.E. Robertson, S. Walker, M. Beaulieu, M. Gatford,
and A. Payne. Okapi at TREC-4. In Proceedings of the
4th Text Retrieval Conference (TREC-4), pages 73–97.
NIST Special Publication 500-236, 1995.

[18] Andrew Trotman and Börkur Sigurbjörnsson.
Narrowed Extended XPath I (NEXI). In Advances in
XML Information Retrieval, Third International
Workshop of the Initiative for the Evaluation of XML
Retrieval (INEX), pages 16–40, 2004.

