
Focused Retrieval over Richly-Annotated Collections

Matthew W. Bilotti, Le Zhao, Jamie Callan and Eric Nyberg
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, Pennsylvania 15235
{ mbilotti, lezhao, callan, ehn }@cs.cmu.edu

ABSTRACT
This paper introduces a theoretical framework for focused
retrieval, based on a formalism called the annotation graph.
Annotation graph-based retrieval provides a rich retrieval
representation that directly supports query-time constraint-
checking of arbitrary relations. This representation can sup-
port focused retrieval tasks, such as Question Answering
systems, which often have information needs containing con-
straint types that can not be queried easily under many re-
trieval models. The problem of annotation graph-based re-
trieval is mapped onto existing XML element retrieval func-
tionality in the Indri search engine. The remainder of the
paper serves to identify and discuss the issues that emerged
and illustrate by example what in our opinion constitutes
the upcoming research challenges facing the focused retrieval
community.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Search and
Retrieval]: Information Search and Retrieval

General Terms
Theory, Design

Keywords
Focused retrieval, question answering, type systems, anno-
tation graphs

1. INTRODUCTION
The fundamental difference between focused retrieval tasks

such as Question Answering (QA), XML Element Retrieval
(XML-IR) and passage retrieval and the general ad hoc re-
trieval task is that the unit of retrieval is smaller than that
of a document. The document retrieval paradigm forces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR 2008 Workshop on Focused Retrieval
July 24, 2008, Singapore
The copyright of this article remains with the authors.

users to read through the retrieved documents to locate the
information that satisfies their information needs. Focused
retrieval paradigms aim to ease this burden on the user by
locating and retrieving the relevant information directly.

Text retrieval systems score by measuring the similarity
between some representation of the text and a query, which
is expressed in that same representation and encodes the
constraints in the user’s information need. Modern docu-
ment retrieval systems use a lean text representation that
makes indexing and retrieval convenient, but that is not ca-
pable of fully encoding all information needs, or even most of
them. All they can represent is a notion of relevance based
on ordering, proximity and frequency of terms. Though this
representation can approximate many information needs well
enough to be successful on the ad hoc retrieval task, it is not
as well suited to the focused retrieval task.

The job of a focused retrieval system is significantly more
difficult. Because it must assign scores to small units of
text, it can not afford to ignore any of the constraints in
the information need. Focused retrieval systems aim to pro-
vide a rich internal representation, both for the query and
for the indexed texts, that reduces the mismatch between
the information need and the query by directly supporting
constraint-checking of more of the component constraints of
the information need.

This paper introduces a formalism called the annotation
graph, and a theoretical retrieval framework based on anno-
tation graph retrieval. The annotation graph-based retrieval
framework supports query-time constraint-checking of rela-
tions over information elements encoded in the annotation
graph. We argue that this kind of rich information repre-
sentation and powerful retrieval-time constraint-checking is
necessary to support focused retrieval tasks, such as QA.
This paper chronicles our experience mapping the annota-
tion graph-based retrieval task onto existing XML element
retrieval functionality in the Indri search engine. We con-
clude with a discussion of the issues that emerged, and a set
of examples that illustrate what are, in our opinion, impor-
tant research challenges in focused retrieval.

2. ANNOTATION GRAPH-BASED
RETRIEVAL FRAMEWORK

This section presents a theory of focused retrieval based
on a formalism called the annotation graph, which serves as
a shared representation for not only information needs, but
also the information content of texts.

Type System T T =
`

Te =
˘

te1, te2, ..., te|Te|

¯

, T r =
˘

tr1, tr2, ..., tr|Tr|

¯´

Information Element Type tei tei = (name, parent) ∧ (parent ∈ Te ∨ parent = ∅)
Relation Type tri tri = (name, domain, range) ∧ domain, range ∈ Te

Annotation Graph G G =
`

E =
˘

e1, e2, ..., e|E|

¯

, R =
˘

r1, r2, ..., r|R|

¯

, ts
´

Information Element ei ei = (type) ∧ type ∈ Te ∧ ts = (Te, Tr)
Relation ri ri = (type, ed, er) ∧ type = (name, domain, range) ∈ Tr∧

domain, range ∈ Te ∧ ts = (Te, Tr) ∧ ed = (domain) ∧ er = (range)

Collection C C =
˘

g1, g2, ..., g|C|

¯

Query q q = f(g, C)

Figure 1: Formal definitions for the theoretical retrieval framework based on annotation graphs

Type System Annotation Graph

TBoW =

0

B

B

B

B

B

B

B

B

B

B

B

@

Te =

8

>

>

>

>

>

<

>

>

>

>

>

:

(document, ∅),
(sentence, ∅),
(word, ∅),
(John, ∅),
(loves, ∅),
(Mary, ∅)

9

>

>

>

>

>

=

>

>

>

>

>

;

,

T r =

8

<

:

(encloses, document, sentence),
(encloses, document, word),
(encloses, sentence, word)

9

=

;

1

C

C

C

C

C

C

C

C

C

C

C

A

GBoW =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

E =

8

>

>

>

<

>

>

>

:

d = (document),
s = (sentence),
j = (John),
l = (loves),
m = (Mary)

9

>

>

>

=

>

>

>

;

,

R =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

es = (encloses, d, s)
ej1 = (encloses, d, j)
el1 = (encloses, d, l)
em1 = (encloses, d, m)
ej2 = (encloses, s, j)
el2 = (encloses, s, l)
em2 = (encloses, s, m)

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

,

ts = TBoW

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 2: Example bag-of-words type system and annotation graph for the sentence, John loves Mary

2.1 Type Systems
Each annotation graph is defined with respect to a partic-

ular type system, which serves as a vocabulary for the types
of information elements that can exist in the graph, and the
relations that can be defined among those elements. A type
system T is defined as a tuple consisting of two sets, Te and
Tr, which contain all valid types for information elements
and relations, respectively. An information element type tei

is defined as a name and an optional parent type pointer. A
relation type tri is defined as a name, a domain type and a
range type. Both the domain and range types must be de-
fined in the same type system. See Figure 1 for the formal
definitions of type systems, information element types and
relation types.

2.2 Annotation Graphs
A piece of information of any type and complexity can be

represented as an annotation graph consisting of a set of in-
formation elements (vertices) and a set of relations (edges)
that hold between pairs of information elements. Although
it is often convenient to think of the annotation graph as a
representation of marked-up text, the formalism is general
enough to represent audio, images, or any other type of data
that can be viewed as a discrete set of elements with rela-
tions defined over them. An annotation graph is defined as
a tuple consisting of a set of information elements E, a set

of relations R and a pointer to the graph’s type system ts.
Information element is a general term used to describe

not only discrete units of raw content, such as the tokens
in a text document or the notes in a musical composition,
but also annotations representing higher-level or more com-
plex content obtained through human or automatic analysis
and mark-up of the raw content. An information element is
defined with a single attribute, the name of a type defined
within the type system of which the element is an instance.

Relations between pairs of elements are typed and asym-
metric, holding between an information element of the do-
main type and an information element of the range type as
declared in the type system. Many relations are overt in
the raw content, for example, adjacency and ordering infor-
mation between tokens in a text document or pixels in an
image. Other types of relations come from the annotation
process that adds higher-level information element types,
such as syntactic information for a text document or musical
phrase structure for audio data. See Figure 1 for the formal
definitions of annotation graphs, information elements and
relations.

An example of a simple bag-of-words type system and an
annotation graph for the sentence, John loves Mary, can be
found in Figure 2. The type system can represent words
enclosed by sentences, which are, in turn, enclosed by doc-
uments. Words can also be directly enclosed by documents,

q (g = (E, R, ts), C) =

1
|K|

P|K|
i=1

tf(ki,g)
df(ki,C)

, (encloses, document, ki) ∈ R

0, otherwise

K =
˘

k1, k2, ..., k|K|

¯

tf(ki, g) =
P|R|

i=1

1, ri = (encloses, document, ki)
0, otherwise

df(ki, C) =
P|C|

i=1

1, (encloses, document, ki) ∈ Rgi

0, otherwise

Figure 3: Bag-of-words retrieval as an instance of
the annotation graph-based retrieval framework

which provides for not only transitivity of enclosure, but also
the case in which words, such as section titles, occur out-
side the boundaries of sentences identified in the document.
Note that the type system can not represent ordering and
proximity constraints between pairs of words, and that as
such, it is not powerful enough to distinguish between the
sentences John loves Mary and Mary loves John.

2.3 The Retrieval Process
Let a collection be defined as a set of annotation graphs

sharing the same type system, each of which serves as a
representation of a retrievable item that can be scored in re-
sponse to a query. In this framework, a query is defined as an
arbitrary function over an annotation graph and the collec-
tion. The query can represent any kind of operation, includ-
ing but not limited to set operations, such as intersection
and union; score combination techniques, such as sum or
average; probabilistic operations such as Noisy-OR and not;
and weighting schemes, such as tf.idf and language models.
Query evaluation is a recursive procedure in which queries
are broken down into sub-queries, the results of which are
then combined by the query function. The queries at the
leaves of the tree implement the matching of individual con-
straints against the annotation graph.

2.4 Example: Bag-of-Words Retrieval
This section describes an example instantiation of the

above-proposed retrieval framework. Consider a simple bag-
of-words retrieval system that scores the annotation graph
g corresponding to a document based on whether the docu-
ment encloses each ki of a set of specific keyterms K. One
possible implementation is shown in Figure 3. The query q

scores the annotation graph g by an arithmetic average over
the set of keyterms K, such that the value for each ki is set to
a weight if g contains an encloses relation between the docu-
ment and ki, and zero otherwise. In this case, the weight is a
tf.idf-style weight, but any other weighting scheme could be
used, or Boolean retrieval could be implemented by setting
the weight to 1.

2.5 A Note about Implementation
The retrieval framework proposed in this section relies on

a graphical representation, which, while convenient from a
formal perspective, might seem to be inefficient both com-
putationally at query-time and also in terms of the size of the
index footprint on disk. Without getting into implementation-
specific details, it bears emphasizing that this theoretical
framework is a view of the retrieval problem meant to aid

in understanding the process. The discussion of annotation
graph-based retrieval should not be taken as an argument for
implementing retrieval systems as full-blown graph similar-
ity engines. The actual index structures in a real implemen-
tation could be thought of as a compilation or distillation of
the annotation graph representation, and could be tuned to
minimize space on disk and maximize the efficiency of query
evaluation algorithms operating over them.

3. APPLICATION TO THE QA TASK
Question Answering (QA) is a focused retrieval task that

aims to retrieve snippets of text satisfying certain constraints.
It can be considered similar to a passage retrieval task, ex-
cept that the passage size is smaller [2]. The constraint
in a QA task is that the passages must contain answers to
an input question. QA systems are often implemented as
a cascade of document retrieval and an optional passage
re-ranking step, followed by answer extraction. The core
of a QA system can be thought of as focused retrieval ap-
plication, bookended by language understanding tools, with
question analysis at the beginning and answer selection, val-
idation and presentation at the end.

All QA systems perform some kind of linguistic and se-
mantic analysis on the input question as an initial step to
determine how to proceed. The result of this analysis consti-
tutes a specification for an answer to the question, phrased
in terms of linguistic and semantic constraints that must
hold over a piece of text for it to contain an answer to the
question. This rich representation of the information need
becomes the input to the focused retrieval task at the core
of a QA system, and also, along with the retrieved results,
to the answer selection, validation and presentation tasks at
the end of the QA process.

Many QA systems, however, rely on a text retrieval com-
ponent that can not handle this representation directly. These
systems are forced to map their information needs into the
query representation supported by their text retrieval com-
ponents, potentially weakening the constraints. Recall the
bag-of-words retrieval example introduced earlier. What
if a QA system, trying to answer the question, Who does
John love?, formulated a bag-of-words query consisting of
the keyterms John and love. Under the bag-of-words re-
trieval model, pieces of text containing those two keyterms
would be retrieved, but it is difficult to distinguish between
relevant text, such as John loves Mary and non-relevant text,
such as Mary loves John. To filter out these false positives,
QA systems often perform on-the-fly linguistic and seman-
tic analysis of the retrieved text, comparing it against the
information need and discarding those results that do not
satisfy the constraints.

Recently, there has been interest in building a text re-
trieval interface for QA applications that provides a richer
query representation that can directly support retrieval-time
checking of certain types of information need constraints [1].
Suppose that a love event is a primitive element in the se-
mantics of a QA system to which the same question was
asked, Who does John love? Provided the collection was
properly annotated off-line for instances of love events, a
text retrieval component capable of query-time constraint-
checking would retrieve John loves Mary, but Mary loves
John would not match the query, because John is not the
actor of the love event.

Retrieval-time constraint-checking can also apply to QA

[Arg0 John] [Target loves] [Arg1 Mary]

g =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

E =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

s = (sentence),
t = (target),
a0 = (arg0),
a1 = (arg1),
l = (loves),
j = (John),
m = (Mary)

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

,

R =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

et = (encloses, s, t),
ea0 = (encloses, s, a0),
ea1 = (encloses, s, a1),
el = (encloses, s, l),
ej = (encloses, s, j),
em = (encloses, s, m),
el2 = (encloses, t, l),
ej2 = (encloses, a0, j),
em2 = (encloses, a1, m),
aa0 = (child, t, a0),
aa1 = (child, t, a1)

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

,

ts = TSRL

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 4: PropBank-style semantic analysis of the
sentence, John loves Mary, with the corresponding an-
notation graph

systems that do not use a full-blown semantic representa-
tion internally. Consider a QA system that uses grammat-
ical functions such as subject, object and oblique that can
be obtained without semantic analysis. For the question,
Who does John love?, an answer constraint would require
that John be the subject of the verb love. The grammati-
cal function-based representation is sufficient to distinguish
between the relevant and non-relevant text in this case.

These examples can be related back to the annotation
graph-based retrieval framework outlined in this paper. The
internal representation for information needs used by a QA
system is equivalent to a type system. As illustrated, the
choice of a type system can range from a simple representa-
tion derived from syntax to a full-blown semantic representa-
tion, in addition to token-based representations widely sup-
ported by text retrieval technology. Analysis of the text in
the collection would yield annotation graphs containing rela-
tions such as (loves, John, Mary), or (subject, John, loves)
and (object, Mary, loves), which could be checked at query
time. Query functions could implement operators that can
combine or weight individual constraints, as well as account
for partial matches, such as (adores, John, Mary).

4. IMPLEMENTATION
This section describes features of the freely-available In-

dri search engine [5], a part of the Lemur toolkit,1 used to
support annotation graph-based retrieval. The current ver-
sion of Indri provides support for indexing and retrieval of
arbitrary, hierarchical, overlapping fields that was originally
added to address the needs of an XML-IR task [4].

1See: http://www.lemurproject.org

#combine[sentence](john loves)

#combine[sentence](#max(#combine[target](loves
#max(#combine[./arg0](john)))))

Figure 5: Bag-of-words (upper) and PropBank-style
(lower) Indri queries for the question, Who does John
love?

Indri’s existing fielded retrieval support can be thought
of as an implementation of annotation graph retrieval for
a subset of type systems, those under which at most one
relation type can be defined to hold over any pair of element
types. This relation is implemented in the Indri index as
field enclosure; if a field instance of the domain type encloses
a field instance of the range type, it is said that the relation
holds between the elements corresponding to those fields.
At retrieval time, these relations can be checked using query
operators that enforce enclosure constraints between fields.

For an XML-IR task, the type system would include the
elements found in an XML document, but for a QA task, it
is the linguistic and semantic annotations on text that the
system uses to locate answers that need to be indexed so
that constraints can be checked at retrieval time. One ex-
ample of a type system for QA is the one used in [1], which
supports verb predicate-argument structures with semantic
role labels in the style of PropBank [3], as well as common
named entity types. Some QA systems use this semantic
representation internally throughout the system, annotating
text retrieved by a bag-of-words retrieval system on-the-fly
and comparing it against an analysis of the question to lo-
cate answers. The goal of supporting constraint-checking
against this representation at the retrieval stage of the QA
process is to reduce the occurrence of false positives, or text
that scores well on a keyterm match, but that does not unify
with the QA system’s expectations for an answer.

Figure 4 shows the example sentence John loves Mary
with its PropBank-style semantic analysis and the equiva-
lent annotation graph. The root of a verb predicate-argument
structure is identified as the Target. In the figure, the
bracketed arguments are labeled as Arg0 and Arg1, which
correspond to the agent or doer of the action, and the pa-
tient or the person for whom the action is done, respec-
tively. Though all argument roles are verb-dependent, users
of PropBank have found that Arg0 and Arg1 can be relied
upon to have been consistently labeled across verbs.

Figure 4 introduces a new type of relation called child
that relates the target verb to its arguments. Because the
verb does not actually enclose its arguments, Indri supports
an additional representation for relations between field in-
stances. In [1], an extension that has subsequently been
integrated into the main trunk was made allowing Indri to
store an arbitrary pointer to another field instance, called
the parent field, in the posting for a particular field instance.
Representing a relation type in the index in this way is called
a parent-child relation, as opposed to an enclosure relation.

When Indri indexes a corpus annotated off-line with Prop-
Bank-style predicate-argument structures, target verbs are
represented as field instances of type Target in the index.
There are also separate field types for each type of argument,

s1 John loves Mary. [Arg0 [Person John]] [Target loves] [Arg1 [Person Mary]]

s2 John loves Mary. [Arg0 [Person John]] [Target loves] [Arg1 Mary]

s3 John loves Mary. [Arg0 [Person John]] [Target loves] [Arg2 [Person Mary]]

s4 John says he loves Mary. [Arg0 [Person John]] [Target says] [Arg1 [Arg0 he] [Target loves]
[Arg1 [Person Mary]]]

s5 John adores Mary. [Arg0 [Person John]] [Target adores] [Arg1 [Person Mary]]

s6 Bill loves Jane. [Arg0 [Person Bill]] [Target loves] [Arg1 [Person Jane]]

s7 John gave Jane’s book to Mary. [Arg0 John] [Target gave] [Arg1 [Person Jane’s] book] [to [Person Mary]]

Figure 6: Text collection referred to by the examples in Section 5. The verb predicate-argument structure
with PropBank-style semantic role labels and named entity recognition is shown below each sentence.

including numbered complement arguments such as Arg0,
Arg1 and Arg2, as well as adjunctive arguments such as
Argm-Tmp and Argm-Loc, which represent temporal and
locative modifiers, respectively. Arguments are related to
their respective targets by use of the parent-child strategy,
and enclosure relationships exist between sentences and tar-
get verbs, sentences and arguments, sentences and named
entities, and arguments and any nested fields, which can
include nested named entities as well as targets and argu-
ments.

At query time, Indri provides two different pieces of query
syntax to support checking of enclosure and parent-child
constraints. Figure 5 shows two queries that might be for-
mulated for the question, Who does John love? In the
bag-of-words (upper) query, the #combine[sentence] op-
erator is used to enforce that the terms john and loves must
be enclosed by the same Sentence field instance. In the
PropBank-style (lower) query, the nested #combine opera-
tors tell Indri to look for a Sentence enclosing a Target

enclosing loves. In #combine[./arg0], the dot-slash syntax
is used to require that the target verb have a child Arg0

field instance enclosing john. Throughout, the #max opera-
tors are used to select the best field instance in the event
that more than one match.

Both enclosure and parent-child constraints map to struc-
tured query operators in Indri’s underlying inference net-
work retrieval model [6]. The query operators restrict key-
term matches to occurring field instances of the specified
type. When scoring an field instance, the score contribu-
tion of specific keyterm is the number of occurrences of that
keyterm over the size of the field instance, smoothed by
linear interpolation with a background model based on the
document containing the field extent, and also with another
model based on the collection as a whole. If the field instance
contains no occurrences of the requested keyterm, its score
defaults to the background score made up of the document
and collection smoothing components.

5. CHALLENGES
The process of building and testing Indri’s support for

annotation graph-based retrieval revealed some non-trivial
issues inherent in implementing this kind of retrieval solu-

tion. This section asks the questions as to why the obvious
approach of mapping the task of retrieval for QA onto a
field-based XML-IR approach did not work well, and what
are the requirements a retrieval engine would have to satisfy
to be able to support annotation graph-based retrieval. The
narrative in this section is centered around a series of ex-
amples that illustrate the emergent issues and motivate the
discussion. For convenience, our examples involve matching
sentences in the sample text collection shown in Figure 6.

5.1 Partial Matching of Structures
Indri’s current constraint-checking implementation penal-

izes missing constraints harshly. Consider the query shown
in Figure 7, which describes a love event between John and
some other person. Sentence s1 is a complete match for this
query, and is ranked first. If a requested argument role does
not appear in a predicate-argument structure, a background
score, which can be quite low, is combined into the overall
score.

#combine[sentence](

#max(#combine[target](loves
#max(#combine[./arg0](

#max(#combine[person](john))))

#max(#combine[./arg1](#any:person)))))

Figure 7: This query requests love events in which
John is the agent, and any person is the patient.

Linguistic and semantic analysis tools occasionally make
mistakes, sometimes as a result of legitimate ambiguities in
the language, such as prepositional phrase attachment, and
other times because of a lack of coverage in a rule base or
in a training data set. In sentence s2, the named entity
recognition tool failed to identify Mary as a person, giving
the sentence a structure similar to that of, John loves his
dog. When scoring s2, the enclosed Person field instance
is not found, so the score defaults to a background score
made up of document-specific and collection-wide scores for
Mary occurring inside field instances of type Person. In the

current implementation, it is not possible to directly smooth
with the enclosing Arg1 instance.

Sentence s3 represents a role-labeling error in which the
argument corresponding to Mary is labeled Arg2, which
generally represents a recipient or beneficiary, as opposed
to the correct Arg1, which indicates the patient. There is,
in fact, no prescription for an Arg2 in the love frame in
PropBank, which means that the training data for the se-
mantic role labeling tool does not contain this example in its
entirety, but errors like this can happen when the semantic
role labeling process is decomposed into argument identifica-
tion, attachment and labeling as separate steps to maximize
use of training data. As with sentence s2, the missing field
instance causes a background score to be combined into the
overall score. The current implementation will only score
field instances of the requested type; it is not able to pro-
pose the Arg2 as a match for the #combine[./arg1] query
clause with some discount factor despite the fact that the
Arg2 field instances satisfies the #any:person constraint.

As partial matches, sentences s2 and s3 are ranked be-
hind s1. The relative order in which sentences s2 and s3

are ranked depends primarily on the document models used
for smoothing; in this case, if the documents contain more
occurrences of Mary tagged as a Person than as an Arg2,
then s2 would come first.

5.2 Combining Evidence from Partial Matches
Sentence s4 is semantically similar, but not equivalent, to

sentence s1. Setting aside the issue of whether the source,
in this case John, is to be believed when he asserts that he
loves Mary, this sentence is clearly relevant to a QA system
faced with determining an answer to Does John love Mary?
or Who does John love?

Sentence s4 is a partial match for the query shown in Fig-
ure 7 because it contains two distinct predicate-argument
structures, and the query’s constraints are distributed be-
tween the two structures. The outer structure satisfies the
constraint that John occur inside a Person nested inside
an Arg0, and the inner structure satisfies the constraint on
the target verb and the attached Arg1 containing any field
instance of type Person.

The query uses a #max operator to score a sentence based
on the single best-matching predicate-argument structure it
contains, because the current implementation has no way to
aggregate belief across multiple structures. Therefore, s4 is
scored on the basis of the inner predicate-argument struc-
ture, because it satisfies more of the constraints. In fact, s4

would get the same score even if it were Jack said that he
loves Mary, because the #max operator hides the effect on
the score corresponding to the query’s John constraint.

5.2.1 Balancing Structural Constraints
The query shown in Figure 7 contains three unweighted

constraints. Intuition would suggest that the person or QA
system formulating the query intended that the constraints
be equally important. The current Indri implementation
of Jelinek-Mercer smoothing leads to an interesting phe-
nomenon where s5, which is a relevant partial match, is
ranked behind s6, which is not relevant at all, but satis-
fies the target verb constraint. This ranking suggests that,
for some reason, Indri is considering the target verb con-
straint much more important than the other constraints in
the query.

The reason for this behavior is that the vast majority
of target verb field instances are of length one. The score
contribution of the target verb constraint is computed by
taking the smoothed count of the number of occurrences of
the keyterm divided by the length of the field instance being
scored. This means that if the target verb does match, a
very high belief is combined into the overall score, and if
the target verb does not match, the portion of the score
corresponding to the target field instance is zero, resulting
in a very low background score based on smoothing with
the document and the collection. As a result of this scoring
method, the target verb mismatch on s6 pushes it below s5,
which has mismatches on two constraints.

It may be that certain smoothing methods that are appro-
priate to fielded retrieval in general may not be optimized for
tasks in which assumptions can be made about the nature of
the fields. A recent proposal to address this problem is two-
level Dirichlet smoothing, an extension of Indri’s existing
Dirichlet smoothing method to include a smoothing com-
ponent for the document. This method is less sensitive to
the length of the field instance being scored, so the variance
of the scores produced by the query operator corresponding
to the target verb constraint is reduced. This results in a
more sensible ranking that relaxes all constraints on partial
matches simultaneously after all partial matches have been
retrieved. Under two-level Dirichlet smoothing, sentence s5

is correctly ranked ahead of sentence s6.

5.3 Multiple Potentially Relevant Structures
In process of the question analysis, a QA system uses deep

linguistic and semantic processing to build a fairly rich rep-
resentation of the answer it is looking for. Sometimes, a
system is able to posit multiple structures that can poten-
tially contain answers. The queries shown in Figures 8, 9
and 10 attempt to retrieve more of the relevant sentences in
a single pass.

5.3.1 Combining over Keyterms
The query shown in Figure 8 maintains the same predicate-

argument structure as the one shown in Figure 7, but uses a
controlled synonymy to specify target verb alternatives that
are semantically related. The #combine[target] operator
is intended to be able to match sentences such as s1 and s5

by being flexible about the target verb constraint.

#combine[sentence](

#max(#combine[target](loves adores
#max(#combine[./arg0](

#max(#combine[person](john))))

#max(#combine[./arg1](#any:person)))))

Figure 8: This query is the same as the one shown
in Figure 7, except that it requests adore events in
addition to love events.

The implementation of the #combine operator essentially
performs an arithmetic average in log space over the two
score components, each of which is computed as the smoothed
count of matching term occurrences over the length of the
field instance. As written, the query clause prefers loves and
adores to any other verbs, but it also prefers both verbs to

just one of them alone. Knowing how the text collection
was annotated, it would be impossible for a Target field
instance to contain both of those terms. In fact, the only
times when a Target is longer than length one is the case
referred to as the phrasal verb, where a verb and a particle
occur in the Target together. The query clause will not
perform as intended because every Target field instance
that matches one of the verbs will have a background score
combined in from the other verb that does not match.

One potential mitigation for this phenomenon is to wrap
the alternate keyterms in a #syn operator, which treats oc-
currences of each term equivalently. One side effect of this
choice of operator is that the smoothing values are skewed,
particularly for #syn operators with large numbers of argu-
ments. Document frequency is computed as the union of the
arguments of the #syn clause, which can have an affect on
the ranking. Another operator choice is #or, which imple-
ments the probabilistic Noisy-OR. Rankings are a bit easier
to understand with #or, but it does not really capture the
intent of query. Some kind of exclusive-OR operator may be
more appropriate, but the question as to how to build such
an operator for this task is still open.

5.3.2 Combining over Full Structures
Figure 9 shows a query that wraps an outer #combine

operator around two full predicate-argument structures in
an attempt to match both sentences s1 and s4. This query
will not perform as expected, because the scores coming out
of the two inner #combine[sentence] clauses are not, in
general, directly comparable. The variance in the document
scores for a particular query operator is inversely related
to the number of arguments that operator has. The more
complex constraints translate to query operators with more
arguments, which provide scores on a smaller scale that vary
over a more narrow range than do the scores corresponding
to simpler constraints.

#combine[sentence](#max(

#combine[sentence](

#max(#combine[target](

#max(#combine[./arg0](

#max(#combine[person](john))))

#max(#combine[./arg1](

#max(#combine[target](loves
#max(#combine[./arg1](#any:person)))))))))

#combine[sentence](

#max(#combine[target](

#max(#combine[./arg0](

#max(#combine[person](john))))

#max(#combine[./arg1](#any:person)))))))

Figure 9: This query requests two potentially rele-
vant structures, the simpler structure contained in
sentence s1, below, and the nested version shown in
sentence s4, above.

This type of query can be difficult to reason about. Con-
sider sentence s1, which is a complete match for the second
#combine[sentence] clause in the query. It is also a partial
match for the first such clause in the query, as it satisfies
the Arg0 constraint on John. Although s1 has an Arg1,

that field instance does not enclose any Target instances,
and so a background score will be combined into the overall
score. Even though smoothing with the document will yield
at least one match for loves inside a Target field instance,
the background score is low enough in comparison to the
matching scores produced by the query clauses correspond-
ing to the constraints that are satisfied to significantly affect
the overall score.

5.3.3 Combining over Partial Structures
Given the difficulty in scoring disjunctions over full struc-

tures, not to mention the linguistic and semantic analysis
task inherent in positing those structures in the first place, a
QA system might decide to try specifying a single structure,
but allow variations to mitigate annotation error, improve
recall or simply to be able to control the relaxation of the
constraints. It seems natural to take this approach, because
if one constraint fails to match, a background score could be
avoided if there is an alternate path for belief in the query.

#combine[sentence](

#max(#combine[target](loves
#max(#combine[./arg0](

#max(#combine[person](john))))

#max(#combine[./arg1](#any:person))

#max(#combine[./arg2](#any:person)))))

Figure 10: This query is the same as the one shown
in Figure 7, except that it tries to compensate for
annotation error by allowing the patient of the love
event to occur in the Arg1 or Arg2 positions.

Figure 10 shows an example of a query that matches love
events in which John is the agent, having another Person in
an argument labeled Arg1 or Arg2. As written, however,
the query does not express the system’s intent. Because
the Arg1 and Arg2 constraints are written in two sepa-
rate #max clauses that are children of the #combine[target]
clause, this query will rank any sentence satisfying both con-
straints, such as sentence s7, ahead of any sentence satisfying
only one of them, such as sentences s1 and s3.

The current implementation of Indri makes it difficult
to encode the notion of alternative constraints. The back-
ground score coming from the non-matching query branch
will drag the overall score down. An alternative query for-
mulation would but the Arg1 and Arg2 constraints into a
single #max clause within the #combine[target] clause. The
#max operator has the benefit that the low-scoring query
branch is pruned, but it must be used with caution. The
query operators inside a #max operator must produce scores
that are comparable; otherwise, one element may consis-
tently win out in a way that does not necessarily reflect the
quality of the match, but instead, an artifact of the scoring
model. One way to address this would be to build in the
notion of a discount factor, allowing the user to not only
specify precedence over the alternatives in a #max operator,
but also to potentially compensate for a mismatch in the
scale of the scores produced by one of the elements of the
#max.

6. CONTRIBUTIONS

This paper proposed a theory of focused retrieval based
on a formalism called the annotation graph. We motivated
the potential of the approach using a Question Answering
example, arguing that the annotation graph representation
addresses the requirements of focused retrieval applications
by providing for rich retrieval-time constraint-checking. We
tested Indri’s support for annotation graph-based retrieval,
and discovered that the obvious approach of mapping the
problem onto existing XML-IR machinery presented a num-
ber of challenges. The identification of these challenges,
along with the discussion of specific examples, serves to
bring attention to the fact that the focused retrieval prob-
lem is not solved and fertile research ground lies ahead. We
share our experiences with other interested researchers in
the hopes that they will prove useful to those grappling with
similar problems.

7. REFERENCES
[1] M. Bilotti, P. Ogilvie, J. Callan, and E. Nyberg.

Structured retrieval for question answering. In
Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 2007.

[2] L. Hirschman and R. Gaizauskas. Natural language
question answering: The view from here. Journal of
Natural Language Engineering, Special Issue on
Question Answering, Fall–Winter 2001.

[3] P. Kingsbury, M. Palmer, and M. Marcus. Adding
semantic annotation to the penn treebank. In
Proceedings of the 2nd International Conference on
Human Language Technology Research (HLT 2002),
2002.

[4] P. Ogilvie and J. Callan. Hierarchical language models
for retrieval of xml components. In Proceedings of the
Initiative for the Evaluation of XML Retrieval
Workshop (INEX 2004), 2004.

[5] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: A language model-based search engine for
complex queries. In Proceedings of the International
Conference on Intelligence Analysis, 2005.

[6] H. Turtle and W. B. Croft. Evaluation of an inference
network-based retrieval model. ACM Transactions on
Information Systems, 9(3):187–222, 1991.

