
Modelling Anchor Text Retrieval in Book Search based on
Back-of-Book Index

Hengzhi Wu
Queen Mary, University of

London, UK
hzwoo@dcs.qmul.ac.uk

Gabriella Kazai
Microsoft Research

Cambridge, UK
gabkaz@microsoft.com

Thomas Roelleke
Queen Mary, University of

London, UK
thor@dcs.qmul.ac.uk

ABSTRACT
This paper proposes a probabilistic logic abstraction for modelling
tf -boosting approaches to anchor text retrieval, adapted for the task
of page-search in books. The underlying idea is to view the back-
of-book index (BoBI) as a list of anchors pointing to pages in the
book. First, we model the direct application of hypertext-based tf -
boosting to books and show that this naive method of propagating
anchor-text from the BoBI does not deliver the desired tf -boosting
effect. To address this, we then propose a revised anchor-text re-
trieval model based on a novel voter approach. In this approach,
each page of the book, where a given term occurs, acts as a virtual
voter to the pages referenced by the BoBI for that term. The tf -
boosting effect is achieved by propagating term weights from the
voter pages to the pages in the BoBI. We use probabilistic Datalog
for the high-level abstract modelling of retrieval strategies, which
allows for the evolution and transfer of successful techniques from
one domain, such as anchor-text retrieval in Web IR, to a similar
domain, such as book search.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval Models

General Terms
Algorithms

1. INTRODUCTION
As a result of ongoing digitization and mass-digitization projects
around the world, searching over a large collection of digitized
books has become a new area of interest in the field of IR. Re-
flecting this, the INitiative for the Evaluation of XML IR (INEX)
has launched a Book Search track1 in 2007. The track runs two
core tasks: 1.) The Book Retrieval task, where the units of retrieval
are whole books; and 2.) The Page in Context task, which stud-
ies the application of passage and XML element retrieval methods
to books. Both tasks have been shown to benefit from the use of
structural information extracted from digitized books [11, 15, 14,

1http://www.inex.otago.ac.nz/tracks/books/books.asp

SIGIR 2008 Workshop on Focus Retrieval
July 24, 2008, Singapore
The copyright of this article remains with the authors.

20]. In this paper, we focus on the Page in Context task, and view
the challenge of locating relevant pages inside books as a task of
finding the best entry points into the book content.

We build on the observation that books are typically highly struc-
tured and, in particular, we leverage the potential presented by a
book’s back-of-book index (BoBI) as a searching and browsing
tool. Unlike the table of contents, a BoBI provides specific in-
formation on relevant sections of text by pointing to key concepts
discussed in the book [1, 8]. Its significance is that it distinguishes
important topics and concepts, as identified by the author, from
other keywords that may appear in the book.

In contrast to the traditional full-text index used in IR, which re-
flects the global distribution of terms (among pages), but provides
limited evidence for selecting best entry points (e.g., best pages),
an author generated BoBI may hold the key for identifying the best
entry points. Although some term statistics may also be derived
from a BoBI (e.g., number of linked pages), the full-text index is
still likely to provide a good source of information for estimating
relevance. Thus, in this paper, we propose a strategy for combining
the traditional full-text index with the BoBI by integrating anchor
text retrieval in the context of the page finding task.

The underlying idea is to view the BoBI as a set of anchors pointing
to respective parts of the text in the book. Given this view, the
question of how to best utilise this source of information for the
identification and retrieval of relevant pages inside a book arises.

Term propagation mechanisms in the form of anchor text or hy-
pertext retrieval have been successfully applied in Web IR [2], and
have also been found to be beneficial for enterprise [9], and XML
retrieval [19]. The underlying principle of term propagation (also
referred to as context augmentation) is the use of terms from linked
source documents in the representation of a destination document.
A link may be a structural link between components in a document
hierarchy, or a hyperlink connecting two web pages, for example.
A consequence of term propagation is that the destination docu-
ment receives a term frequency boost, which can then lead to a
higher retrieval score being assigned to the document by a search
system.

In this paper, we investigate the modelling of term propagation
strategies adapted to the task of book search, exploiting the BoBI
as a list of anchor texts linking to pages in the book. We employ
probabilistic Datalog (PD) [4], an expressive high level language,
for modelling information retrieval taking into account the specifics
of book search.

d1

sailing
 weather
 weather
sailing

d77

b1
 a1
 b88

forecast

Figure 1: Structured documents with hyperlink

d1

sailing

weather
 weather
sailing

d77

sailing

weather

forecast

Figure 2: Augmentation through hierarchy and hyper-link

The two main contributions of this paper are: 1.) The modelling
of tf -boosting strategies in PD, and 2.) The proposal of the voter
model for tf -boosting.

The paper is structured as follows. Section 2 introduces anchor text
retrieval and modelling in PD. Section 3 discusses why the classic
anchor text retrieval strategy fails in book search, and introduces
a voter model for the task. Section 4 formally defines anchor text
retrieval in book search, modelling the strategies in PD. Finally,
section 5 summarises the paper and outlines future work.

2. BACKGROUND
In this section, we present two examples of anchor text retrieval
applied to structured and hyperlinked documents, and review the
basic principles of probabilistic modelling in PD.

2.1 Context Augmentation
Term propagation in anchor text retrieval is an application of con-
text augmentation [13, 16], where the occurrence of a term in the
anchor text (of the source document) is propagated to the destina-
tion document via a structural or hyperlink that connects the two
documents. As a result, the content of the destination document is
augmented and the term frequencies (tf) of terms in the destination
document are increased.

We present two context augmentation mechanisms, depending on
the type of linkage between documents. We illustrate these using
the small sample collection of two documents, d1 and d77, shown
in Figure 1. Each document in the collection is a tree with nodes
and edges. The nodes of a tree may be composite elements, which
contain other nested nodes, and leaf nodes, which contain the text
of the document. Nodes are labelled based on the following con-
vention: “d” represent the root node of a document, “b” is short
for body, and “a” indicates an anchor. A solid line between nodes
represents a structural link and a dash-dot arrow from an anchor
element implies a hyperlink.

2.1.1 Hierarchical augmentation
Hierarchical augmentation is typically applied to structured docu-
ments (e.g., in XML IR), where the occurrence of a term in a child-
node is propagated to the representation of its parent node. In this
case, the term frequency is propagated upwards along the structure
of the document tree. One reason to do this is to support the re-
trieval of composite nodes, which may provide a better match than

their child nodes alone (e.g., when one query term is contained in
one child node and another query term in another child node) [5].

For example, in Figure 1, we obtain the augmented representation
of d1 by propagating the tf ’s of the terms that occur in the child
nodes: b1 and a1. We use the notation nL(t, c) to denote the tf of a
term t in a context c, where nL stands for number of locations. The
term frequencies in the child nodes are thus nL(sailing, b1) = 1
and nL(sailing, a1) = 1, and nL(weather, a1) = 1. After aug-
mentation, we obtain the following tf ’s in d1: nL(sailing, d1) = 2
and nL(weather, d1) = 1. Augmentation, thus, allows for d1 to
act as a combined representation of its child nodes. This is illus-
trated in the left side of Figure 2.

One typical question in hierarchical augmentation concerns
whether to propagate raw term frequencies or apply some kind of
normalization or weighting [17]. In this paper, we model both raw
and weighted term frequency propagations.

2.1.2 Anchor-text-based augmentation
Applying augmentation in a hyperlinked environment allows to
combine evidence from external documents for the representation
and retrieval of a hyperlinked document.

Tf -boosting is one such strategy, which directly propagates and
combines term frequencies into the representation of the destina-
tion document. Anchor text retrieval using tf -boosting have in fact
been shown to improve retrieval performance in Web IR [2]. Fur-
thermore, tf -boosting was found to be more effective than other
link-based strategies in Web IR [10].

We illustrate tf -boosting using the sample collection of Figure 1.
Here, the anchor element a1 has a hyperlink pointing to docu-
ment d77. Assuming that the representation of d77 already con-
tains the terms “weather” and “forecast” as a result of hierarchi-
cal augmentation from b88, we start with the following tf ’s in
d77: nL(weather, d77) = 1 and nL(forecast, d77) = 1. The
terms “sailing” and “weather” in a1 are terms of the anchor text,
which is often interpreted as a description of the destination doc-
ument. By propagating the terms of the anchor text to the des-
tination document, we can obtain a tf -boosted representation of
d77, where the tf of “weather” is boosted from 1 to 2. In ad-
dition, the term “sailing” which did not occur in d77 originally,
is now also represented. After propagation, the term frequencies
for d77 are: nL(sailing, d77) = 1, nL(weather, d77) = 2, and
nL(forecast, d77) = 1. This is illustrated in the right hand side
of Figure 2.

2.2 Modelling in Probabilistic Datalog
We model retrieval strategies in probabilistic Datalog (PD) [4]. PD
is a combination of deterministic Datalog (a query language used in
deductive databases) and probability theory. It is a highly expres-
sive and flexible platform for modelling and prototyping different
retrieval strategies.

To introduce PD, we implement the example term propagation
strategies discussed in Section 2.1. First, we create the follow-
ing relational structures to store the necessary information about
the collection (see Figure 4): The term(Term,Context) re-
lation is used for storing term occurrences along with their cor-
responding location information, e.g., the term “sailing” occurs
in the anchor element a1. The location information is stored as

pdRule := {assumption} goal ’:-’ body
assumption :=

’DISJOINT’ | ’INDEPENDENT’ | ’SUBSUMED’ |
’SUM’ | ’MAX’

goal ::= NAME {assumption} ’(’ varList ’)’
body ::= subgoalList
varList := var {’,’ varList}
var := VARIABLE
subgoalList := subgoal {’&’ subgoalList}
subgoal := NAME ’(’ argList ’)’ {’|’ evidenceKey}
argList := arg {’,’ argList}
arg := VARIABLE | constant
evidenceKey := ’(’ varList ’)’

Figure 3: Extract of PD Syntax

term
Term Context
sailing d1/b1
sailing d1/a1
weather d1/a1
weather d77/b88
forecast d77/b88

part_of
Child Parent
d1/a1 d1
d1/b1 d1
d77/b88 d77

link
Context URL
d1/a1 www.bbc.co.uk

site
Context URL
d77 www.bbc.co.uk

Figure 4: Relations of link-based retrieval

a path, expressed in XPath 2, however, for readability we use a
simplified syntax throughout this paper, e.g., “d1/a1”. The hi-
erarchical structure of documents in the collection is represented
in the part_of(Child,Parent) relation, e.g., “d1/a1” is a
part of “d1”. The hyperlink structure is modelled through two
relations: link(Context,URL) and site(Context,URL).
The link relation associates the XPath of an anchor node with the
URL of the destination, while the site relation maps the URL to
the destination document.

The syntax of our PD is given in Figure 3. In this syntax, everything
between a pair of curly brackets, i.e. ’{’ and ’}’, is optional; the
assumption ’SUM’ is an alias of ’DISJOINT’ hence the two are
interchangeable.

A PD rule consists of a goal, a body and arguments. A rule is eval-
uated such that the goal is true if and only if the body is true. For
example, the following rule demonstrates a common term matching
strategy in IR, stating that if T occurs in a query and T is a term in
a document D, then D is retrieved.

retrieve(D) :- query(T) & term(T, D).

The weights (probabilities) associated with the results of a rule are
obtained through probability computations, which involve proba-
bility estimation and probability aggregation. Probability estima-
tion assigns initial probabilities to the rows of a relation; the proba-
bilities may be term-based, i.e. tf, or document-based (or element-
based in XML), i.e. df. Probability aggregation, on the other hand,
combines probabilities of one or multiple relations, e.g., by sum-
mation or multiplication.
2http://www.w3.org/TR/xpath

term(T,S) & part_of(S,D)
Term Context Child Parent
sailing d1/b1 d1/b1 d1
sailing d1/a1 d1/a1 d1
weather d1/a1 d1/a1 d1
weather d77/b88 d77/b88 d77
forecast d77/b88 d77/b88 d77

(a) intermediate result of rule body

augTerm
Term Parent
sailing d1
sailing d1
weather d1
weather d77
forecast d77

(b) hierarchical aug-
mentation

augTerm_d
1/NL(d) Term Parent

1/3 sailing d1
1/3 sailing d1
1/3 weather d1
1/2 weather d77
1/2 forecast d77

(c) probability estimation

w_augTerm
P (t|d) Term Parent

2/3 sailing d1
1/3 weather d1
1/2 weather d77
1/2 forecast d77

(d) probability aggregation

Figure 5: Intermediate results of hierarchical augmentation

For instance, to estimate the within-document tf ’s of a term T given
that it occurs in document D, we have the following rule:

w_term(T, D) :- term(T, D) | (D).

The rule contains a special form of our probabilistic Datalog vari-
ant: The “| (D)” is the so-called evidence key, so that the tuples
in the goal “w_term” (stands for weighted term) have the proba-
bilistic semantics P (T |D). We will return to this in more detail in
sections 4.2 and 4.3. Further information about PD can be found
in [4, 7, 18].

2.2.1 Hierarchical augmentation in PD
Let us now present a model of augmentation in PD. First, we give
the PD rules for the hierarchical augmentation described in Sec-
tion 2.1.1:

augTerm(T, D) :- term(T, S) & part_of(S, D).
augTerm_d(T, D) :- augTerm(T, D) | (D).
w_augTerm SUM(T, D) :- augTerm_d(T, D).

The first rule yields the augmented term frequency for the term T in
document D by evaluating the predicates that T occurs in a context
S, and that the context S is part of a document D. The second rule
estimates the tf for augTerm. Finally, the third rule aggregates the
probabilities and yields the final results.

Figure 5 illustrates the steps for processing this hierarchical aug-
mentation rule. Figures 5(a) and 5(b) show the intermediate and
final results of the first rule; Figure 5(c) shows the result of the
probability estimation, i.e. the second rule; and Figure 5(d) shows
the results of the probability aggregation, i.e. the third rule.

2.2.2 Anchor-text-based augmentation in PD
The PD rules for anchor text retrieval with tf -boosting presented in
section 2.1.2 are given as follows:

augTerm(T, D) :- term(T, S) & part_of(S, D).
augTerm(T, D) :- term(T, A) & link(A, U) & site(D, U).
augTerm_d(T, D) :- augTerm(T, D) | (D).
w_augTerm SUM(T, D) :- augTerm_d(T, D).

term(T,A) & link(A,U) & site(D,U)
Term Context Context URL Context URL
sailing d1/a1 d1/a1 www.bbc.co.uk d77 www.bbc.co.uk
weather d1/a1 d1/a1 www.bbc.co.uk d77 www.bbc.co.uk

(a) intermediate result of rule body

augTerm
Term Parent
sailing d77
weather d77

(b) anchor-text-based
augmentation

augTerm
Term Parent
sailing d1
sailing d1
weather d1
weather d77
forecast d77
sailing d77
weather d77

(c) Union of hier-
archical and anchor-
text-based augmenta-
tion

augTerm_d
1/NL(d) Term Parent

1/3 sailing d1
1/3 sailing d1
1/3 weather d1
1/4 weather d77
1/4 forecast d77
1/4 sailing d77
1/4 weather d77

(d) probability estimation

w_augTerm
P (t|d) Parent Term

2/3 sailing d1
1/3 weather d1
1/2 weather d77
1/4 forecast d77
1/4 sailing d77

(e) probability aggregation

Figure 6: Intermediate results of tf-boosting

The first rule performs hierarchical augmentation to obtain the
original within-document tf of terms. The anchor text based tf -
boosting is performed by the second rule in two steps: 1.) The
propagated term frequency for the term T in document D is ob-
tained by evaluating the predicates that the term T appears in a
context A, where A has a hyperlink to a URL U , which is associ-
ated to a document D; and 2.) The propagated tf is combined with
the original tf of term T in document D. The third and fourth rules
estimate and aggregate probabilities, respectively, to yield the final
probability scores.

The procedures for processing the tf -boosting rules (rules 2-4) are
illustrated in Figure 6. Figures 6(a) and 6(b) show the intermedi-
ate results for obtaining the propagated term frequencies, i.e. the
first step of tf -boosting; Figure 6(c) shows the combination of the
boosted and the original tf ’s, i.e. the second step of tf -boosting.
Figures 6(d) and 6(e) show the results of the probability estimation
and aggregation processes.

3. BACK-OF-BOOK INDEX (BOBI)
As mentioned earlier, the rich structure of books is viewed as po-
tentially useful for improving the retrieval effectiveness of book
search approaches. Generally, the table of contents (TOC) and the
BoBI are regarded as the two main sources of information to aid
readers in locating relevant content in books [12]. While the ben-
efits of a hyperlinked TOC’s seem obvious, the use of the BoBI in
book search tasks is less trivial. In this section, we investigate and
discuss the applicability of BoBI for page-level search in books.

3.1 TF-Boosting and the BoBI: Discussion
A BoBI is, in essence, a cross-reference lockup mechanism aimed
to support readers of printed books to locate information quickly
using keywords as their entry into the content of the book. A BoBI
is usually created by the author (or editor)3 of the book, and as
such, it reflects a somewhat personalised view on what the impor-
tant terms/concepts of a book are. On the other hand, it represents a
relevance association in the form of 〈term, page〉 pairs, similar to
an inverted index used in IR. Furthermore, it can also be likened to

3Although automatic index generation tools may also be used.

sailing

boats

weather

forecast

<a href=http://

www.D.com>

sailing boats

Site A

Site C

Site B

Site D

<a href=http://

www.D.com>

sailing venue
 <a href=http://

www.D.com>

sailing weather

Figure 7: Anchor text topology in Web IR

hyperlink structures of the Web, whereby the anchor text of a BoBI
term points to a content page.

Inspired by the successful application of anchor text retrieval in
Web IR, one may attempt to incorporate the same mechanisms into
book search by applying them to the BoBI of books. However, as
we demonstrate next, such a direct application of the technology is
not suitable for books.

Let us illustrate this with an example, contrasting the link structure
of the Web and that of a book. Figure 7 shows three web pages
A, B and C, each of which links to a fourth D page. Anchor
text retrieval here is based on the principle of exploiting the in-link
structure of page D’s Web graph and propagating terms from the
source pages to D. The more in-links to a page, the more terms are
propagated and the stronger the effect of tf -boosting.

In a book, the BoBI contains out-links to pages of the book, where
index terms occur (see Figure 8). In contrast to the Web scenario,
however, the referred pages are likely to receive only a small num-
ber of in-links from the BoBI (one in-link per referred page is the
most likely case). This means that the boost on referred pages is
likely to have little effect. To address this, we propose in the next
section a modification to the classic anchor text retrieval strategy
and adopt this new voter model approach for the task of page re-
trieval in books.

12

45

23

... sailing

venue ...

... sailing

boats ...

... sailing

weather ...

sailing - 12,

23, 45

boats - 23

weather - 45

Figure 8: Anchor text topology in book search

3.2 TF-Boosting and the BoBI: A Voter
Model

The occurrence of a term in the BoBI of a book implies that it is
considered (by the author) of more importance than the rest of the
terms on the referenced page that do not appear in the BoBI. Intu-
itively, the pages ’cited’ in the BoBI could be considered as “best
entry points” for looking up information in the book. This is further
supported by the observation that topics (and alas associated key-
words) spanning a number of pages are often only listed in the BoBI
once, directing the reader to the first page in a sequence of pages on
the topic. To incorporate this characteristic of the BoBI within a re-
trieval strategy, we employ tf -boosting as a method for combining
traditional retrieval strategies based on term weights with adapted
anchor text retrieval based on the BoBI.

Assuming that the BoBI terms are exact copies of the terms that
occur in the referenced pages 4, the BoBI can be considered a subset
of a full-text index (FTI) generated at the page-level (i.e., using
pages as the document units). Given the intersection of FTI and
BoBI, the terms common to both sets could be viewed as providing
an association between the pages in the FTI and the pages in the
BoBI, each shared term acting as a kind of anchor text link. Based
on this view, we can consider each page associated with a given
term in the FTI as a virtual voter to the pages referenced by the
BoBI: by propagating term weights to the pages in the BoBI, each
voter thereby votes for the “best entry points” in the book.

A range of possible options exist for deriving a suitable voting
weight, i.e. the propagated term weight. One option is to redis-
tribute the terms in the FTI over the page frequency of terms in the
BoBI, i.e. nP,bobi(t) (see section 4.3 for formal definition).

Based on this idea of a voter model, we propose the following tf -
boosting approach:

Distribute the page frequency of a term t in the FTI across the oc-
currences of the term in the BoBI. With regards to voting this means
that each entry of the BoBI receives votes from entries of the FTI.

We detail our model based around the above voting-based tf -
boosting idea in the next section.

4. MODELLING TF-BOOSTING FOR
PAGE SEARCH IN BOOKS

4In history books, for example, expanded phrases, such as those
of historical events, may be used in the BoBI instead of the actual
terms appearing in the text.

This section defines anchor-text-like retrieval strategies that lead to
tf -boosting for pages of a book. First, we detail the schema of our
book collection. We then present a naive anchor-text propagation
approach, and a refined approach expressed as a voter model.

4.1 Schema
A PD engine uses database-like tables for indexing, where a
schema is a list of tables and corresponding attributes in the header
of tables. We designed our schema based on a collection of books
provided by the INEX 2007 Book Search track 5. A book in this
corpus is stored in DjVu XML 6, where the basic structure can be
summarised as follows:

<DjVuXML>
<BODY>
<OBJECT data="file.." ...>
<PARAM name="PAGE" value=".."/>
[...]
<REGION>
<PARAGRAPH>
<LINE>
<WORD coords="..."/>
<WORD coords="..."/>
[...]

</LINE>
<LINE> [...] </LINE>
[...]

</PARAGRAPH>
</REGION>
[...]

</OBJECT>
[...]

</BODY>
</DjVuXML>

The original source was subsequently converted to an XML syntax,
referred to as OCRML, which also contains additional structure
mark-ups. Example snippets from the converted XML structure
are given below:

<page id="54" pageNumber="23">
<section id="123" label="SEC_BODY">
hundreds of sailing boats are beached [...]

</section>
</page>

<page id="224" pageNumber="123">
<section id="54321" label="SEC_INDEX">
sailing 12, 23, 45

</section>
</page>

The first segment shows terms in the body of the book’s content.
This is identified by the label SEC_BODY. The second segment
shows terms in the BoBI, which is labelled by SEC_INDEX. Each
element has an unique identifier, reflecting its location in the doc-
ument tree. The actual page numbers (as printed inside the book)
are given by the “pageNumber” attribute.

Based on the OCRML structure and following the conventions
introduced in section 3, we define the following schema for our
indexes. The fti_raw table stores our (non-aggregated) full-
text index, which is populated with terms from the body of the
book (i.e., content labelled with SEC_BODY), while the table
5http://inex.is.informatik.uni-duisburg.de/2007/bookSearch.html
6http://djvu.sourceforge.net/doc/man/djvuxml.html

fti_raw
Term PageID
sailing /book1/page23
sailing /book1/page23
sailing /book1/page29
· · · · · ·
weather /book1/page19
weather /book1/page20
· · · · · ·
(a) terms in book pages

bobi
Term PN
sailing 13
sailing 20
weather 3
weather 6
weather 100
boats 66

(b) terms in a
BoBI

page_map
PageID PN
/book1/page23 7
/book1/page29 13
/book1/page31 15
· · · · · ·

(c) mapping from page
IDs to page numbers

bobiPageFreq
Probability Term t PN p

P (t|p)

1/2 sailing 13
1/2 sailing 20
1/3 weather 3
1/3 weather 6
1/3 weather 100

1 boats 66
(d) estimate the page frequencies
of terms in the BoBI

fti_all
tffti(t) Term t

8 sailing
15 weather
6 boats

(e) aggregate the to-
tal terms weights in
the FTI

fti (full-text index)
Tuple weight Term PageID

tffti(t, p) t p

2 sailing /book1/page23 (7)
1 sailing /book1/page29 (13)
2 sailing /book1/page31 (15)
3 sailing /book1/page36 (20)
1 weather /book1/page19 (3)
5 weather /book1/page20 (4)
1 weather /book1/page22 (6)
3 weather /book1/page24 (8)
2 weather /book1/page26 (10)
3 weather /book1/page116 (100)
1 boats /book1/page82 (66)
5 boats /book1/page83 (67)

(f) tuples with original term weights

nbfti (naive boosted fti)
Tuple weight Term PageID

tfnbfti(t, p) t p

2 + 0 = 2 sailing · · · (7)
1 + 1 = 2 sailing · · · (13)
2 + 0 = 2 sailing · · · (15)
3 + 1 = 4 sailing · · · (20)
1 + 1 = 2 weather · · · (3)
5 + 0 = 5 weather · · · (4)
1 + 1 = 2 weather · · · (6)
3 + 0 = 3 weather · · · (8)
2 + 0 = 2 weather · · · (10)
3 + 1 = 4 weather · · · (100)
1 + 1 = 2 boats · · · (66)
5 + 0 = 5 boats · · · (67)

(g) propagates term weights to the pages
in the BoBI with naive model

vbfti (voter boosted fti)
Tuple weight Term PageID

tfvbfti(t, p) t p

2 + 0 = 2 sailing · · · (7)
1 + 8/2 = 5 sailing · · · (13)

2 + 0 = 2 sailing · · · (15)
3 + 8/2 = 7 sailing · · · (20)

1 + 15/3 = 6 weather · · · (3)
5 + 0 = 5 weather · · · (4)

1 + 15/3 = 6 weather · · · (6)
3 + 0 = 3 weather · · · (8)
2 + 0 = 2 weather · · · (10)

3 + 15/3 = 8 weather · · · (100)
1 + 6/1 = 7 boats · · · (66)

5 + 0 = 5 boats · · · (67)
(h) propagates term weights to the pages
in the BoBI with voter model

Figure 9: Tf -boosting for book search with a naive model and a voter model

called bobi is our back-of-book index, built from content labelled
with SEC_INDEX. A page_map table is used for mapping the
’printed’ page numbers of a book to the page IDs.

Page mapping is a practical requirement of processing books in
their digitized form, while applications that need to handle such
complexity will benefit from the expressiveness and flexibility pro-
vided by PD.

The three tables for indexing books are shown in Figures 9(a), 9(b),
and 9(c).

With respect to the notation used in Figure 9 in general: The tu-
ple weight corresponds to the number of tuples in which a term-
page pair occurs. For example, tffti(t, p) := nL,fti_raw(t, p), where
(t, p) is a tuple, and nL,fti_raw(t, p) is the number of tuples in ta-
ble fti_raw (Figures 9(a)) in which (t, p) occurs.

In the next sections, we discuss the modelling of anchor-text tf -
boosting. First, a naive model using the classic Web IR strategy is
defined; and then a tailored voter model for book search is intro-
duced.

4.2 Naive Model
A naive model performs direct term augmentation thus achieving
tf -boosting to the pages in the BoBI. The idea comes from the Web
IR anchor text tf -boosting, where terms in anchor texts contribute
term frequencies to destinations. In a naive model, the terms in
the BoBI are viewed as anchor texts, while their associating pages
are viewed as destinations. For instance, in the example OCRML
segment labelled by SEC_INDEX in section 4.1, the term “sailing”

has three referenced pages “12”, “23”, and “45”. Thereby, there are
three virtual anchors, and “sailing” is an anchor-text being boosted
in the destination pages.

A mathematical definition of the naive model is given by the fol-
lowing formula:

DEFINITION 1. Boosted tf: naive model:

Let tffti(t, p) := nL(t, p) be the bare within-page term frequency
of term t in page p, i.e. the number of locations in page p at which
term t occurs.

Let bobi be the set of anchors, and let tfbobi(t, ap) := nL(t, ap)
be the within-anchor term frequency, where anchor ap points to
page p. Then, the naive boosted within-page term frequency is the
sum of the bare within-page term frequency and the term frequen-
cies of the anchors pointing to the page.

tfnbfti(t, p) := tffti(t, p) +
X
ap

tfbobi(t, ap) (1)

In probabilistic Datalog, the following rules model the naive boost-
ing strategy 7:

%1. term frequency in fti
fti SUM(T, X) :- fti_raw(T, X).

%2-3. maps page numbers and page IDs

7Lines start with ’%’ are for comment purpose.

fti_dist DISTINCT(T, X) :- fti_raw(T, X).
fti_map(T, X, P) :- fti_dist(T, X) & page_map(X, P).

%4-5. augmentation / tf-boosting
nbfti(T, X) :- fti(T, X).
nbfti(T, X) :- bobi(T, P) & fti_map(T, X, P).

%6. estimates probability scores
w_augTerm SUM(T, X) :- nbfti(T, X) | (X).

The arguments T , X and P correspond to “Term”, “PageID” and
“Page Number” (PN) in the schema, respectively. The first rule
adds up the term frequencies to obtain the book-wide term fre-
quency. Strictly speaking, this is not a probabilistic operation,
since the tuple weights in fti (see Figure 9(f)) are total counts
rather than probabilities 8. The fti has two columns, i.e. “Term”
and “PageID”, while for better readability, we also show the corre-
sponding “PN” values (between parentheses) after the page ID, and
we will refer to “PN” in our latter discussions. The second and third
rules map the page numbers to corresponding page IDs. The fourth
and fifth rules perform naive tf -boosting. The augmented result is
shown in the Figure 9(g). The last rule estimates the probability
scores.

The issue here is that the naive modelling of tf -boosting does not
deliver a reasonable boosting effect; this is because there is at most
ONE anchor per term. Therefore, the next section describes the
idea to relate the indexed (in the BoBI) and non-indexed occur-
rences of a term, and to propagate the non-indexed occurrences to
the indexed occurrences, thus, leading to a boost of the term fre-
quencies in the indexed pages.

4.3 Voter Model
Based on the discussion in section 3.2, a voter is a page occur-
ring in the FTI. Voters vote for the destination pages that occur in
the BoBI, and that share the same keywords. In other words, each
voter holds anchors to destination pages (there could be more than
one destinations, depending on the number of pages in BoBI). The
local term frequency of a voter corresponds to the votes it can po-
tentially assign to destinations (candidates). Each destination ob-
tains a portion of the total amount of votes. There are various ways
to allocate votes to destinations, and we illustrate here the unbiased
voting where the votes are evenly distributed over destinations. Re-
fined methods for vote allocation are to be studied in future work.
For example, the vote distribution could consider page properties
such as length, location in book, exhaustiveness and/or specificity
of the page.

The mathematical definition of the unbiased voter model is given
as:

DEFINITION 2. Boosted tf: voter model:

Let tffti(t) := nL,fti_raw(t) be the book-wide term (location) fre-
quency. This frequency is equal to the sum over the within-page
term frequencies: nL,fti_raw(t) =

P
p nL,fti_raw(t, p). In a less for-

mal way, the total (book-wide) term frequency is

tffti(t) =
X

p

tffti(t, p)

8The description of a full probabilistic model is part of future re-
search. For the time being, we propose the frequency-based model,
since the probabilistic model implies an early aggregation of fre-
quency counts, and this does not deliver the tf -boosting effect as
applied in hypertext retrieval.

where tffti(t, p) := nL,fti_raw(t, p) is the within-page term fre-
quency.

The book-wide term frequency of a term t is distributed over the
BoBI entries. Let nP,bobi(t) denote the number of pages the re-
spective term entry points to in the BoBI. Note that nP,bobi(t) =
nL,bobi(t), i.e. the number of pages is equal to the number of loca-
tions/tuples, if the BoBI is distinct, i.e. there are no multiple term-
page entries of the same term to the same page.

Then, the boosted term frequency is defined as follows:

tfvbfti(t, p) := tffti(t, p) +
tffti(t)

tfbobi(t)
(2)

The respective term frequencies (tf) correspond to total counts of
term occurrences in the raw FTI, as the next equation illustrates.

tffti(t, p) = nL,fti_raw(t, p) +
nL,fti_raw(t)

nL,bobi(t)
(3)

The probabilistic Datalog rules for modelling the voter model are
as follows:

%1. term’s page frequency in bobi
bobiPageFreq(T, P) :- bobi(T, P) | (T).

%2. term frequency in fti
fti SUM(T, X) :- fti_raw(T, X).

%3-4. maps page numbers and page IDs
fti_dist DISTINCT(T, X) :- fti_raw(T, X).
fti_map(T, X, P) :- fti_dist(T, X) & page_map(X, P).

%5-6. obtains statistics for augmentation
bobiIDFreq(T, X) :-

bobiPageFreq(T, P) & fti_map(T, X, P).
fti_all SUM(T) :- fti(T, X).

%7-8. augmentation / tf-boosting
vbfti(T, X) :- fti(T, X).
vbfti(T, X) :- bobiIDFreq(T, X) & fti_all(T).

%9. estimates probability scores
w_augTerm(T, X) :- vbfti(T, X) | (X).

The first rule yields the term’s page frequency in the bobi (see
Figure 9(d)). The tuples in the goal “bobiPageFreq” are conditional
probabilities of the form P (T, P |T), i.e. the tuple probabilities are
conditioned by the term. The “| (T)” attached to the sub-goal is the
evidence key, and this describes the conditional probability. The
second, third and fourth rules are similar to the naive model. The
fifth rule transfers the page frequency to page IDs, and the sixth rule
aggregates the total book-wide tf (see Figure 9(e)); these two rules
prepare the statistics for the latter tf -boosting. The seventh and
eighth rules conducts the proposed boosting, the result of vbfti is
shown in Figure 9(h). Finally, the last rule estimates the probability
scores.

Considering the boosting effect of the voter model, we take a closer
look at the boosted FTI, the vbfti in Figure 9(h). For example,
the two occurrences of the term “sailing” which appear in the BoBI
(i.e., on page 13 and page 20) receive an equal share of the total
tf of “sailing” in the FTI, boosting the tf by 8/2 to a total score of
5 in the case of page 13, and 7 for page 20.

A beneficial effect of the voting-based tf -boosting strategy is that
since it promotes the pages referenced in the BoBI, it correctly
leads to a more user-oriented retrieval paradigm. For example, as-
suming that the BoBI lists only the first occurrence of a term (at
the start of a topic), the system will rank the page referenced in the
BoBI ahead of other pages containing the term, and alas directing
the user to the page where they should start reading. For instance,
page 3 is the first page about “weather”, while the adjacent page 4
continues the discussion. Without the voter model or with the naive
model, page 4 gets ranked higher, but with the voter model score
of page 3 is boosted above page 4’s score. Based on this assump-
tion, a best entry point strategy which aims to direct user to those
points in the text where they should start reading [3] can be feasibly
implemented. In effect, using the voter model, the best entry point
selection method of the author, as implemented within the index
term selection strategy they applied can be directly reflected in the
retrieval and its benefits passed directly onto the user.

5. SUMMARY
This paper proposes a tf -boosting model for book/page search. The
initial starting point was to apply anchor-text retrieval to the back-
of-book index, this idea being based on the fact that a BoBI is a list
of anchors pointing to pages. However, the starting point turned
out to be “naive” in the sense that the propagation of anchor-text
from the BoBI does not deliver the desired tf -boosting effect, and,
in turn, this observation motivated this paper.

For achieving a tf -boosting effect from the BoBI, we needed to
revise the hypertext-based modelling. This revision leads to a voter
model proposed for tf -boosting in book search: the overall idea is
to distribute the book-wide term frequency of a term to the pages
that are indexed in the BoBI; this corresponds to a voting model in
the sense that a term votes for the pages to which its term frequency
shall be added.

One of the main contributions of this paper is that the modelling
of the voter model demonstrates the benefit of high-level abstract
modelling of retrieval strategies. Traditional anchor-text retrieval is
modelled in probabilistic Datalog rules; these rules are not directly
applicable for book search, and need to be evolved. This evolu-
tion demonstrates that through the high-level abstraction of search
strategies, successful techniques of one domain (here, anchor-text
retrieval in hypertext) can be transferred to another domain (tf-
boosting for book/page search).

Future work will include the investigation of different voter mod-
els. For example, deciding how many votes an entry page should
receive based on proximity (term to page, or page to page). In addi-
tion, the evaluation of retrieval effectiveness will be examined with
real and large scale collections.

Acknowledgements
We would like to thank Bodin Dresevic and Dejan Lukacevic at the
Microsoft Development Centre in Serbia for the use of their tool to
mark-up books in OCRML.

6. REFERENCES
[1] N. Abdullah and F. Gibb. Using a task-based approach in

evaluating the usability of bobis in an e-book environment.
In ECIR, pages 246–257, 2008.

[2] N. Craswell, D. Hawking, and S. E. Robertson. Effective site
finding using link anchor information. In SIGIR, pages
250–257, 2001.

[3] K. Finesilver and J. Reid. User behaviour in the context of
structured documents. In ECIR, pages 104–119, 2003.

[4] N. Fuhr. Probabilistic Datalog: Implementing logical
information retrieval for advanced applications. Journal of
the American Society for Information Science, 51(2):95–110,
2000.

[5] N. Fuhr and K. Großjohann. XIRQL: An XML query
language based on information retrieval concepts. ACM
Trans. Inf. Syst., 22(2):313–356, 2004.

[6] N. Fuhr, J. Kamps, M. Lalmas, and A. Trotman, editors.
Focused access to XML documents, 6th International
Workshop of the Initiative for the Evaluation of XML
Retrieval (INEX), Revised Selected Papers, Lecture Notes in
Computer Science. Springer, 2008.

[7] N. Fuhr and T. Roelleke. A probabilistic relational algebra
for the integration of information retrieval and database
systems. ACM Transactions on Information Systems (TOIS),
14(1):32–66, 1997.

[8] D. J. Harper, I. Koychev, and S. Yixing. Query-based
document skimming: A user-centred evaluation of relevance
profiling. In ECIR, pages 377–392, 2003.

[9] D. Hawking. Challenges in enterprise search. In ADC, pages
15–24, 2004.

[10] D. Hawking, E. M. Voorhees, N. Craswell, and P. Bailey.
Overview of the trec-8 web track. In TREC, 1999.

[11] G. Kazai and A. Doucet. Overview of the INEX 2007 book
search track (BookSearch’07). In Fuhr et al. [6].

[12] G. Kazai and A. Trotman. Users’ perspectives on the
usefulness of structure for XML information retrieval. In
ICTIR, 2007.

[13] M. Lalmas and T. Roelleke. Four-valued knowledge
augmentation for structured document retrieval. In
Proceedings of the 13th International Symposium on
Methodologies for Intelligent Systems (ISMIS), Lyon,
France, June 2002.

[14] R. R. Larson. Logistic regression and EVIs for XML books
and the heterogeneous track. In Fuhr et al. [6].

[15] W. Magdy and K. Darwish. CMIC at INEX 2007: Book
search track. In Fuhr et al. [6].

[16] T. Roelleke. POOL: Probabilistic Object-Oriented Logical
Representation and Retrieval of Complex Objects. Shaker
Verlag, Aachen, 1999. Doktorarbeit (PhD thesis).

[17] T. Roelleke, M. Lalmas, G. Kazai, I. Ruthven, and
S. Quicker. The accessibility dimension for structured
document retrieval. In Proceedings of the BCS-IRSG
European Conference on Information Retrieval (ECIR),
Glasgow, March 2002.

[18] T. Roelleke, H. Wu, J. Wang, and H. Azzam. Modelling
retrieval models in a probabilistic relational algebra with a
new operator: the relational Bayes. VLDB J., 17(1):5–37,
2008.

[19] F. Weigel, K. U. Schulz, and H. Meuss. Exploiting native
XML indexing techniques for XML retrieval in relational
database systems. In WIDM, pages 23–30, 2005.

[20] H. Wu, G. Kazai, and M. Taylor. Book search experiments:
Investigating IR methods for the indexing and retrieval of
books. In ECIR, pages 234–245, 2008.

