
Error correction using utterance disambiguation techniques

Peter Vlugter and Edwin van der Ham and Alistair Knott
Dept of Computer Science

University of Otago

Abstract

This paper describes a mechanism for
identifying errors made by a student dur-
ing a computer-aided language learning
dialogue. The mechanism generates a set
of ‘perturbations’ of the student’s origi-
nal typed utterance, each of which em-
bodies a hypothesis about an error made
by the student. Perturbations are then
passed through the system’s ordinary ut-
terance interpretation pipeline, along with
the student’s original utterance. An utter-
ance disambiguation algorithm selects the
best interpretation, performing error cor-
rection as a side-effect.

1 Introduction

The process of identifying and correcting the er-
rors in an input utterance has been extensively
studied. Kukich (1992) discusses three progres-
sively more difficult tasks. The first task is the
identification of nonwords in the utterance. A
nonword is by definition a word which is not part
of the language, and which therefore must must
have been misspelled or mistyped. The difficulty
in identifying nonwords is due to the impossibility
of assembling a list of all the actual words in a lan-
guage; some classes of actual words (in particular
proper names) are essentially unbounded. So the
system should have a reliable way of identifying
when an unknown word is likely to belong to such
a class.

The second task is to suggest corrections for in-
dividual nonwords, based purely on their similar-
ity to existing words, and a model of the likelihood
of different sorts of errors. This task is performed
quite well by the current generation of spellcheck-
ers, and is to some extent a solved problem.

The third task is to detect and correct valid
word errors—that is, errors which have resulted
in words (for instance their misspelled as there).
This task requires the use of context: the error
can only be detected by identifying that a word
is out of place in its current context. Probabilis-
tic language models which estimate the likelihood
of words based on their neighbouring words have
been used quite successfully to identify valid word
errors (see e.g. Golding and Schabes (1996);
Mangu and Brill (1997); Brill and Moore (2000));
however, there are situations where these tech-
niques are not able to identify the presence of er-
rors, and a richer model of context is needed, mak-
ing reference to syntax, semantics or pragmatics.
In summary, two of the outstanding problems in
automated error correction are identifying proper
names and detecting and correcting errors which
require a sophisticated model of context.

In this paper, we consider a domain where
these two problems arise with particular force:
computer-aided language learning dialogues (or
CALL dialogues. In this domain, the system
plays the role of a language tutor, and the user is a
student learning a target language: the student en-
gages with the system in a dialogue on some pre-
set topic. One of the system’s key roles is to iden-
tify errors in the student’s utterances and to correct
these errors (either indirectly, by prompting the
student, or directly, by reporting what the student
should have said). In either case, it is crucial that
the system makes correct diagnoses about student
errors. While a regular spell-checker is relatively
passive, simply identifying possibly misspelled
words, a language tutor frequently takes interven-
tions when detecting errors, and initiates subdia-
logues aimed at correcting them. (Of course, a tu-
tor may choose to ignore some of the errors she



identifies, to avoid overwhelming the student with
negative feedback, or to concentrate on a particu-
lar educational topic. However, it is in the nature
of a tutorial dialogue that the tutor frequently picks
up on a student’s errors.) In this domain, therefore,
it is particularly important to get error correction
right.

The focus of the paper is on our system’s mech-
anism for error correction, which is tightly inte-
grated with the mechanism for utterance disam-
biguation. Our claim is that a semantically rich
utterance disambiguation scheme can be extended
relatively easily to support a sophisticated model
of error correction, including the syntactic and se-
mantic errors which are hard for surface based n-
gram models of context. We will begin in Sec-
tion 2 by reviewing the kinds of error found in
language-learning dialogues. In Section 3, we dis-
cuss some different approaches to modelling lan-
guage errors, and outline our own approach. In
Section 4 we introduce our dialogue-based CALL
system. In Section 5 we discuss our approach to
error correction in detail: the basic suggestion is
to create perturbations of the original sentence
and interpret these alongside the original sentence,
letting the regular utterance disambiguation mod-
ule decide which interpretation is most likely. In
Section 6 we discuss some examples of our sys-
tem in action, and in Section 7, we discuss how
the model can be extended with a treatment of un-
known words.

2 The types of error found in
language-learning dialogues

Learners of a language can be expected to make
more errors than native speakers. If we restrict our
errors to those present in typed utterances, some
types of error are essentially the same—in partic-
ular, we can expect a similar proportion of typos in
learners as in native speakers. Other types of error
will be qualitatively similar to those made by na-
tive speakers, but quantitatively more prevalent—
for instance, we expect to find more spelling mis-
takes in learners than in native speakers, but the
mechanisms for detecting and correcting these are
likely to be similar. However, there are some types
of error which we are likely to find only in lan-
guage learners. We will consider two examples
here.

Firstly, there are grammatical errors. The
learner of a language does not have a firm grasp

of the grammatical rules of the language, and is
likely to make mistakes. These typically result in
syntactically ill-formed sentences:

(1) T: How are you feeling?1

S: I feeling well.

It may be that a bigram-based technique can iden-
tify errors of this kind. But it is less likely that such
a technique can reliably correct such errors. Cor-
rections are likely to be locally suitable (i.e. within
a window of two or three words), but beyond this
there is no guarantee that the corrected sentence
will be grammatically correct. In a CALL system,
great care must be taken to ensure that any correc-
tions suggested are at least syntactically correct.

Another common type of errors are vocabulary
errors. Learners often confuse one word for an-
other, either during interpretation of the tutor’s
utterances or generation of their own utterances.
These can result in utterances which are syntacti-
cally correct, but factually incorrect.

(2) T: Where is the bucket?
S: It is on the flour. [meaning ‘floor’]

(Note that vocabulary errors can manifest them-
selves as grammatical errors if the wrongly used
word is of a different syntactic category.) To detect
errors of this sort, the system must have a means
of checking utterances against a model of relevant
facts in the world.

Thirdly, there are pragmatic errors, which in-
volve an utterance which is out of place in the cur-
rent dialogue context.

(3) T: How are you feeling?
S: You are feeling well.

These errors can result from a failure to compre-
hend something in the preceding dialogue, or from
a grammatical or vocabulary error which happens
to result in a syntactically well-formed sentence.
To detect and correct errors of this type, a model
of coherent dialogue is needed—in particular, a
model of the relationship between questions and
answers.

These three types of error are relatively com-
mon in language-learning dialogues. Detecting
them requires relatively deep syntactic and seman-
tic processing of the utterances in the dialogue.

1T stands for ‘tutor’ in these examples, and S stands for
‘student’.



Such processing is not yet feasible in an unre-
stricted dialogue with a native speaker—however,
in a language-learning dialogue, there are sev-
eral extra constraints which make it more feasi-
ble. Firstly, a language learner has a much smaller
grammar and vocabulary than a native speaker.
Thus it may well be feasible to build a grammar
which covers all of the constructions and words
which the user currently knows. If the system’s
grammar is relatively small, it may be possible
to limit the explosion of ambiguities which are
characteristic of wide-coverage grammars. Sec-
ondly, the semantic domain of a CALL dialogue
is likely to be quite well circumscribed. For one
thing, the topics of conversation are limited by the
syntax and vocabulary of the student. In practice,
the topic of conversation is frequently dictated by
the tutor; there is a convention that the tutor is re-
sponsible for determining the content of language-
learning exercises. Students are relatively happy
to engage in semantically trivial dialogues when
learning a language, because the content of the di-
alogue is not the main point; it is simply a means
to the end of learning the language.

In summary, while CALL dialogues create
some special problems for an error correction sys-
tem, they also well suited to the deep utterance in-
terpretation techniques which are needed to pro-
vide the solutions to these problems.

3 Alternative frameworks for modelling
language errors

There are several basic schemes for modelling lan-
guage errors. One scheme is to construct spe-
cialised error grammars, which explicitly ex-
press rules governing the structures of sentences
containing errors. The parse tree for an error-
containing utterance then provides very specific
information about the error that has been made.
We have explored using a system of this kind
(Vlugter et al., (2004), and others have pursued
this direction quite extensively (see e.g. Michaud
et al. (2001); Bender et al. (2004); Foster and Vo-
gel (2004)). This scheme can be very effective—
however, creating the error rules is a very spe-
cialised job, which has to be done by a grammar
writer. We would prefer a system which makes it
easy for language teachers to provide input about
the most likely types of error made by students.

Another scheme is to introduce ways of relax-
ing the constraints imposed by a grammar if a sen-

tence cannot be parsed. The relaxation which re-
sults in a successful parse provides information
about the type of error which has occurred. This
technique has been used effectively by Menzel
and Schröder (1998), and similar techniques have
been used by Fouvry (2003) for robust parsing.
However, as Foster and Vogel note, the technique
has problems dealing with errors involving addi-
tions or deletions of whole words. In addition, the
model of errors is again something considerably
more complicated than the models which teachers
use when analysing students’ utterances and pro-
viding feedback.

In the scheme we propose, the parser is left un-
changed, only accepting syntactically correct sen-
tences; however, more than one initial input string
is sent to the parser. In our scheme, the student’s
utterance is first permuted in different ways, in
accordance with a set of hypotheses about word-
level or character-level errors which might have
occurred. There are two benefits to this scheme.
Firstly, hypotheses are expressed a ‘surface’ level,
in a way which is easy for non-specialists to under-
stand. Secondly, creating multiple input strings in
this way allows the process of error correction to
be integrated neatly with the process of utterance
disambiguation, as will be explained below.

4 Utterance interpretation and
disambiguation in our dialogue system

Our CALL dialogue system, called Te Kaitito
(Vlugter et al. (2004); Knott (2004); Slabbers
and Knott (2005)) is designed to assist a student
to learn M āori. The system can ‘play’ one or more
characters, each of which enters the dialogue with
a private knowledge base of facts and an agenda
of dialogue moves to make (principally questions
to ask the student about him/herself). Each les-
son is associated with an agenda of grammatical
constructions which the student must show evi-
dence of having assimilated. The system supports
a mixed-initiative multi-speaker dialogue: system
characters generate initiatives which (if possible)
are relevant to the current topic, and feature gram-
matical constructions which the student has not
yet assimilated. System characters can also ask
‘checking’ questions, to explicitly check the stu-
dent’s assimilation of material presented earlier in
the dialogue.

The system’s utterance interpretation mecha-
nism takes the form of a pipeline. An utterance



by the student is first parsed, using the LKB sys-
tem (Copestake (2000)). Our system is config-
ured to work with a small grammar of M āori, or
a wide-coverage grammar of English, the English
resource grammar (Copestake et al. (2000)). Each
syntactic analysis returned by the parser is associ-
ated with a single semantic representation. From
each semantic representation a set of updates is
created, which make explicit how the presupposi-
tions of the utterance are resolved, and what the
role of the utterance is in the current dialogue con-
text (i.e. what dialogue act it executes). Utterance
disambiguation is the process of deciding which
of these updates is the intended sense of the utter-
ance.

To disambiguate, we make use of information
derived at each stage of the interpretation pipeline.
At the syntactic level, we prefer parses which
are judged by the probabilistic grammar to be
most likely. At the discourse level, we prefer up-
dates which require the fewest presupposition ac-
commodations, or which are densest in success-
fully resolved presuppositions (Knott and Vlugter
(2003)). At the dialogue level, we prefer updates
which discharge items from the dialogue stack: in
particular, if the most recent item was a question,
we prefer a dialogue act which provides an answer
over other dialogue acts. In addition, if a user’s
question is ambiguous, we prefer an interpretation
to which we can provide an answer.

Our system takes a ‘look-ahead’ approach to ut-
terance disambiguation (for details, see Lurcock
et al. (2004); Lurcock (2005)). We assume
that dialogue-level information is more useful for
disambiguation than discourse-level information,
which is in turn more useful than syntactic in-
formation. By preference, the system will de-
rive all dialogue-level interpretations of each pos-
sible syntactic analysis. However, if the number
of parses exceeds a set threshold, we use the prob-
ability of parses as a heuristic to prune the search
space.

Each interpretation computed receives an in-
terpretation score at all three levels. Interpre-
tation scores are normalised to range between 0
and 10; 0 denotes an impossible interpretation,
and 10 denotes a very likely one. (For the syn-
tax level, an interpretation is essentially a proba-
bility normalised to lie between 0 and 10, but for
other levels they are more heuristically defined.)
When interpretations are being compared within a

level, we assume a constant winning margin for
that level, and treat all interpretations which score
within this margin of the top-scoring interpretation
as joint winners at that level.

If there is a single winning interpretation at the
dialogue level, it is chosen, regardless of its scores
at the lower levels. If there is a tie between sev-
eral interpretations at the highest level, the scores
for these interpretations at the next level down are
consulted, and so on. To resolve any remaining
ambiguities at the end of this process, clarification
questions are asked, which target syntactic or ref-
erential or dialogue-level ambiguities as appropri-
ate.

5 The error correction procedure

Like disambiguation, error correction is a process
which involves selecting the most contextually ap-
propriate interpretation of an utterance. If the ut-
terance is uninterpretable as it stands, there are
often several different possible corrections which
can be made, and the best of these must be se-
lected. Even if the utterance is already inter-
pretable, it may be that the literal interpretation is
so hard to accept (either syntactically or semanti-
cally) that it is easier to hypothesise an error which
caused the utterance to deviate from a different,
and more natural, intended reading. The basic idea
of modelling error correction by hypothesising in-
tended interpretations which are easier to explain
comes from Hobbs et al. (1993); in this section,
we present our implementation of this idea.

5.1 Perturbations and perturbation scores

Each error hypothesis is modelled as a perturba-
tion of the original utterance (Lurcock (2005)).
Two types of perturbation are created: character-
level perturbations (assumed to be either ty-
pos or spelling errors) and word-level perturba-
tions (assumed to reflect language errors). For
character-level perturbations, we adopt Kukich’s
(1992) identification of four common error types:
insertion of an extra character, deletion of a char-
acter, transposition of two adjacent characters
and substitution of one character by another. Ku-
kich notes that 80% of misspelled words contain
a single instance of one of these error types. For
word-level perturbations, we likewise permit in-
sertion, deletion, transposition and substitution of
words.

Each perturbation created is associated with a



‘perturbation score’. This score varies between
0 and 1, with 1 representing an error which is so
common that it costs nothing to assume it has oc-
curred, and 0 representing an error which never
occurs. (Note again that these scores are not prob-
abilities, though in some cases they are derived
from probabilistic calculations.) When the inter-
pretation scores of perturbed utterances are being
compared to determine their likelihood as the in-
tended sense of the utterance, these costs need to
be taken into account. In the remainder of this sec-
tion, we will describe how perturbations are cre-
ated and assigned scores. Details can be found in
van der Ham (2005).

5.1.1 Character-level perturbations

In our current simple algorithm, we perform
all possible character-level insertions, deletions,
substitutions and transpositions on every word.
(‘Space’ is included in the set of characters, to al-
low for inappropriately placed word boundaries.)
Each perturbation is first checked against the sys-
tem’s lexicon, to eliminate any perturbations re-
sulting in nonwords. The remaining perturbations
are each associated with a score. The scoring func-
tion takes into account several factors, such as
phonological closeness and keyboard position of
characters. In addition, there is a strong penalty
for perturbations of very short words, reflecting
the high likelihood that perturbations generate new
words simply by chance.

To illustrate the character-level perturbation
scheme, if we use the ERG’s lexicon and English
parameter settings, the set of possible perturba-
tions for the user input word sdorted is sorted,
sported and snorted. The first of these results from
hypothesising a character insertion error; the latter
two result from hypothesising character substitu-
tion errors. The first perturbation has a score of
0.76; the other two both have a score of 0.06. (The
first scores higher mainly because of the closeness
of the ‘s’ and ‘d’ keys on the keyboard.)

5.1.2 Word-level perturbations

As already mentioned, we employ Kukich’s tax-
onomy of errors at the whole word level as well as
at the single character level. Thus we consider a
range of whole-word insertions, deletions, substi-
tutions and transpositions. Clearly it is not pos-
sible to explore the full space of perturbations at
the whole word level, since the number of possible
words is large. Instead, we want error hypotheses

to be driven by a model of the errors which are
actually made by students.

Our approach has been to compile a database of
commonly occurring whole-word language errors.
This database consists of a set of sentence pairs
〈Serr, Sc〉, where Serr is a sentence containing ex-
actly one whole-word insertion, deletion, substitu-
tion or transposition, and Sc is the same sentence
with the error corrected. This database is simple
to compile from a technical point of view, but of
course requires domain expertise: in fact, the job
of building the database is not in fact very different
from the regular job of correcting students’ written
work. Our database was compiled by the teacher
of the introductory M āori course which our sys-
tem is designed to accompany. Figure 1 illustrates
with some entries in a (very simple) database of
English learner errors. (Note how missing words

Error sentence Correct sentence Error type
I saw GAP dog I saw a dog Deletion (a)
I saw GAP dog I saw the dog Deletion (the)
He plays the football He plays GAP football Insertion (the)
I saw a dog big I saw a big dog Transposition

Figure 1: Extracts from a simple database of
whole-word English language errors

in the error sentence are replaced with the token
“GAP”.)

Given the student’s input string, we consult the
error database to generate a set of candidate word-
level perturbations. The input string is divided into
positions, one preceding each word. For each po-
sition, we consider the possibility of a deletion
error (at that position), an insertion error (of the
word following that position), a substitution error
(of the word following that position) and a trans-
position error (of the words preceding and follow-
ing that position). To generate a candidate pertur-
bation, there must be supporting evidence in the
error database: in each case, there must be at least
one instance of the error in the database, involving
at least one of the same words. So, for instance,
to hypothesise an insertion error at the current po-
sition (i.e. an error where the word w following
that position has been wrongly inserted and needs
to be removed) we must find at least one instance
in the database of an insertion error involving the
word w.

To calculate scores for each candidate perturba-
tion, we use the error database to generate a prob-
ability model, in which each event is a rewriting of



a given word sequence Sorig as a perturbed word
sequence Spert (which we write as Sorig → Spert.)
The database may contain several different ways
of perturbing the word sequence Sorig. The rela-
tive frequencies of the different perturbations can
be used to estimate perturbation probabilities, as
follows:

P (Sorig→Spert) ≈
count(Sorig→Spert)

count(Sorig→ )

(The denominator holds the count of all perturba-
tions of Sorig in the error database.)

Naturally, if we want useful counts, we cannot
look up a complete sentence in the error database.
Instead, we work with an n-gram model, in which
the probability of a perturbed sentence is approxi-
mated by the probability of a perturbation in an n-
word sequence centred on the perturbed word. In
our model, the best approximation is a perturbed
trigram; thus if the student’s input string is I saw
dog, the probability of a perturbation creating I
saw the dog is given by

count(saw GAP dog → saw the dog)

count(saw GAP dog → )

Again, it is unlikely these counts are going to be
high enough, so we also derive additional backed-
off estimates, two based on bigrams and one based
on unigrams:

count(GAP dog → the dog)

count(GAP dog → )

count(saw GAP → saw the)

count(saw GAP → )

count(GAP → the)

count(GAP → )

See van der Ham (2005) for details of the backoff
and discounting schemes used to derive a single
probability from these different approximations.

5.2 Integrating perturbations into utterance
disambiguation

When an incoming utterance is received, a set of
perturbations is generated. Naturally, we do not
want to hypothesise all possible perturbations, but
only the most likely ones—i.e. those whose score
exceeds some threshold. The threshold is cur-
rently set at 0.8. We also want to keep the num-
ber of hypothesised perturbations to a minimum.
Currently we only allow one perturbation per ut-
terance, except for a special class of particularly

common spelling mistakes involving placement of
macron accents, of which we allow three. (Where
there are multiple perturbations, their scores are
multiplied.)

Each perturbed sentence is passed to the utter-
ance interpretation module. Most of the pertur-
bations result in ungrammatical sentences, and so
fail at the first hurdle. However, for any which can
be parsed, one or more full updates is created. The
complete set of updates produced from the origi-
nal sentence and all its selected perturbations are
then passed to the disambiguation module.

The disambiguation module must now take into
account both the interpretation score and the per-
turbation score when deciding between alternative
interpretations. At any level, the module computes
an aggregate score Sagg , which is the product of
the perturbation score Spert (weighted by a pertur-
bation penalty) and the interpretation score Sint:

Sagg =
Spert

pert penalty
× Sint

(The perturbation penalty is a system parameter,
which determines the importance of perturbation
scores relative to interpretation scores; it is cur-
rently set to 1.) To choose between alternative in-
terpretations at a given level, we now take all in-
terpretations whose aggregate score is within the
winning margin of the highest aggregate score.

5.3 Responding to the user’s utterance

After the utterance disambiguation process is
complete, either a single interpretation remains,
or a set of interpretations whose aggregate scores
are too close to call at any of the three levels. In
either case, how the system responds depends on
whether the remaining interpretations derive from
the unperturbed utterance or from a perturbed ver-
sion.

If a single interpretation remains, then if it de-
rives from the original utterance, the dialogue
manager responds to it in the usual way. However,
if it derives from a perturbed utterance, then the
system is confident that an error has occurred, and
that it knows what the error is. In this case the sys-
tem enters a subdialogue with the user to address
the error. Our system’s current strategy is simply
to report the error explicitly:

(4) I think you mean [perturbed utterance].
Please try again!



(If the student’s utterance was responding to a
forward-looking dialogue act—e.g. a question—
the system then reiterates this forward-looking act,
to recreate the context for the student’s second at-
tempt.) Note that a good tutor would probably give
the student an opportunity to correct her error her-
self; we are still exploring ways of doing this with-
out irritating the student.

If more than one interpretation remains when
utterance disambiguation is complete, what hap-
pens again depends on where the interpretations
come from. If they all come from the unper-
turbed utterance, an ordinary clarifiction question
is asked (see Lurcock (2005) for details of how
clarification questions are generated). If they all
come from a single perturbed utterance, we sim-
ply present the suggested correction, as above; if
the student then enters the hypothesised correc-
tion, a regular clarification question will be asked.
However, it is also possible that the interpretations
come from several different perturbations. In this
case, we formulate our error feedback as a ques-
tion:

(5) Do you mean [perturbation 1] or (...) or
[perturbation n]?2

6 Some examples

In this section, we give some examples of our
error-correction scheme in action. First, a simple
character-level correction:

(6)
U: I am hapy3

S: I think you mean ‘I am happy’.

The perturbation here is motivated by syntactic
well-formedness: the original utterance does not
parse, but the perturbed utterance does.

Here is another character-level correction, this
time informed by contextual appropriateness:

(7)

U: I saw my chief
S: Okay
U: The chef is happy
S: I think you mean ‘The chief is happy’.

There are two things to note about this example.
Firstly, note that the user’s original utterance is
syntactically correct, so a full interpretation will
be derived for this utterance as well as for the
version perturbing chef to chief. When these two

2The question is formulated as a multiple choice question,
using the same format as some types of syntactic clarification
question.

interpretations are compared by the disambigua-
tion module, the perturbed version is preferred, be-
cause it is cheaper to incorporate into the current
dialogue context: the chief refers back to an ex-
isting discourse entity, while the chef requires the
accommodation of a new one.

Here is a final example, this time at the level of
whole-word perturbations:

(8)
S: What is your name?
U: Your name is Sally.
S: I think you mean ‘My name is Sally’.

The error database contains enough instances of
the perturbation your→my to cause the system to
create this candidate perturbation; an interpreta-
tion for this perturbation is thus created alongside
that of the original utterance. Again, the interpre-
tation deriving from the perturbation is easier to
incorporate into the dialogue context, since it an-
swers the system’s question, so the perturbed sen-
tence is preferred over the original, even though
the original contains no syntactic errors.

7 Future work: incorporating a
treatment of unknown words

The error correction scheme has performed rea-
sonably well in informal user trials. However there
is one fairly major problem still to be addressed,
relating to unknown words. If a word in the stu-
dent’s utterance is not found in the system’s lex-
icon, there are two possibilities: either the stu-
dent has made an error, or the word is one which
the system simply does not know. In the current
scheme, only the first possibility is considered.

We have already implemented a treatment of
unknown words, in which the system assumes an
unknown word is of a lexical type already defined
in the grammar, and proceeds by asking the user
questions embedding the word in example sen-
tences to help identify this type (see van Scha-
gen and Knott (2004)). However, word-authoring
subdialogues would be a distraction for a student;
and in any case, it is fairly safe to assume that
all unknown words used by the student are proper
names. We therefore use a simpler treatment re-
lated to the constraint-relaxation scheme of Fou-
vry (2003), in which the system temporarily adds
an unknown word to the class of proper names and
then attempts to reparse the sentence. A success-
ful parse is then interpreted as evidence that the
unknown word is indeed a proper name.



A problem arises with this scheme when it is
used in conjunction with error-correction: wher-
ever it is possible to use a proper name, hy-
pothesising a proper name gives a higher aggre-
gate score than hypothesising an error, all other
things being equal. The problem is serious, be-
cause grammars typically allow proper names in
many different places, in particular as preposed
and postposed sentence adverbials functioning as
addressee terms (see Knott et al. (2004)). To rem-
edy this problem, it is important to attach a cost
to the operation of hypothesising a proper name,
comparable to that of hypothesising an error.

In our (as-yet unimplemented) combined
unknown-word and error-correction scheme, if
there is an unknown word which can be inter-
preted as a proper name, the lexicon is updated
prior to parsing, and perturbations are created as
usual. A special unknown word cost is associated
with the original utterance and with each of these
perturbations, except any perturbations which
alter the unknown word (and thus do not rely
on the hypothesised lexical item). The unknown
word cost is another number between 0 and 1,
and the aggregate score of an interpretation is
multiplied by this number when deciding amongst
alternative interpretations. The number is set to
be lower than the average perturbation score. If
any perturbations of the unknown word survive
the parsing process, they stand a good chance of
being preferred over the proper name hypothesis,
or at least being presented as alternatives to it.
We will experiment with this extension to the
error-correction algorithm in future work.

References

E Bender, D Flickinger, S Oepen, A Walsh, and T Bald-
win. 2004. Arboretum: Using a precision grammar for
grammar checking in CALL. In Proceedings of the In-
STIL/ICALL Symposium, pages 83–87.

E Brill and R Moore. 2000. An improved error model for
noisy channel spelling correction. In Proceedings of ACL.

A Copestake and D Flickinger. 2000. An open-source gram-
mar development environment and broad-coverage En-
glish grammar using hpsg. In Proceedings of LREC 2000,
Athens, Greece.

A Copestake. 2000. The (new) LKB system. CSLI, Stanford
University.

J Foster and C Vogel. 2004. Parsing ill-formed text using
an error grammar. Artificial Intelligence Review, 21(3–
4):269–291.

F Fouvry. 2003. Lexicon acquisition with a large-coverage
unification-based grammar. In 10th Conference of the Eu-
ropean Chapter of the Association for Computational Lin-
guistics, Research notes and demos, Budapest, Hungary.

R Golding and Y Schabes. 1996. Combining trigram-based
and feature-based methods for context-sensitive spelling
correction. In Proceedings of the Thirty-Fourth Annual
Meeting of the Association for Computational Linguistics.

J Hobbs, M Stickel, D Appelt, and P Martin. 1993. Interpre-
tation as abduction. Artificial Intelligence, 63.

A Knott and P Vlugter. 2003. Syntactic disambigua-
tion using presupposition resolution. In Proceedings
of the 4th Australasian Language Technology Workshop
(ALTW2003), Melbourne.

A Knott, I Bayard, and P Vlugter. 2004. Multi-agent human-
machine dialogue: issues in dialogue management and re-
ferring expression semantics. In Proceedings of the 8th
Pacific Rim Conference on Artificial Intelligence (PRICAI
2004), pages 872–881, Auckland. Springer Verlag: Lec-
ture Notes in AI.

K Kukich. 1992. Techniques for automatically correcting
words in text. Computing Surveys, 24(4):377–439.

P Lurcock, P Vlugter, and A Knott. 2004. A framework
for utterance disambiguation in dialogue. In Proceedings
of the 2004 Australasian Language Technology Workshop
(ALTW), pages 101–108, Macquarie University.

P Lurcock. 2005. Techniques for utterance disambiguation
in a human-computer dialogue system. MSc thesis, Dept
of Computer Science, University of Otago.

L Mangu and E Brill. 1997. Automatic rule acquisition for
spelling correction. In Proceedings of the 14th Interna-
tional Conference on Machine Learning.

W Menzel and I Schröder. 1998. Constraint-based diagnosis
for intelligent language tutoring systems.

L Michaud, K Mccoy, and L Stark. 2001. Modeling the
acquisition of english: an intelligent CALL approach. In
Proceedings of The 8th International Conference on User
Modeling, pages 13–17, Sonthofen, Germany.

N Slabbers. 2005. A system for generating teaching
initiatives in a computer-aided language learning dia-
logue. Technical Report OUCS-2005-02, Department of
Computer Science, University of Otago, Dunedin, New
Zealand.

E van der Ham. 2005. Diagnosing and responding to stu-
dent errors in a dialogue-based computer-aided language-
learning system. Technical Report OUCS-2005-06, De-
partment of Computer Science, University of Otago,
Dunedin, New Zealand.

M van Schagen and A Knott. 2004. Tauira: A tool for acquir-
ing unknown words in a dialogue context. In Proceedings
of the 2004 Australasian Language Technology Workshop
(ALTW), pages 131–138, Macquarie University.

P Vlugter, A Knott, and V Weatherall. 2004. A human-
machine dialogue system for CALL. In Proceedings of
InSTIL/ICALL 2004: NLP and speech technologies in
Advanced Language Learning Systems, pages 215–218,
Venice.


