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Abstract. Humans can attend to and categorise objects individually, but also as
groups. We present a computational model of how visual attention is allocated
to single objects and groups of objects, and how single objects and groups are
classified. We illustrate the model with a novel account of the role of stimulus
similarity in visual search tasks, as identified by Duncan and Humphreys [1].

1 Introduction
Humans can represent objects individually, but also collectively, as groups. We can at-
tend to and categorise individual objects, but we can also attend to several objects as a
group—and if the objects are all of the same type, we can classify them collectively as
being of that type. In fact there is evidence that the visual object classification system is
relatively insensitive to the number of items in a group. In monkeys, Nieder and Miller
[2] showed that neurons in the inferotemporal (IT) cortex are sensitive to the type of
objects in a group but relatively insensitive to their cardinality, while neurons in the
intraparietal sulcus show the opposite pattern. A similar sensitivity to type but not num-
ber has been found in imaging studies of human IT, using a habituation paradigm where
either the type of objects in a group or the size of the group was selectively changed
(e.g. [3]). In previous work [4] we coined the term cardinality blindness to describe
this phenomenon. We showed that a classifier called a convolutional neural network
(CNN) shows cardinality blindness, and argued that this property also characterises the
object classifier in the IT cortex of humans and other primates. Our classifier assigns the
same class (‘X’) to a single visually presented X shape and to a homogeneous group of
X shapes. However, when it is presented with a group of objects with different shapes
(a heterogeneous group), it typically refuses to make a classification at all.

If the classifier in IT is cardinality blind, this may be expected to have consequences
for the design of the attentional system that selects spatial regions to be classified [5,
6]. For one thing, attention should be able to deliver homogeneous groups to the clas-
sifier as well as single objects, so that the objects in these groups can be classified in
parallel. There should also be a system that acts in parallel with object classification, to
compute the number information which is not provided by the classifier. In this paper
we present a computational model of visual attention and object classification, in which
the attentional system selects individuals and groups for the classifier. We also describe
the performance of this model in a visual search task.

2 The model of visual attention and object classification

The structure of our model of visual attention and classification is outlined in Figure
1a. The attentional subsystem (dorsal pathway) determines the salient regions on the
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Fig. 1: (a) Our model of the visual attention system (left-hand pathway) and the object
classification system (right-hand pathway). (b) The shapes used to train the model.

retina, and activates these regions one at a time. The classification subsystem (ventral
pathway) categorises the retinal stimulus in the currently activated region; its output
changes as different regions are selected [7].

In the attentional subsystem in our model, the saliency of a region is determined by
two factors: one is local contrast (how different it is from the surrounding region), the
other is homogeneity (how similar its texture elements are). Salient regions can con-
tain isolated visual features which contrast from their surroundings, but also regions
containing repeated visual features. Computations of saliency are performed at multi-
ple spatial frequencies, so salient regions containing isolated visual features can be of
different sizes. Salient regions containing repeated visual features (i.e. homogeneous
textures) can also be of different sizes.

There are several existing computational models of saliency that detect salient re-
gions of different sizes (e.g. [8]), and numerous models of texture identification that de-
tect regions containing repeated visual features (e.g. [9]). There are also many existing
computational models of classification that allow objects of different sizes to be classi-
fied, by taking as input primitive visual features at a range of different scales (e.g. [10]).
The main innovations in our model are in how the saliency mechanism interacts with
the classifier. Firstly, in our system, classification is influenced not only by the location
of the currently selected salient region, but also by its size. Our classifier can work with
primitive features of several different scales as input, but at any given point the scale it
uses, called the classification scale, is selected by the attentional system. By default,
the classification scale is a function of the size of the currently selected salient region,
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so that large regions are classified using correspondingly large features, and small re-
gions with correspondingly small ones. Our model is novel in proposing that the scale
of the salient region selected by the attentional system determines a default scale for
the classifier to use. Secondly, we envisage that the selected classification scale can be
changed without changing the spatial region to be classified, so that the classifier can
reanalyse the currently selected region at a different spatial frequency. In our model, this
attentional operation is crucial for the classification of homogeneous groups, and for an
account of the difference between single objects and plural groups. We suggest that in
order to classify a group of objects occupying a given salient region, the observer must
attentionally select a new classification scale which is smaller than the scale established
by default. In this account, the distinction between singular and plural can be read from
the current classification scale measured in relation to the default classification scale for
the currently attended region. It is well known that observers can selectively attend to
the global or local features of visual stimuli (e.g. [11]), and there is good evidence that
this attention involves selective activation of particular spatial frequency channels (e.g.
[12]). It has recently been found that the spatial frequencies associated with local and
global features of an object are defined in relative not absolute terms ([13]). Our model
makes use of this notion of relative classification scale to support an account of group
classification and of the distinction between singular and plural in the visual system.

2.1 The classification subsystem

The visual classification subsystem is modelled by a convolutional neural network
(CNN) previously described [4]. The classifier takes, as input, retinotopic maps of sim-
ple oriented visual features at two different spatial frequencies, or scales: one of these
scales is selected by the attentional system. The classifier was trained with six shapes
at each spatial frequency (see Figure 1b). The classifier has seven output units: six of
these provide localist encodings of the six shape categories and the seventh encodes the
verdict ‘unknown category’. The units have activations ranging from zero to one. We
define the classifier’s decision to be the strongest output over 0.5. If no unit’s activation
exceeds 0.5 the classifier’s decision is assumed to be ‘unknown category’. In summary,
the classifier provides two pieces of information: first, whether classification is possible
and, if so, what that classification is.

The classifier exhibits two types of invariance which have been observed in IT [14]
and are generally acknowledged to be crucial for a model of vision [10], namely location
(or translation) invariance and scale invariance. Location invariance is a result of the
architecture of the CNN, which intersperses feature combination layers with layers that
abstract over space [4]. Scale invariance depends on the input having been prefiltered
for the desired frequency: the small shapes must be classified with the high-frequency
visual features, and the large ones with the low-frequency features. Importantly for the
current paper, the classifier is also blind to the cardinality of homogeneous groups of
small shapes: its accuracy varies from 95% for a single shape to 97% for a homogeneous
group of five shapes. Interestingly, these results show a redundancy gain effect similar
to that found in humans: the classifier’s performance improves the more instances of a
type it classifies.
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2.2 The attentional subsystem

As shown in Figure 1a, the attentional subsystem can be divided into two interacting
stages: a preattentive, or parallel, stage and an attentive, or serial, stage.

The preattentive stage includes an operation called saliency analysis. The job of
saliency analysis is to analyse the local contrast and texture homogeneity of the input in
parallel. These are used to implement the Gestalt grouping properties of proximity and
similarity respectively. The result of this is a saliency representation, or saliency map
[15]. This representation is the point of communication between saliency analysis and
the selection mechanism. The selection mechanism uses the saliency representation to
decide how best to deploy attention. Once processing of attended stimuli is complete
the representation is updated and then used to redeploy attention.

The saliency representation is also used to gate the input to the classifier. Input is
gated in two different ways. It is gated by location, which is a well-known idea [6, 16]).
And it is also independently gated by scale, which is a new idea in our model. The
initial scale selected by the attentional system is the default classification scale for
the selected region. In order to recognise a figure within a region, the primitive visual
features which the classifier uses must be of an appropriate spatial scale—not too large
and not too small (see Sowden and Schyns [17]). If they are too large, they cannot be
combined to represent a complex shape within the region. And if they are too small,
then their combinations are not guaranteed to represent the global form of the figure
occupying the region. A novel idea in our model is that a selected region can first be
classified at the default classification scale, and then subsequently at a finer classifica-
tion scale. If the classifier returns a result in this second case, it is identifying the type of
objects in a homogeneous group occupying the selected region. In the remainder of this
section we will provide more details about the attentional subsystem and its interaction
with the classifier. Full technical details are given in [18].

3 Performance of the system in a visual search task

In this section we describe two experiments investigating the behaviour of our complete
system in the domain of visual search There are well-known similarity and grouping
effects in search, which our model may be able to explain.

In a visual search task, a subject searches for a target stimulus in a field of distrac-
tors. The search time is a function of the number of distractors, but also on the visual
properties of the target and distractor stimuli. The earliest visual search experiments
reported a discrete difference between ‘parallel search’, in which search time is inde-
pendent of the number of distractors, and ‘serial search’, where search time is linearly
proportional to the number of distractors (Treisman and Gelade [5]). In the original
model explaining this finding, feature integration theory (FIT), parallel search is pos-
sible if there is a single ‘visual feature’ that the target possesses and the distractors do
not, allowing it to ‘pop out’ of the field of distractors; if the target is distinguished from
the distractors by a specific conjunction of visual features, items in the visual field must
be attended serially, to allow their features to be integrated.

Later experiments uncovered more complex patterns of visual search performance.
Treisman [19] found that perceptual grouping affects search because subjects serially
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t1 t2 t3 t4 t5

Class: [discarded] Class: TRIANGLE Class: [discarded] Class: TRIANGLE Class: ELL

Fig. 2: An example sequence of operations during simple search. At t1 the input is pre-
sented and at subsequent time steps attention is directed as shown until the target (ell)
is found. Thick borders around a region indicate attention to the low spatial frequency,
thin borders attention to the high spatial frequency.

scan groups of items where possible, not just individual items. Treisman and Gormi-
can’s group scanning theory [20] drew this finding into the FIT model. In group scan-
ning theory, when parallel search fails because the target cannot be discriminated from
the distractors, attention is used to limit the spatial scope of the parallel search to a
region where parallel search by feature discrimination can work. Parallel search then
continues inside the attended area.

Duncan and Humphreys [1] presented results that challenged the basic assumption
of a simple dichotomy between parallel and serial search. They gave subjects search
tasks where the similarity between targets and distractors, and the similarity between
distractors (i.e. the homogeneity of the set of distractors) were varied continuously.
They found that increasing the degree of similarity between target and distractors pro-
gressively increases the slope of the search graph, and that increasing the similarity be-
tween distractors has the opposite effect. In Duncan and Humphreys’ stimulus similarity
theory (SST), pop-out and item-by-item serial search are opposite ends of a continuum
of search processes, rather than discrete alternatives.

Our model of visual attention and classification is able to identify homogeneous
groups and classify their elements in single operations; it therefore has some interest as
a model of visual search. In this section we examine its performance on search tasks
where target-distractor similarity and distractor-distractor similarity are varied, as in the
experiment of Duncan and Humphreys.

To test the search performance of our model, we created four different search tasks,
defined by varying two independent binary parameters based on those used by Duncan
and Humphreys: target-distractor similarity (with values ‘t-d similar’ and ‘td-different’)
and distractor-distractor similarity (with values ‘d-d similar’ and ‘d-d different’). De-
tails of these tasks are given in [18]. We presented displays of each type to the model,
and recorded how many serial attentional steps were taken for it to find the target.
Figure 2 shows the steps taken by the system during a td-different/dd-similar search.
We found that different search tasks have different slopes. Our simulation reproduces
Duncan and Humphreys’ main experimental results: when targets are dissimilar to dis-
tractors but distractors are similar to one another the search slope is close to flat, and
when targets are similar to distractors the slopes are highest. Details of these findings,
and a comparison with other computational models of visual search, are given in [18].
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