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ABSTRACT
We explore the idea that the Document-Object Model tree
of an HTML page — absent any semantic or heuristic inter-
pretations of the tags and their positions — provides cues
about the importance of the information it contains. This
hypothesis is evaluated by constructing a DomGraph, i.e.,
a network of the DOM trees of pages connected by their
hyperlinks, and using it in a snippet-extraction technique.
In this process, we also address technical issues related to
the processing of the resultant very large graph. Snippets
produced by this technique are compared in a user study to
those extracted by a reasonable and simple baseline method,
and found to be clearly preferred by users.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.4 [Information Storage and
Retrieval]: Systems and Software—Information networks,
Performance evaluation (effectiveness), Question-answering
(fact retrieval) systems; H.3.7 [Information Storage and
Retrieval]: Digital Libraries—User issues; H.5.4 [Infor-
mation Interfaces and Presentation]: Hypertext/Hy-
permedia—User issues

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
Document object model, graph topology, DomGraph, snip-
pet extraction.

1. INTRODUCTION
Ranking a chunk of information by its usefulness in answer-
ing a query is a critical component of an information re-
trieval system. Various definitions of what a “chunk” is, and
methods for ranking these chunks, have been proposed for
use on the Web. The most widely-used concept of a unit of
information on the Web is that of a single Web page, and
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the leading ranking algorithm for determining the prestige
of these pages is PageRank [3], usually augmented by com-
mercial search engines with proprietary improvements.

Users often interact with the results of a text information
retrieval system by viewing a list of “snippets” of text from
each retrieved document, in order to judge each document’s
usefulness in answering their query without actually visiting
it. These snippets are classically derived from the text of the
document, ignoring HTML markup if it is present. Snippet
extraction algorithms use natural-language processing cues
in an attempt to find coherent bits of text that contain the
query terms and give the user some contextual information
about the page when seen in isolation.

This paper attempts to unify the above two approaches.
Rather than using PageRank at the page level to rank en-
tire pages, we explore its use at the level of each page’s
Document-Object Model (DOM) tree, driving the ranking
of relevant snippets of text from the page. In doing so,
we explore the hypothesis that the structure of a page’s
DOM tree might lend cues about the relative importance
of the different bits of information it contains — even ab-
sent any heuristic or semantic information about the HTML
tags composing the tree.

The main contributions of this paper are as follows:

• We describe the construction of the DomGraph, a hy-
brid graph comprised of the page link graph in con-
junction with the DOM trees of individual pages.

• We discuss the technical difficulties in processing the
large graph that results, in the process creating Web-
graph++, a more scalable translation of the Webgraph
library [2] to C++.

• We evaluate by a user study the use of this graph for
selecting query-biased snippets from pages.

2. RELATED WORK
Many current algorithms for computing the prestige of nodes
in a Web graph are based on PageRank [3], which assigns
prestige in a manner proportional to indegree to a first ap-
proximation [7]. Ranking of Web objects at a level higher
than that of pages has also been explored, such as in Host-
Graph [1] or SiteRank [11, 12]. One of this paper’s contri-
butions is the novel idea of ranking Web objects at a gran-
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Figure 1: A sample page from the .GOV dataset, along with its DOM representation. Page elements such as
tables and navigation bars can greatly increase the complexity of a page’s DOM without affecting its apparent
length. Corresponding areas of the page and the DOM representation are highlighted.

ularity lower than that of a page, namely individual DOM
elements.

The Document-Object Model view of HTML was codified
by a W3C standard,1 and is widely used. Use of the DOM
for data extraction has been discussed by several previous
works. One of the contexts in which it has been explored is
that of accessibility issues. Gupta et al. [9] outline a method
for condensing a page to its most essential elements to facili-
tate viewing of the page on mobile devices, or interpretation
of the page by accessibility software such as screen readers.
Their method is based on the DOM and involves a num-
ber of heuristic rules for selecting the important parts of the
page, based on its genre. Buyukkokten et al. [4] describe“ac-
cordion summarization,” a similar technique which uses the
DOM in an attempt to identify standalone “semantic tex-
tual units” of the page which can be viewed as summaries of
parts of the page. The user can then drill down to the part
of the page which most interests her. The use of the DOM to
guide computerized data mining efforts is explored by Can

1http://www.w3.org/DOM/

et al. [5], who use DOM cues and heuristics to identify and
extract postal addresses from HTML pages. The use of the
DOM for topical crawlers has been proposed by Pant and
Menczer [13] to examine the textual context of a link and
evaluate whether to follow it.

In the domain of segmenting unstructured text using only
endogenous cues, relevant works include LexRank [6] and
TextTiling [10]. In the former, the authors propose a method
for determining the prestige (or salience) of sentences in a
document by a method which involves computing similari-
ties between pairs of sentences, building a network of these
pairs in which two sentences are connected if their similarity
is greater than a given threshold, and then running a modi-
fied PageRank on this network. This method is proposed to
drive an extractive summarization algorithm. TextTiling is
a technique for breaking a long stream of text (a discourse)
into a series of smaller topics. The method works by com-
puting similarities between adjacent “blocks” (3-5 sentence
chunks) of text, and setting topic boundaries in places where
the similarity value is relatively low.



#text

tr

td

br

td

img

table

#text

b #text

br

a

#text

font

i

font

a

#text

td

div

#text

p

#text

#text

a

#text

a

#text

td

font

#text

tr

td

td

br

p

table

hr

p

p

p

br

font

font

a

p

#text

tr

td

td

div

b

#text

h3

font

a

#text

p

font

p #text

#text

br
br#text

font

a

td

font

#text

tr

td

div

p

th

p
td

table

html
head

body

td

p
table

font

#text

#text

meta

font
b

td

#text

td

p

p

tr

td

font

a

tr

td

td

img

b

font

tr

td

tr table

tr

font

#text

#text

#text

font

#text

#text

i

font

#text

#text

font

font

a

font

#text

tr

td

td

div

a

#text

html

p

b#text

a

tr

td
font

br

b

font

#text

tr

font

#text

a

p

#text

font

title

tr

font

table

font

b

img

#text

tr

td

#text

p

p

tr

td

#text

th

p

tr

tr

td

#text

tr

tr

tr

tr

tr

p

h3font

th

td

#text

head

meta

title

a

#text

td

table

table
br

table

br

a
#text

p

font

td

font

a

#text

a

#text

tr

td

font

#text

a

#text

td

font

div

div

p

p

p

p

p

ul

#text

#text

font

font

#text

a

#text

a

#text

#text

a

div

font

body

font

#text

a

#text

a

#text

tr

td

font

font

i

#text

br

a

#text

font

#text

p

tr

#text

a

font

#text

tr

td

p

a

#text

p

#text

td

img

td

font

font

#text

b

font

tr

td

font

a

#text

font

a

#text

font

b

#text

table

tr

tr tr
tr

tr
tr

tr

tr

trtr

tr

p

font

p

font

#text

td

tr

tr

td

td

font

#text

a

#text

td

font

#text

#text

p

#text

#text

font

img

a

#text

#text

#text

hr

br

#text

#text

font

a

b

tr

td

a

#text

table

tr

p

font

a

font

#text

font

#text

td

font

#text

p

br

td

#text

#text

b

#text

font

#text

#text

p

font

p

b

li

font

font

b

#text

a

div

br

i
#text

font

td

#text

p

font

#text

a

a

#text

a

#text

td

tr

font

a

font

#text

td

br

#text

#text

a

#text

a

#text

#text

i

font

font

font

a

table

tr

tr
tr

tr

tr

tr

tr

tr

font

td

font

tr

td

#text

#text

a

td

font

#text
a

font

font

br

br

font

div

td

#text

p

a

#text

#text

tr

p

#text

a

font

#text

p

a

#text

b

u

#text

p

a

tdp

p

p

a

i

table

#text

br

table
tr

tr

p

#text

font

a

#text

#text

#text

p

#text

font

font

font

font

br

#text

td

td

a

font

font

#text

#text

u

a

#text

#text

a

hr

tr

td

font

tr

#text

div

tr

td

u

b

p

a

#text

font

td

li

tr

font

tr

#text

td

td

#text

table

#text

#text

font

#text

#text

li

li

div

a

font

td

font

#text

#text

#texta

td

p

td

b

font

#text

table

#text

p

p

#text

td

font

font

td

td

td

pfont

font

#text

font

a

p

a

#text

#text

td

br
br

p

td

#text

p

a

p

font

font

td

#text

a

img

tr

p

font

font

td

b

tr

td

p

font

font

#text

a

b

table

p

Figure 2: A subset of the DomGraph containing nodes belonging to two neighboring pages, one of them the
page in Figure 1. For ease of visual identification, the root (<html> tag) of each DOM is displayed as a larger
circle. In the Page graph (inset), the nodes representing each of these pages link to each other; however, in
the DomGraph, distinct anchor tags each contribute their inlink to the target page’s <html> tag.

Turpin et al. [14] outline a method for fast snippet gen-
eration in the search engine context, but focus more on the
speed of the production than the quality of what is produced.
A recent patent by Google, Inc. [8] describes a method for
producing snippets, but no claim is made that this method
is actually what is used by Google, and their true method is
likely more complex.

3. THE DOM GRAPH
The DOM is in essence a way of viewing an HTML page as
a tree — a fully-connected, directed acyclic graph with the
node representing the <html> tag at the root. This simplifies
access to the contents of the page by programming languages
such as JavaScript, which can modify the DOM on the client
side in order to implement interactive Web pages. Figure 1
illustrates a sample page and its DOM representation.

We wish to use this graph representation of each page as
a stand-in for that page in the “standard” link graph of all
pages. That is, we build a graph in which the nodes are el-
ements of each page’s DOM tree, and the links are induced
both by parent-child connections in the DOM, and by hy-
perlinks between pages. Hyperlinks are treated as edges

between the tag defining the hyperlink and the root of the
target page’s DOM tree. In the case of anchored hyperlinks
(i.e. links of the form <a href="a.com#anchor">...), we
connect the tag defining the hyperlink and the parent tag of
the anchor in the target document. This expansion of a page
into its DOM nodes typically increases the size of the graph
by two orders of magnitude. Figure 2 illustrates a subset of
the DomGraph. The two larger nodes in this graph are the
<html> tags of the pages represented; the smaller nodes are
nodes representing DOM elements created by the expansion.

Data is drawn from the .gov corpus.2 This corpus con-
tains about a million documents comprising approximately
20 GB of text. Not all of the documents are HTML; plain
text documents and documents in other formats are also in-
cluded. From this collection we extracted two graphs. The
first is a “standard” graph, which we call S, in which the
nodes are pages and the links between nodes are induced by
page hyperlinks. The second is the DomGraph, D, which is
described above. This latter graph is comprised of around
220 million nodes connected by around 230 million edges.

2http://es.csiro.au/TRECWeb/govinfo.html



Figure 3: A screenshot of the user study experiment in action, with the query “health care.” The candidate
snippets are shown on the left and right, with the original page beneath. The position of the DOM snippet
and baseline snippet was randomized at each instance. If at any time the user wished to enter a new query
he or she could do so with the form at the top of the screen.

A graph of such size was a challenge to analyze with the
computing hardware we had available. The library, Web-
graph [2], that we chose to perform the initial analysis was
written in Java. This language limits the sizes of certain
data structures in a way which made our analysis impossi-
ble. To surmount this difficulty we undertook to translate
this library into C++, and the resulting Webgraph++ li-
brary is available online.3

In order to leverage the S and D graphs for information
retrieval, we compute the PageRank of the nodes in each.
To distinguish the PageRank computed on the page graph
from the results of that algorithm run on the DomGraph, we
refer to the latter as DomRank. Further, we built two text
indices using the Lucene4 index and search platform. The
first, for the standard graph, indexed the raw text of each
page (i.e. with HTML markup stripped out). The second
indexed the text of all textual DOM nodes. We refer to the

3http://homer.informatics.indiana.edu/~nan/
webgraph/
4http://lucene.apache.org/

first of these indices as the “page index,” and the second as
the “DOM index.”

4. EXTRACTING TEXT SNIPPETS
The goal of our experiment was to measure the effectiveness
of DOM cues for segmenting text in a meaningful way. To
this end, we evaluated snippets extracted from the DOM
against snippets extracted by a baseline method. We de-
scribe each of these methods in turn. Each method begins
with a ‘bag’ of query terms, with stopwords removed, and
an integer n which signifies which page in the result list
should be considered for snippet extraction. It then per-
forms a query against the page index to arrive at a list of
page identifiers. The methods differ in what they do with
these identifiers, as follows.

Baseline method. As a baseline method, we attempted
to mimic the behavior of commercial search engines. This
method takes the n-th page identifier from the list derived
as above, and retrieves the plain text of the associated page
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node, and neglects the effect of the damping fac-
tor. Query similarity values are hypothetical. The
winning node in this case would be Text B — it is
ranked 4 (highest) in Rs, and 3 in Rd; thus in its
case, αRs + (1− α)Rd = 0.7 · 4 + 0.3 · 3 = 3.7.

(with HTML markup removed). It segments the text into
sentences using the OpenNLP software package, trained on
a corpus of text from the Wall Street Journal.5 The method
then attempts to return one of the following, in decreasing
order of preference:

1. A single sentence containing all of the query terms.

2. A pair of sentences which together contain all the query
terms

3. A “window” of text, possibly containing several sen-
tences, which contains as many query terms as possi-
ble.

The size of the“window”in (3) is fixed at 30 words; further, if
a snippet picked by (1) or (2) above is longer than 30 words,
it is trimmed around the query terms with preference given
to removing words at the end of the sentence. In our best
assessment, this method seems to produce snippets similar
to those returned by commercial search engines.

5Software package and trained model: http://opennlp.
sourceforge.net/
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Figure 5: Results of the user study. The error bars
are for a 95% confidence interval. The difference
is statistically significant with p < 0.01 from a two-
tailed t-test.

DOM method. The DOM method takes the n-th page iden-
tifier from the list just as the baseline method does; however,
it derives its snippet in a different way. It performs a second
query against the index of DOM nodes, limiting its search
to the nodes which comprise the page used by the baseline
method. This yields a list of text nodes ranked by their sim-
ilarity to the query. It then creates a new list in which the
rank of each item is determined by a linear combination of
the each item’s rank in the text similarity list and its rank
in a list ordered by DomRank. Thus, if Rs is the node’s
rank when ordered by similarity and Rd is its rank by Dom-
Rank, its rank in the result list is determined by a sort on
the quantity

αRs + (1− α)Rd.

The value α = 0.7 was chosen empirically. The DOM text at
the head of the resulting list is what is returned as a snippet.
If it is longer than 30 words, the 30-word-long window which
contains as many query terms as possible is what is returned.
Figure 4 illustrates this process.

5. EVALUATION
To evaluate the use of the DomGraph and DomRank for
extracting important page cues, we performed a Web-based
user study6 comparing the two snippet-extraction algorithms.
Users were asked to enter a query of their choice. They were
then shown a pair of snippets, derived as above with n = 1
initially, and asked to click the one they thought was more
helpful, or skip the result if neither was the clear winner.
When the user rated either of the two snippets or clicked
“skip,” he or she was shown a new pair of snippets with
n← n+ 1 (i.e. from the next page in the result set). Pages
for which both methods produced the same snippet were
skipped. At any point the user wished, he or she could en-
ter a new query or end the experiment. A screenshot of
the experiment in action is shown in Figure 3. The aver-
age length of a snippet returned from the baseline method
was 27 ± 3 words, or 149 ± 10 characters; the DOM-based

6Indiana University IRB #07-11684



method’s snippets were significantly shorter, at 12±2 words
or 63± 9 characters.

The experiment was active for approximately 1 week, and
garnered around 40 participants who rated 528 snippets all
together. The number of times a snippet created by each
method was chosen over the other is shown in Figure 5.

Thus, the snippets extracted from the DOM were preferred
approximately 50% more than those extracted by the base-
line method. We are encouraged by these results, pointing
to the DomGraph as a useful tool in Web applications.

6. DISCUSSION AND FUTURE WORK
The method presented here for extracting snippets directly
from the DOM tree of Web documents does not rely on any
heuristics or semantic information about the text, but solely
on graph topological information. Our experimental evalua-
tion shows it to outperform a simple and reasonable method
that relies on textual cues alone. We do not present this
as an argument that DOM-based snippet extraction would
clearly outperform a state-of-the-art method, but rather to
support the conclusion that the topology of the DOM con-
tains semantic information that should be exploited for in-
formation retrieval.

Future work should deal with optimizing the computation of
DomRank for the large graph which results from expansion
of each page’s DOM, as well as the size of the index involved.
Among the techniques that might be explored are trimming
each page’s DOM to remove irrelevant nodes (i.e. nodes
that do not affect the DomRank of any text nodes), and
the possibility that the DomRank may be computed in some
optimized way from the PageRank of the corresponding page
graph.

An obvious candidate for application of techniques of this
type is Web page summarization. This has been previously
explored [4], but our method is unique in that it does not
rely on page- or page-genre specific heuristics. Question an-
swering applications could also benefit from this method’s
ability to select important bits of text from a list of candi-
dates, based on the structure of the Web page from which
the snippets are derived. More in general, applications such
as clustering and classification could be improved by this
technique’s ability to select important items (and thus re-
move noise) from Web page data. DomRank even applies to
non-textual data appearing in HTML pages, such as images
and other media.
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