
XOR - XML Oriented Retrieval Language

Shlomo Geva
Queensland University of

Technology (QUT)
2 George St, Brisbane

Q 4001, Australia

s.geva@qut.edu.au

Marcus Hassler
Universität Klagenfurt

Universitätsstrae 65-67 9020
Klagenfurt

Austria

Marcus.Hassler@hekkas.com

Xavier Tannier
Ecole Nationale Supérieure

des Mines
158 Cours Fauriel

42023 Saint-Etienne, France

tannier@emse.fr

ABSTRACT
The wide acceptance and rapidly growing use of XML as
a standard storage and retrieval data format blurs the his-
torical divide that exists between Information Retrieval and
Database Retrieval. On the structured database retrieval
side it is now possible to support highly structured access to
documents using XML specific tools such as XPath, XQuery,
XQL and more. On the information retrieval side it is pos-
sible to support access to the XML documents using XML
specific retrieval query languages such as NEXI. None of
the above are intended for end-users, but rather as enabling
back-end technologies. In this paper we introduce XOR -
a new XML Oriented Retrieval language that is designed
to facilitate query specification with a strong IR flavour.
XOR is backwards compatible with NEXI, but significantly
extends its functionality overcoming many of its restrictions
and limitations. While XOR itself is not an end-user tool, it
is designed with the explicit goal of supporting IR, and more
specifically, user oriented interfaces such as Natural Lan-
guage Queries (NLQ) or interactive user interfaces. XOR

provides the missing functionality that none of the exist-
ing XML retrieval tools support, and which advanced IR
requires.

1. INTRODUCTION
A historical divide exists between Information Retrieval and
Database Retrieval. The former is mostly concerned with
text documents or web pages with minimal structure, while
the later is primarily concerned with highly and strictly
structured documents. XML supports the representation
of all types of documents, catering for the full spectrum -
from unstructured to highly structured documents. The gap
between IR and traditional Database approaches is closing.
Indeed, many approaches to XML-IR rely on database tech-
nology as a back-end system, rather than rely on IR spe-
cific file structures. XML retrieval tools from W3C, such as
XPath [1] or XQuery [2] are highly sophisticated query lan-
guages. For information retrieval applications, XPath and
XQuery are arguably completly over the top. Information

SIGIR 2006 XML Element Retrieval Methodology workshop August 10,
2006, Seattle, Washington, USA. Copyright of this article remains with the
authors.

retrieval queries are often loosely defined, vague, or even
ambiguous. NEXI [3] is an alternative query language that
was designed to drastically cut-down XPath, while being
extended with explicit IR flavoured functionality and with
implicit IR flavoured interpretation.

NEXI (Narrowed Extended XPath I) is a language for In-
formation Retrieval over XML document collections (XML-
IR), proposed and used by INEX - the INitiative for the
Evaluation of XML Retrieval - since 20041. NEXI offers
a good compromise between the need to formally express
structural and textual constraints on the one hand, and the
ability to write IR flavoured queries on the other hand.

At the same time, since 2004, INEX ran a Natural Lan-
guage Processing task. Rather than requiring participants
to implement NLP based XML search engines, the main
task of the NLP track is the automatic translation of an
expressed natural language information need into a formal
NEXI query. The automatically generated formal queries
are then evaluated by a standard XML search engine that
is provided by the track organizers.

The results from the first two years are very encouraging,
but it appears now that NEXI specifications constrain fur-
ther research and development of this approach. Indeed, an
analysis of natural language queries can lead to identifica-
tion of interesting features or relations between terms (or
elements). But the need to use NEXI as a pivot language
prevents the use of this knowledge when formulating queries.
It should be noted that XPath does not support the neces-
sary functionality either - it is not the simplification from
XPath to NEXI that is the cause of the problem.

Here we introduce the XML-Oriented Retrieval (XOR) for-
mal query language, an extension of NEXI that supports
new features. The extensions are not a re-introduction of
XPath features that were removed when NEXI was designed;
rather, the extensions are geared towards more expressive,
albeit more complex, queries; however it is primarily in-
tended for use by automatic query generators (such as nat-
ural language interfaces or interactive user interfaces that
are guided by explicit user feedback in response to clari-
fication requests from the system). This is an important
trait to notice, because XOR is a formal XML-IR language
that is NOT designed for direct use by people - not even
XML experts who are the users of XPath and XQuery. The

1http://inex.is.informatik.uni-duisburg.de/2006/

language is designed purely as an intermediary in IR ap-
plication, and in our case specifically with NLP in mind to
facilitate explicit support of natural language queries.

Nevertheless, the language can be used by end-users or expert-
users if desired. It is still much simpler than XPath, XQuery,
or XQL, for instance. the XOR language is extensible and
backwards compatible with NEXI, meaning that any query
written in NEXI can be successfully parsed and processed by
the XOR parser. This is very important because it allows
researchers and developers to test systems that are based on
XOR with the datasets and assessment data and tools that
were developed by the INEX initiative over the past 5 years,
as well as into the future.

XOR is designed from the outset as an open ended extensible
language. The support of specific functionality in XOR is
left to the implementation of a search engine and is not part
of the XOR parser. However, XOR provides a concise and
simple syntax for extension. This is another feature that
distinguishes XOR from most other XML query language
specifications. For instance, if the query specifies constraints
over part-of-speech (POS) tags, then it is a search engine
implementation issue with respect to which POS tagger it
supports; furthermore, it is even possible that the search
engine will choose to ignore the POS constraints altogether.

The XOR parser implementation is also required to perform
an additional transformation that is not commonly found
when a language syntax is defined. The parser converts the
query from infix notation to postfix notation (or Reverse
Polish Notation). This transformation is designed to assist
the development of the back-end search engines that sup-
port XOR and to lower the threshold to participation in
eveluation forums like INEX.

In what follows we describe the XOR language and pro-
vide examples of the syntax and of queries. We then de-
scribe the query transformation to Reverse Polish Notation
(RPN), and provide some early results that were obtained
with XOR over the INEX repository of XML documents,
topics, and relevance assessments. The appendix provides
the BNF diagrams of XOR.

2. NEXI
NEXI is a formal query language that is based on XPath. It
has been designed to allow a simple but efficient represen-
tation of information needs for XML information retrieval.

The syntax of NEXI is similar to XPath, however, it only
uses the descendant axis step, and extends XPath by incor-
porating an ”about” clause to provide IR flavour to queries.
NEXI’s syntax is:

//A[about(.//B,C)]

where A is the context path, B is the relative path and C
is the content requirement.

It is possible for a single NEXI query to contain more than
one information request.2. Therefore the query “Return
2NEXI does support multiple path specification whereby a

paragraphs about watermarking in article containing a para-
graph about data embedding” can be represented as follows:

//article[about(.//p, "data embedding")]

//p[about(.,watermarking)]

The query contains two information requests (or sub-topics):

//article//p[about(.,watermarking)]

And:

//article[about(.//p, "data embedding")]

In NEXI each information request is specified by an ’about’
clause. However, elements matching the rightmost ’about’
clause, here the first request, are returned to the user. INEX
refers to these requests and elements as ”target requests”
and ”target elements”. Elements that match other ”about”
clauses, here the second request, are used to support the
return elements in ranking. We refer to these requests and
elements as ”support requests” and ”support elements”. In
order to be valid, each NEXI query must have at least one
target request, along with any number of support requests.

While NEXI does support the specification of more complex
queries using parenthesis and the boolean operators AND
and OR, the interpretation of such features is not strict. In
standard IR query terms are regarded as retrieval hints, and
therefore query expansion is allowed (even expected). In the
same manner, in the interpretation of NEXI, all structural
specifications are also taken merely as hints. The NEXI ex-
pression is not regarded as deterministic and it is left to the
search engine to interpret it. For instance, the AND opera-
tor is commonly evaluated with OR semantics [4] [5] [6] [7]
by search engines. For sure, any system that implements a
simple keyword search, such as represented by the title ele-
ment of an INEX topic, effectively performs an implicit OR
(because the title element contains all keywords that appear
in the castitle element, but the structure and boolean condi-
tions are lost.) A common approach to the implementation
of AND and OR is to use the fuzzy-like operators whereby
scores are multiplied (AND) or added (OR). The AND op-
erator is no longer interpreted striclty and takes on an OR
flavour.

3. LIMITATIONS OF NEXI
Translation of natural language queries into a formal lan-
guage like NEXI presents some limitations, mainly due to
the fact that the natural language preprocessor cannot spec-
ify certain constraints to the retrieval system. The formal
language, if not specifically designed with this aim, is piv-
otal in preventing helpful “communication” between both
systems.

query can be be return multiple elemtn types. It does not
however provide explicit support to multiple distinct search
requests

For example, it is not possible to consider the following fea-
tures within single NEXI queries3:

• NEXI allows only single queries (with only one target
element). This is very limiting when trying to express
the same information need in several ways. For exam-
ple, suppose that we are seeking information concern-
ing Einstein’s 1905 article about electrodynamics. We
may directly look for this article:

//article[.//year = 1905

AND about(.//author, Einstein)

AND about(.//*, electrodynamics)]

But we could also want to see some of the many articles
that explain or discuss this article. . .

//article[about(., Einstein article 1905)

AND about(., electrodynamics)

. . . or 1900’s articles on this subject to have an idea of
the state of the art at this period:

//article[about(.//year, 1900)

AND about(., electrodynamics)

Thus a single information need (“I want to understand
everything about this famous Einstein’s 1905 article
about electrodynamics”) may be represented in at least
three different complementary queries.

• NEXI handles only the ’about’ predicate, while others
could be of interest for the search process. For exam-
ple, with NEXI, whether the terms should be matched
strictly or with potential syntactic, semantic variations
like stemming or term expansion, is up to the back-end
system. An NLP system cannot intervene and specify
the desired interpretation even if it is available.

• NEXI does not allow the user to refer to more than one
article. Many requests in INEX concern bibliographic
references, but search engines are not explicitly asked
to look at referred articles (if available) and, to date,
all implementations of NEXI are restricted to search
the references section titles - a very narrow window to
referenced articles indeed.

e.g.: “Find bibliographic references that are about text
categorisation where Support Vector Machines (SVM)
categoriser is used.” (Topic 136), which is translated
in NEXI as:

//bib[about(., text categorisation)

AND about(., "Support Vector Machines" SVM)]

3In addition to this list, NEXI is not designed to deal with
many database-oriented constraints, particularly when deal-
ing with strongly typed elements, but we are not concerned
with this here

• Finally, NEXI lacks a way to express any additional de-
sired features concerning the tags or the search terms4.
Among these features, we can cite the minimum / max-
imum size of the element, the type of interpretation
(strict or vague), part-of-speech, word case, language,
or any other useful feature imagined. XOR is designed
to support an open ended set of selection qualifiers.

NEXI has been designed as a reduction of XPath to handle
only information retrieval oriented features. We think that it
is now time to extend NEXI with more powerful IR oriented
features.

4. XOR LANGUAGE SPECIFICATION
The XOR language is almost entirely compatible with the
previously defined NEXI specification [3]. The extensions
mainly concern the (automatic) query formulation capabil-
ities of combining several queries into a single query, more
elaborate specifications of paths and terms, and a larger set
of matching predicates for specific information needs.

4.1 Negation operator
The sign ’-’ of NEXI is supported, but it is sufficient to
clearly express that a term must not appear in returned
elements. We propose the negation of the about clause, se-
mantically more adequate, and syntactically more powerful.

For example, a query like I am not looking for devices for
computer-based training.5 does not mean that terms “de-
vices” and “computer-based training” must not appear in
elements (as would NEXI by -devices -"computer-based

training"), but that they must not be found together6 .
An expression like the following better suits the informa-
tion need:

NOT about(., devices "computer-based training")

4.2 Logical operators for queries
We justified in the introduction the utility of allowing mul-
tiple expressions in the same query. XOR enables the spec-
ification of a set of CAS queries combined with boolean op-
erators.

This step includes strict bracketing to avoid ambiguities and
may contain negations (using NOT). An examples of syntac-
tically correct XOR query, that is not valid NEXI is

(//A[about(.,B)] AND //A[about(.,D)]) OR

(//A[about(.,B)] AND NOT (//A[about(.,C)] OR

//A[about(.,D)]))

4See Sigurbjornsson and Trotman ”Queries: INEX 2003
working group report” where they state ”There already exist
two data types, numeric and string. This is anticipated to
expand in the future to include names, units of measure, and
even geographic locations. The language must be extensible
to include these at a future date.”
5From Topic 196, INEX 2004
6The complete query is about education problems raised
by computer-based training, and then the term “computer-
based training” is found in a relevant element.

Thus, the example of the 1905 Einstein article can be simply
translated into

//article[about(.//year,1905)

AND about(.//author, Einstein)

AND about(.//*, electrodynamics)]

AND

//article[about(., Einstein article 1905)

AND about(., electrodynamics)

AND

//article[about(.//year, 1900)

AND about(., electrodynamics)

In practice, as search engines return a list of elements that
are independent from each other, and not groups of ele-
ments, the operators ’AND’ et ’OR’ usually have exactly the
same semantics7. It remains as a challenge for the search
engine to merge (or fuse) the results of the distinct queries
which may possess completely different statistics.

4.3 Path extensions
XOR supports the specification of additional path constraints.
This information is optional and expressed within curly brack-
ets as a set of {key:value} pairs. Thus, this information
can easily be extended to include further types of matching.
Currently, the following key:value pairs are supported in
our back-end, but more are possible. Consider the following
examples:

match:strict|vague Specifies the kind of structural require-
ment matching, influencing the result set and ranking.
For instance:

//article[about(.//year{match:strict},1905)
AND about(.//author, Einstein)

AND about(.//*, electrodynamics)]

Here insisting that ”1905” must be found in an element
tagged as ”year”. Or:

//section{match:vague}[about(.,cars)]

Here indicating that a section-like element is required.
The default is implementation defined, but vague seems
most appropriate in the IR context.

Besides additional types of paths, wildcards are allowed to
specify node names. The following patterns are valid:

//* e.g., all node names, //xyz, //jim

//node* e.g., //node6, //nodename

//*node e.g., //mynode, //this test node

//*node* e.g., //mynodeextension, //the node quantifier

7For example, asking for sections and paragraphs or sections
or paragraphs will lead in both cases to a ranked list of
sections and paragraphs.

The intended use of this feature is in situation where the
DTD is not available, or too complex to enumerate possible
matches. Far from being the exception, this may well be the
norm, particularly with private or dynamic collections. The
use of wildcards is nevertheless resting on the assumption
that meaningful tag names are used in the collection (in a
natural language). The Wikipedia XML collection that is
used by INEX in 2006 is a good example of precisely this
situation.

4.4 Term extensions
For the purpose of more exact query matching XOR enables
the addition of further information to a given term (in the
same manner as to the path). Again, the additional infor-
mation is optional and expressed within curly brackets as a
set of key:value pairs. Consider the following examples:

POS: part-of-speech Specifies the kind of Part-Of-Speech
(POS) tag.

//abstract{match:vague}[about(.,Go{POS:Noun})]

Here we are looking for the game ”GO” not the verb.

CASE: upper|lower Specifies the case of the text - useful
for acronyms for instance.

//section{match:vague}[about(.,AJAR{CASE:upper})]

Here we are looking for the acronym for ”Acronyms,
Jargon, Abbreviations and Rubbish”, not ajar mean-
ing slightly open.

4.5 Logical operator qualifiers
It is possible with XOR to qualify the logical operators. The
interpretation of the qualifiers is again left to the search
engine. For instance,

//article[about(.,Germany)

AND{mode:strict} about(.,football)]//sec[about(.,Europe)]

Here we insist on strict interpretation of the logical AND
operator.

4.6 Additional predicates
In the context of heterogeneous information needs and highly
sophisticated search techniques, a single about predicate for
matching seems too restrictive. For this reason XOR imple-
ments several additional predicates, having similar format to
the about() function:

LinkTo((XLink—XPointer),keywords) matches doc-
uments that are linked to by the context element. For
instance, the implementation could check that the linked-
to element is about() the keywords.

LinkFrom() matches elements which link to the context
element. For instance, the implementation could check
that the linked-from element is about() the keywords.

Contains() This is the same as the XPath function and
has a strict interpretation.

lt(), eq(),gt() for less than, equal, greater than respec-
tively. Necessary for numeric element comparisons, or
fixed format fields because XML files do very often con-
tain both free text and strictly typed elements. The
motivation for using functions rather than the tradi-
tional symbols is twofold - it keeps the language much
simpler and all operators are treated uniformly.

The XOR specifications do not require the parser to check
that functions actually exist. This is left to the backend
search engine. So any implementation of XOR can create
new functions and the parser does not get involved as long as
the syntax of the function call is valid. The about() and eq()
functions, for instance, are both treated identically in the
syntax and both are left to the search engine to implement.

5. REVERSE POLISH NOTATION
In order to support the implementation of back-end proces-
sors, the actual XOR parser checks the validity of XOR

expressions and returns a vector (of text lines) containing
the translation of the expression from infix to postfix nota-
tion, or as it is often known Reverse Polish Notation (RPN)
8. Each line in the RPN is a simple NEXI expression. The
following example illustrates this transformation.

XOR Query:

//article[about(.,Germany)

AND NOT about(.,football)]//sec[about(.,Europe)]

AND

//article[about(., European union enlargement)

AND about(.//*,German point of view)]

RPN :

//article[about(.//*, German point of view)]

//article[about(., European union enlargement)]

AND

//article//sec[about(., Europe)]

//article[about(., football)]

//article[about(., Germany)]

ANDNOT

SUPPORT

AND

This notation should be read with the following binding:

8http://en.wikipedia.org/wiki/Reverse Polish Notation

//article[about(.//*, German point of view)]

//article[about(., European union

enlargement)]

AND

//article//sec[about(., Europe)]

//article[about(., football)]

//article[about(., Germany)]

ANDNOT
SUPPORT
AND

The binary operator SUPPORT (X,Y) means that the sec-
ond argument (here, an article about Germany but not foot-
ball) is used as a support to the selection of the target ele-
ment, which is the first argument (here, a section about Eu-
rope). Implementation of AND, ANDNOT, OR, SUPPORT
are up to the search engine. This is where the developers of
the search engine have the freedom of interpretation - this
is akin to the IR flavoured about() function in contrast to
the XPath strict contains() function.
Inverted lists are generated as a product of the atomic func-
tion calls within the XOR filters, like about() or contains()
etc. These atomic units are presented as separate lines
(search requests) in the RPN representation. The advan-
tage of the RPN is that it allows for unlimited nesting of
parenthesis and any path expression depth (one of the limi-
tations of NEXI). Furthermore, the RPN format lends itself
to simple implementation of search algorithms by systems
that are based on the processing of inverted lists, a stack,
and binary or unary list operators. We were able to easily
incorporate XOR into GPX, a search engine that supports
NEXI queries, and which is based on inverted list processing.

5.1 Important differences
Important to stress are the following oddities to XPath, etc.

• //* in NEXI means any descendant node, in XOR it
means the context node or any descendant node. We
often find that nodes contain both direct text and de-
scendant nodes that contain more text. So selecting
//sec//*[...] means select sections or descentedants of
sections that satisfy the condition. To select only de-
scendents of section in XOR we use //sec/*[...]

• = in XOR the function eq() is used instead. Similarly
for other comparison operators. Instead of the NEXI
query:

//section[.//year = 1905]

in XOR we would write:

//section[eq(.//year,1905)]

or perhaps:

//section[eq(.//year{match:vague},1905{match:strict})]

6. IMPLEMENTATION EXAMPLE: GPX-XOR
We have used the GPX search engine as a back end system
to test the XOR parser. The prupose of this experiment is
no more than a sanity check and an example of how XOR

might be implemented with existing search engines, that can
already process simple NEXI expressions. GPX is an XML
search engine that was used at INEX in 2004 and 2005.
GPX is based on inverted lists - a detailed description can
be found in [4], but suffice to say that the retrieval and
score calculation for elements in each search request in the
XOR RPN expression is largely unchanged. Each of the
elements in the lists is scored with a TF-IDF variant by the
standard GPX algorithm. The XOR operators AND, OR,
ANDNOT and SUPPORT were implemented as described
in the following sections.

6.1 OR(X,Y)
The OR operator is a union of two inverted lists, X and Y.
Items in the lists identify XML result elements by file-id, full
XPath expression, and relevance score. The OR operator
performs a set union whereby elements that appear in both
lists are merged and their scores combined. Other elements
keep their original score.

6.2 AND(X,Y)
The AND operator was optionally implemented in one of
three different ways. The default option is to simply imple-
ment it as OR(X,Y). This seems to work quite well in most
instances, and also on average. However, in some queries the
user really means AND. The second option is to implement
it as a strict set intersect. Only XML elements that appear
in both X and Y are kept, and their scores combined. This
option is too restrictive because sometimes the lists contain
overlapping elements and then the relationship with respect
to AND is unclear. By insisting on a strict match many
relevant results are lost. The third implementation keeps
overlapping nodes, combines the scores, but keeps only the
largest node (deepest common ancestor). In the experiments
that we report in the next section, we used the first (default)
option.

6.3 ANDNOT(X,Y)
The ANDNOT operator is implemented in a straight for-
ward manner, and we adopted the the strictest interpreta-
tion - elimination. Any node in X that has an exact match
in Y is eliminated. We assume that when users just want to
discourage some keyword from appearing they will use the
milder ”-keyword” form of query specification. The list X is
then returned. The XOR parser only allows the use of the
NOT operator only in conjunction with AND, that is - X
AND NOT Y - hence ANDNOT.

6.4 SUPPORT(X,Y)
The SUPPORT operator takes a list of nodes in Y that
provide support to the selection of nodes from list X. For
instance, when we look for paragraphs about Americium in
articles with abstract about the Periodic Table, the result
elements are paragraphs, and paragraphs are supported by
abstracts about the Periodic Table. Both the support and
result elements must have a common ancestor within the
document tree, so the supporting abstract must appear in

the same document as the supported paragraphs. The sup-
port operator identifies for each result element in X, all the
support elements in Y, and combines the scores. All the
elements from X are returned but those with support have
an increased score.

6.5 Preliminary Results
The conversion of our existing search engine to support
XOR took about one day (although it took a bit longer to
iron out some bugs.) We were able to test XOR interactively
with numerous queries with very pleasing results. We also
tested GPX-XOR, and the RPN approach, against the INEX
2005 tasks with the Context and Strucure (CO+S) topics.
These topics were all specified in NEXI - a subset of XOR.
Figures 1 to 3 depicts the performance of the GPX-XOR sys-
tem with the three best performing official submissions in
INEX 2005 in the COS.Thorough task. Each of the baseline
submissions (TWENETE, QUT, IBM) produced the best
result in either the Strict, Generalised, or GenLifted quan-
tization respectively, as measured by the MAep value. The
results that we obtained with XOR are very promising, and
the performance exceeded that of the baseline submissions
in all 3 cases. The uppermost curve in all figures belongs
to GPX-XOR. Of course this result can only be taken as a
sanity check. This is not a definitive evaluation since there
is a risk of overfitting the results to assessments when ex-
perimenting (and debugging) with known qrels. Similarly
good results were obtained with all the INEX tasks, when
compared with the GPX (NEXI) baseline system. We will
be able to test XOR more rigorously with unseen qrels at
INEX 2006. The point that we wish to make is not the spe-
cific performance of GPX-XOR, but rather the simplicity of
converting an existing NEXI search engine to XOR without
any loss in performance.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2
COS Thorough Strict ep/gr

gain−recall

ef
fo

rt
−

pr
ec

is
io

n

GPX−XOR
QUT
IBM
TWENTE

Figure 1: Strict quantization

7. CONCLUSIONS
We have presented XOR, a language explicitly designed to
support IR in XML collections. More specifically, XOR

was designed with the experience gained in the INEX nat-
ural language queries task, to support more elaborate search
options than would be possible with NEXI. Yet, XOR is
not extended with XPath like functionality, but rather with
functionality that is IR oriented and that is not supported
by existing XML search languages. More specifically, XOR

extends selection specification of search terms, allowing for

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

gain−recall

ef
fo

rt
−

pr
ec

is
io

n

COS Thorough Generalised ep/gr

GPX−XOR
QUT
IBM
TWENTE

Figure 2: Generalised quantization

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

gain−recall

ef
fo

rt
−

pr
ec

is
io

n

COS Thorough GenLifted ep/gr

GPX−XOR
QUT
IBM
TWENTE

Figure 3: GenLifted quantization

more refined control of query content expansion. It also ex-
tends the selection specification of XPath expressions with
wildcards, extends the allowable overall query complexity,
and specifies a transformation from infix to postfix notation
for easier integration into existing search engines. XOR is
open ended and thus future work will concentrate on provid-
ing more functionality in XOR and on open source search
engine implementation. XOR can support easier integra-
tion of advanced XML IR techniques. Support for XOR

will reduce the need to develop complete search engines to
implement powerful user interfaces to XML IR systems, such
as natural language query interfaces.

8. REFERENCES
[1] XML Path Language (XPath) 2.0, W3C Candidate

Recommendation 8 June 2006.
http://www.w3.org/TR/xpath20/

[2] W3C XML Query (XQuery), XML Query is currently a
W3C Candidate Recommendation.
http://www.w3.org/XML/Query/

[3] A. Trotman and B. Sigurbjrnsson, Narrowed Extended
XPath I (NEXI). In N. Fuhr, M. Lalmas, S. Malik, and
Z. Szlàvik, editors, Advances in XML Information
Retrieval. Third Workshop of the Initiative for the
Evaluation of XML retrieval (INEX), volume 3493 of
Lecture Notes in Computer Science, pages 16–40,

Schloss Dagstuhl, Germany, December 6-8, 2004, 2005.
Springer-Verlag, New York City, NY, USA.

[4] S. Geva, GPX - Gardens Point XML IR at INEX 2005.
Proceedings of INEX 2005, Schloss Dagstuhl, Germany,
November 2005, in Springer, Lecture Notes in
Computer Science LNCS 2006. To Appear.
Pre-proceedings - http://inex.is.informatik.uni-
duisburg.de/2005/pdf/inex-2005-preproceedings.pdf

[5] V. Mihajlovi?, G. Ramrez, T. Westerveld, D. Hiemstra,
H. Ernst Blok and A. P. de Vries, TIJAH Scratches
INEX 2005 Vague Element Selection, Overlap, Image
Search, Relevance Feedback, and Users . Proceedings of
INEX 2005, Schloss Dagstuhl, Germany, November
2005, in Springer, Lecture Notes in Computer Science
LNCS 2006. To Appear. Pre-proceedings -
http://inex.is.informatik.uni-
duisburg.de/2005/pdf/inex-2005-preproceedings.pdf

[6] P. Arvola, J. Keklinen and M. Junkkari, TRIX
Experiments at INEX 2005 . Proceedings of INEX
2005, Schloss Dagstuhl, Germany, November 2005, in
Springer, Lecture Notes in Computer Science LNCS
2006. To Appear. Pre-proceedings -
http://inex.is.informatik.uni-
duisburg.de/2005/pdf/inex-2005-preproceedings.pdf

[7] R. Schenkel and M. Theobald, Relevance Feedback for
Structural Query Expansion. Proceedings of INEX
2005, Schloss Dagstuhl, Germany, November 2005, in
Springer, Lecture Notes in Computer Science LNCS
2006. To Appear. Pre-proceedings -
http://inex.is.informatik.uni-
duisburg.de/2005/pdf/inex-2005-preproceedings.pdf

APPENDIX

A. XOR SPECIFICATIONS
SKIP ::= " " | "\t" | "\n" | "\r" | "\f"

OR ::= "or" | "OR"

AND ::= "and" | "AND"

NOT ::= "not" | "NOT"

ALPHANUMERIC ::= ["a"-"z","A"-"Z","_"]

NUMERIC ::= ["0"-"9"]

STUFF ::= "&" | "’" | "~" | "" | "#" | "‘" | "_" | "" | "^" |

"" | "" | "$" | "" | "" | "%" | "" | "?" | "!" | "" | ""

TERMRESTRICTION ::= "+" | "-"

SLASH ::= "/" >

ASTERISK ::= "*" >

ATTR ::= "@" >

PIPE ::= "|" >

LPAR ::= "(" >

RPAR ::= ")" >

LBRACK ::= "[" >

RBRACK ::= "]" >

LBRACE ::= "{" >

RBRACE ::= "}" >

COMMA ::= "," >

COLON ::= ":" >

DOT ::= "." >

ARITHMETIC ::= "<" | ">" | "=" | "<=" | ">="

//////////

// NON terminals

//////////

Start ::= Query

Query ::= (Cas | "(" Query ")") Query2

Query2 ::= ((AND | OR) Query Query2 | "")

Cas ::= AbsolutePath

AbsolutePath ::= ("/" ["/"] (Node | Attribute) [PathConstraints] [Filter])+

RelativePath ::= "." [AbsolutePath]

Node ::= ["*"] Word ["*"] | "*" | "(" Node ("|" Node)+ ")"

Attribute ::= "@" Word

PathConstraints ::= "{" PathConstraint ("," PathConstraint)* "}"

PathConstraint ::= Word ":" Word

Word ::= (NUMERIC | ALPHANUMERIC)+

Filter ::= "[" FilteredClause "]"

FilteredClause ::= SimpleFilter | "(" FilteredClause ")

FilteredClause2 ::= ((AND | OR) FilteredClause FilteredClause2 | "")

SimpleFilter ::= PredicateClause | ArithmeticClause

PredicateClause ::= Predicate "(" RelativePath "," Keywords ")"

ArithmeticClause ::= RelativePath ("<" | ">" | "=" | "<=" | ">=") Word

Keywords ::= (Keyword | Keyphrase | RestrictedKey)+

RestrictedKey ::= ("+"|"-") (Keyword | Keyphrase)

Keyword ::= Word [KeywordConstraints]

Keyphrase ::= "\"" (Keyword)+ "\"" [KeywordConstraints]

KeywordConstraints ::= "{" KeywordConstraint ("," KeywordConstraint)* "}"

KeywordConstraint ::= Word ":" Word

