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Abstract

In this paper we present a neural network model of motor
learning structured around circuits which associate motor ac-
tions with their sensory effects, as proposed by Hommel et al.
(2001). The network implements a novel model of causative
actions, which bring about specified distal movements in ma-
nipulated target objects (e.g. bending a lever). It also serves
as the basis for a novel embodied account of the syntax of
causative sentences such as John bent the lever.
Keywords: motor control, neural networks, embodied models
of language

Effect-based action representations in
neuroscience and language

A common idea in models of action representation is that
an agent’s actions (also known as motor programs) are en-
coded in a way which makes reference to the sensory effects
they bring about. This idea has a long history, but in recent
research it is most strongly associated with Prinz’s (1997)
theory of ‘common coding’ and Hommel et al.’s theory of
‘event codes’ (Hommel et al., 2001). The key idea uniting
these models is that motor programs are not defined purely
within the motor domain: their neural representation includes
a specification of the sensory effects they bring about, in one
or more sensory modalities. This position can be supported
both on theoretical grounds and through experiments; we will
give brief examples of each kind of argument.

Theoretically, a strong argument for this view of action rep-
resentation comes from considerations about how actions are
learned. It is uncontroversial that an agent’s repertoire of mo-
tor programs is learned through some kind of reinforcement.
A reinforcing signal is a sensory signal. When an agent ex-
ecutes a motor program and generates a rewarding signal, an
association is made between the sensory signal and this par-
ticular program. After a certain amount of training, if all goes
well, the sensory signal will become associated with a range
of related motor movements, which bring it about in differ-
ent ways or under different circumstances, perhaps in ways
which are parameterised or organised by features of the sen-
sory stimulus. At this point, if the agent activates the sensory
signal, this will bring about one of these movements, and re-
sult in reward. But equally importantly, the group of mo-
tor movements associated with the sensory signal can now be
thought of as comprising an action category, in virtue of their
shared ability to evoke the stimulus. Categories are defined
around central concepts or prototypes, and in this case the
unifying concept is a sensory one. For this reason, it makes
sense to talk about action categories as being defined by the
sensory effects they bring about.

Experimentally, the idea that actions are defined by their
effects has been suported in several ways. For instance, there
have been many studies exploring variations on the well-
known stimulus-response compatibility effect (Simon, 1969).
A good example is a study by Hommel (1993). Here sub-
jects had to respond to an auditory stimulus by pressing a
button, either with the left or right hand. The tone of the audi-
tory stimulus indicated which button the subject should press.
But as a distracting factor, the stimulus was also presented ei-
ther on the left or the right. The classical stimulus-response
compatibility effect is that subjects are slower to respond if
the spatial location of the stimulus is incompatible with the
hand which must respond. In Hommel’s experiment, button
presses generated a reafferent visual stimulus whose location
could be decoupled from the location of the hand pressing the
button, to explore whether the compatibility effect operates
in the domain of motor movements or that of their sensory
consequences. Button presses consistently produced a visual
stimulus: illumination of a light. In one condition the light
appeared on the same side as the hand (e.g. left button presses
illuminated a light on the left), while in another it appeared on
the opposite side (e.g. left button presses illuminated a light
on the right). Hommel found that the stimulus-response com-
patibility effect depended on compatibility with the percep-
tual effects of button-presses, rather than on the hand which
was used. This shows that the way subjects encode actions
does make some reference to their sensory consequences—
at least enough to interfere with stimulus-response mappings.
Effect-based representations of motor actions are also sup-
ported by several studies of the neural representation of ac-
tions; see for instance Umiltà et al. (2008); Matsumoto et al.
(2003).

Another interesting piece of evidence for effect-based ac-
tion representations comes from a completely different area
of cognitive science: linguistics. The evidence comes from a
phenomenon called the ‘causative alternation’. This is found
in many languages, but we will illustrate with English. Con-
sider the following two sentences:

(1) John bent the lever.

(2) The lever bent.

As these show, the verb bend can be used in a transitive sen-
tence, where the lever appears as the object (Example 1) or in
an intransitive sentence, where it appears as the subject (e.g.
Example 2). On the face of it, a syntactician would have to
assume two different senses of the word bend: one which de-
scribes the lever as an agent and one as a patient. But this is
counterintuitive, since what happens to the lever is the same
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Figure 1: Derivation of John bent the lever by movement
from an underlying syntactic structure

(a) (b)

Figure 2: (a) The hand/arm (b) detail of a single finger pad

in each case. A way to avoid assuming this implausible am-
biguity in the verb bend is to argue that the transitive sen-
tence John bent the lever really means John caused [the lever
to bend]. This analysis can be neatly expressed in syntactic
theories which posit that sentences have an ‘underlying’ syn-
tactic structure which is distinct from their surface form: an
idea associated with Chomskan accounts of syntax (see e.g.
Chomsky, 1995). In a Chomskyan framework, we can argue
that the underlying structure of Example 1 is John caused [the
lever bent], as shown on the left of Figure 1. At this level
of analysis, ‘the lever’ is the subject of bend, just as it is in
Example 2. In a Chomskyan model, the surface structure of
Example 1 is produced by moving the lower verb bent into
the position of the higher verb caused, as shown on the right
of Figure 1.

In this paper we have two aims. We will first introduce a
computational model of the learning and control of causative
actions, which implements a particular take on Hommel et
al.’s conception of event codes. The model has several inter-
esting features as an account of action representation, which
we will briefly discuss. But our other main aim is to juxtapose
an account of processing in the motor control network with
the syntactic analysis of causative verbs just sketched above.
We will argue that the network may provide a framework that
allows the syntactic analysis to be expressed in terms of neu-
ral mechanisms.

A platform for learning and control of
simulated actions

Our computational model was implemented in a software en-
vironment for simulating hand/arm actions called GraspPro-
ject (Lee-Hand et al., 2012; for details see Neumegen, 2013).
The environment is built on top of the JMonkey games en-
gine, which uses the Bullet physics engine to define objects
made up of linked rigid bodies, and OpenGL to render graph-
ical views of these. GraspProject provides a simple model of
the hand and arm, with three degrees of freedom in the arm
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Figure 3: Architecture of the motor control network

(two at the shoulder and one at the elbow) and one in the hand
controlling grip aperture (see Figure 2a). It also provides a
fairly rich model of the touch sensors in the fingers. Finger
pads are modelled as deformable grids of rigid bodies con-
nected by springs. (A single finger pad in light contact with a
solid surface is shown in Figure 2b.) Information about light
touches is provided by collision detectors on each pad, and in-
formation about stronger touches which deform the surface of
the skin is read from the joint angles between adjacent pads.

Architecture of the motor control network
Our model of the motor system is a neural network for learn-
ing hand actions directed at target objects. It provides a sim-
ple model of some aspects of infant motor development.

The general architecture of the network is shown in Fig-
ure 3. It consists of three sub-networks arranged in sequence.
These are assumed to be trained at three successive develop-
mental stages, by reward signals of different degrees of com-
plexity. In this scheme, the system is initially rewarded by
very simple sensory signals, which train a simple motor cir-
cuit, but as learning takes place in this circuit, more complex
reward signals become available, which in turn train higher-
order circuits. The first two networks are described in detail
in Lee-Hand et al. (2012), and their interaction with the third
network is described in Lee-Hand (2013).

The first network to be trained is called the reach network
(see the lower part of Figure 3). This network learns a func-
tion which maps a visual representation of a target object onto



a goal motor state of the hand and arm. (The visual represen-
tation has two components, one relating to the position of the
target, the other to its shape. The former representation maps
to a goal arm state; the latter to a goal hand state.) During
training, the agent visually attends to objects in its perispace,
and executes hand/arm actions at random. Sometimes these
actions result in its hand touching the target, evoking a touch
signal (the simple touch signal). This signal is intrinsically re-
warding (as in Oztop et al., 2004). The touch signal has two
functions. First, it allows a proprioceptive representation of
the agent’s current motor state to be copied into the medium
holding its goal motor state (see the upper arrow leading from
the simple tactile signal). Second, it allows the reach network
to be trained, so that the current visual representation of the
target object is associated with this newly specified goal mo-
tor state, and similar presentations of the target in the future
will automatically elicit an appropriate motor goal.

This simple circuit implements a particular version of
Hommel et al.’s model of event codes. Learning in the cir-
cuit creates what can be thought of as a single simple ac-
tion category, associated with the sensory representation of a
touch to the hand: a network which maps visual stimuli onto
motor goals which will bring about this representation. Mo-
tor goals in the circuit are associated with sensory stimuli in
three ways. Any representation in the motor goal medium is
implicitly associated with one particular reward stimulus (a
simple touch sensation). Specific motor goals are associated
axiomatically with specific motor states (sensed propriocep-
tively) when the reward stimulus is evoked. And specific mo-
tor goals are also associated through learning with arbitrary
sensory stimuli (in this case visual), which carry information
about the motor states associated with reward signals. Again
this happens at the time the reward stimulus is evoked. The
key devices in the circuit are reward-gated learning and copy
operations. These devices will be replicated in the other two
networks.

The reach network generates a motor goal—but of course
there must also be a mechanism which achieves this goal. At
the first developmental stage, we assume this mechanism is
a simple feedback motor controller. This device takes the
current motor state and the goal motor state and generates
a motor signal proportional to the difference between them,
in a direction which reduces this difference. (The controller
is not shown in Figure 3.) A feedback controller does not
need to be trained; it can be assumed to be present at birth.
(We use a PID controller; see e.g. Araki, 2006). However,
mature motor control involves a mixture of feedback con-
trol and feedforward control (see e.g. Kawato et al., 1987).
Feedforward control exploits learning about the properties of
the agent’s motor system to optimise action trajectories. If
we think of the feedforward controller in sufficiently gen-
eral terms, we can say that it is through learning in this con-
troller that an agent can acquire a repertoire of different ac-
tion categories. Different actions (like grabbing or punching
or slapping) have different characteristic trajectories of the

hand and fingers; the feedforward control system somehow
learns about the distinct effects of particular trajectories and
creates action categories associated with each. However, it is
not clear how different trajectories are represented in the bi-
ological motor control system. There is good evidence that
agents do not compute detailed trajectories in advance; these
are only generated ‘on the fly’, as an action is actually un-
derway (see e.g. Cisek, 2005). Our network implements a
particular idea about how trajectories are represented. We as-
sume that the agent evoking a goal motor state can generate
learned perturbations of this goal state as an action is under
way, which deviate the hand from the normal course it would
take under simple feedback control. For instance, to generate
a trajectory bringing the hand onto the target from above, the
goal state could be temporarily perturbed to a point above the
target, so the hand initially moves higher than it would nor-
mally do. This idea is discussed in more detail and evaluated
in Lee-Hand et al. (2012). This kind of learning takes place
in the second network in our model, the motor program net-
work (see the middle of Figure 3).

The motor program network learns to map a goal motor
state onto a perturbed goal motor state, which is applied at the
start of a reach action and removed when the hand is at a spec-
ified distance from the target. Learning in this network begins
when the reach network reliably generates actions that lead to
reward signals. During training, random perturbations are ap-
plied to the goal motor state produced by the reach network.
From time to time, these perturbations result in richer tac-
tile reward signals than those used to train the reach network.
There are several different signals, which result from partic-
ular perturbations. Some perturbations result in a grasp or
near-grasp, which generates a characteristic rich tactile stim-
ulus. Others result in a slap movement, which generates an-
other, different, tactile stimulus. (These rich stimuli are al-
most never generated through pure feedback control, because
they result from special trajectories.) When a rich tactile stim-
ulus is generated, copy and learning operations take place in
the motor program circuit which are analogous to those in the
reach circuit. First, the tactile stimulus is copied to an area
holding ‘motor programs’. Second, the motor program net-
work is trained to map the current goal motor state, plus the
currently active motor program, onto the perturbation which
resulted in the reward. After this learning, activating a spe-
cific motor program will generate an action with a character-
istic trajectory. We envisage motor programmes competing
with one another, with the winner being selected.

Note that the motor program network must execute in par-
allel with the simple reach network. It basically modulates
the behaviour of the simple network, in a manner reminiscent
of Brooks’ (1991) subsumption architecture. In order to ex-
ecute a motor program, it is important that the whole motor
program circuit is enabled, or turned on. Accordingly, while
different motor programs provide different input to the mo-
tor program network, they also uniformly generate a control
signal to enable the network they provide input to.



The final network to be trained is the causative action net-
work (see the top of Figure 3). Our assumption here is that
there is a higher level of motor control where sensory reward
signals are generated within a perceptual module whose pri-
mary function is to classify actions observed occurring in the
external world. There is a well-studied perceptual module of
this kind in the brain, implemented in a pathway from sen-
sory cortices (in particular visual cortex) through the superior
temporal sulcus (STS) and inferior parietal cortex to the pre-
motor cortex (see e.g. Keysers and Perrett, 2004). When an
agent allocates attention to an external object, representations
in this pathway encode the actions of this object in various
ways. Canonically, the action recognition pathway is active
when an agent is passively observing the external world. But
consider what happens when the agent is attending to an ex-
ternal object as a target, while directing a hand action to-
wards it. Any actions evoked in the action recognition path-
way in this scenario are potentially actions brought about by
the hand action. We propose that during action execution, ac-
tion signals evoked in the action recognition pathway function
as reward signals, which train the causative action network to
bring about particular distal actions in the world.

Training in this higher-level motor circuit again proceeds
by random generation of perturbations to the goal motor state
delivered by the reach network. In this circuit, sequences of
perturbations are applied, to generate still more complex tra-
jectories. (This is depicted in the diagram by a recurrent in-
put, though in our implementation we ‘unroll’ this recurrence
and generate exactly two perturbations.) Some of these se-
quences cause particular patterns of movement in the target
object, which are interpreted as external actions by the action
recognition system. Activation of an action representation in
the action recognition system when performing an action on
a target object is hard-wired to generate a reward signal. This
signal has two effects. First, the observed action is copied to
a specialised motor medium: specifically, a medium in which
action plans are held. Second, the causative action network
is trained to map the basic goal motor state delivered by the
reach network onto the sequence of perturbations which led
to reward. Note that the network also takes representations
in the action planning system as input. After training, the
causative action network can take a simple goal motor state,
plus an action representation in the action planning system,
and generate a sequence of perturbations which will lead to
observation of a specific action on the attended target. And
different patterns in the action planning system will lead to
different observed actions.

This network enables a rich repertoire of actions to be
learned. It preserves Hommel et al.’s idea that action repre-
sentations are organised around their perceptual effects. But
since the action recognition network generates rich, high-
level percptual signals, a correspondingly rich set of motor
programs can be established. At the same time, the basic
mechanisms through which learning happens are the same as
in much simpler motor learning systems.

Part of the design of the causative action circuit is that
‘cause’ is motor program in its own right, which competes
within the motor program selection system against regular
motor programs like ‘grasp’ and ‘slap’. One important dif-
ference is that the ‘cause’ action enables the causative ac-
tions network rather than the motor program network, but
other than that it counts as a regular motor program. This
raises some important questions about how causative actions
are planned and executed. When an agent decides to perform
a causative action, presumably he has some particular caused
action in mind. But at the time of planning, this caused action
is in the future: minimally, the agent must bring his hand into
contact with the target object before he can cause it to move
in any way. Moreover, there is hardly ever a clear way of de-
composing a causative action into a simple reach action and a
subsequent manipulation. In order to cause a particular action
in a target object, the trajectory of the hand towards the ob-
ject must typically be biased from the very start: for instance,
to cause an object to squash, the hand must approach the tar-
get from a particular direction, and with particular force. So
the movements which bring about the caused action must be
initiated some time before the action is perceived.

Our way of addressing this issue in the network is to ac-
tivate the motor correlates of perceived actions in a medium
holding planned actions, rather than in the medium of reg-
ular motor programs like ‘grasp’ and ‘slap’. An underlying
assumption in our model is that an agent brings about actions
through planned sequences of sensory or motor operations
(for details see Knott, 2012). We also assume that planned
sequences are selected as wholes, and that the component ac-
tions in a planned action sequence are active in parallel in the
working memory medium where actions are planned. (This
assumption is well supported by single-cell recordings in
monkeys; see e.g. Averbeck et al., 2002). When the causative
actions network is exploring causative actions, it will activate
the ‘cause’ motor programme experimentally, and choose a
random sequence of perturbations. In some cases, this results
some time later in activation of an action in the action recog-
nition system: say ‘squash’. This observed action activates
a corresponding planned action; additionally the sequence-
planning system will learn that the sequence ‘cause’, ‘squash’
is a good one to execute in the current context, so that when
a similar context occurs in the future, it will activate this
planned sequence. Now consider what happens when the
planned sequence is executed. The agent first executes the
motor programme ‘cause’. This enables the causative action
network, which generates a sequence of perturbations. Cru-
cially, the causative action network also takes input from the
planning medium in which the caused action (‘squash’) is ac-
tive as part of the planned sequence. So as soon as it is ini-
tiated, the network is configured to generate the perturbation
sequence which led to the caused action, even before this ac-
tion actually occurs.

The key mechanism enabling causative actions to be ex-
ecuted is one which activates a sensory representation (the



squash action) as a goal some time before it is evoked as a
sensory stimulus. Note that something very similar happens
in the other networks; for instance in the reach network the
actual motor state where the touch sensation occurs is acti-
vated as a goal motor state. In the simple network this activa-
tion is possible because visual perception provides informa-
tion about reward-associated motor states. In the higher-level
causative actions network, the advance notification of reward
comes from the working memory system which stores pre-
pared actions. But the effect is much the same.

Experiments learning causative actions
We built two objects in the simulation environment which
could undergo specialised kinds of action. One comprised
two horizontal planes connected by a spring; this object could
be ‘squashed’ by pushing down on it. The other was a lever
which could pivot around a joint; this object could be bent.
Our action recognition system consulted the states defined in
the physics engine directly; we did not attempt to simulate the
action recognition module (though we did simulate the visual
inputs to the reach network in a simple way). Each train-
ing trial involved the presentation of a single object (either
the bendable target, the squashable target or a rigid object) in
one of several possible positions. This led to activity in the
nework and a motor action. If the rigid object was presented,
‘grasp’ was activated in the motor program circuit, so that this
circuit could be trained; otherwise the activated program was
always ‘cause’, the operation activating the causative action
network. This network always generated two perturbations
in sequence. At the start of training, perturbations were an-
nealed with noise; this was gradually reduced as the network
learned. If the action recognition system detected an action
A, it generated a reward, and the sensed action activated a
corresponding unit in the action planning system, resulting
in the sequence [‘cause’, A]. This sequence plan was also
associated with the visual target shape, so subsequent pre-
sentation of this target would activate the plan. As training
progressed, the system learned perturbations which brought
about particular perceived actions, and also learned to map
visual target representations onto appropriate sequence plans.
Details of the network’s training and testing are given in Lee-
Hand (2013).

A syntactic analysis of causative actions, and a
sensorimotor interpretation

It is interesting to compare the structures used by our net-
work to learn and generate causative actions with the syntac-
tic structure of sentences reporting causative actions. As dis-
cussed at the start, a Chomskyan analysis posits an underlying
level of syntactic representation at which the sentence John
bent the lever contains an explicit ‘cause’ action as its main
verb, which takes as its argument a nested action (‘The lever
bent’). The network model also contains an explicit ‘cause’
operation (the ‘cause’ motor programme), and a nested ac-
tion (the action delivered by the action recognition system).

An emerging school of thought in cognitive science is that
concrete sentences get their meanings by evoking embodied
representations in the sensorimotor system (see e.g. Glenberg
and Kaschak, 2002; Barsalou, 2008). The network model of
causative actions presented above may support an interesting
‘embodied’ account of the semantics of causative transitives
like John bent the lever. We will conclude by discussing this
possibility.

The underlying structure of sentences in Chomsky’s (1995)
Minimalist model is called ‘logical form’ (LF). The LF of
John bent the lever is shown in Figure 4. LF represen-
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Figure 4: LF of John bent the lever, including head-raising
operation

tations have a right-branching recursive structure: the units
of recursion, called X-bar schemas (XPs), are indicated with
boxes in the figure. (Details of the higher two XPs are omit-
ted for simplicity.) Knott (2012) uses Minimalist LF struc-
tures to express a strong claim about the embodied nature of
sentence meanings. In his proposal, the LF of any sentence
reporting a concrete episode in the world can be interpreted
as a description of the sensorimotor processes through which
this episode is experienced. Knott assumes Ballard et al.’s
(1997) account of sensorimotor processing, which posits that
this processing is organised into well-defined sequences of at-
tentional or motor operations called ‘deictic operations’. The
key idea in Knott’s proposal is that the LF structure of a con-
crete sentence describes a sequence of deictic operations—
specifically, that each XP in the structure describes a single
operation. The sensorimotor denotations of XPs are shown in
red in Figure 4.

This general proposal makes a specific prediction about the
sequential structure of a causative action. As shown in Fig-
ure 4, the XP introducing CAUSE immediately dominates the
XP presenting the nested action. Knott’s proposal thus pre-
dicts that a causative action involves two stages: activation
of a ‘cause’ operation, followed by experience of the ‘bend’
action. And indeed, execution of causative actions in our net-
work model has this sequential character. So the recursive
structure of LF has the right general form.

However, an additional neat correspondence can be drawn



between the structure of LF and the structure of the sensori-
motor routine. As discussed above, the hand movement initi-
ated by the ‘cause’ motor program must follow different tra-
jectories to the target to achieve different causal effects on
it. In the network model we catered for this by having the
causative actions network take input from a medium repre-
senting a casual effect as it is planned, rather than as it is
later observed. We assumed that this medium holds the entire
sequence of actions being executed by the agent, as a sus-
tained signal, so as soon as the causative network is engaged,
its output is influenced by the planned action to be brought
about. Now note that in the LF structure in Figure 4, the lower
verb bent raises to the position of the higher verb CAUSE
(as shown by the arrow) so that it can be pronounced in this
higher position, giving the surface form John bent the cup.
We propose to explain the Minimalist device of verb rais-
ing in sensorimotor terms by assuming in general that surface
verbs describe motor actions as they are planned rather than
as they actually occur. The reason why the verb bent can be
pronounced at the higher verb position is that it denotes a sig-
nal in the planning medium, which is tonically active through
the whole executed routine. In fact, this account of verb rais-
ing follows naturally from a wider sensorimotor account of
verb raising which was proposed by Knott (2012) and is im-
plemented in a neural network model of sentence generation
described in Takac et al. (2012). But in the current context,
the key point is that the sensorimotor interpretation of LF ex-
plains both the structural relationship between the CAUSE
verb and its complement VP and the extended syntactic do-
main of the nested verb bend at LF which allows it to appear
in the position of the CAUSE verb in surface structure.

Summary
In this paper we presented a neural network model of the
learning and execution of causative actions. The model em-
bodies a particular take on Hommel et al.’s proposal that ac-
tions are defined in terms of their effects: a basic circuit im-
plementing this principle is replicated in three different com-
ponents of the network, at different levels of abstraction. At
the same time, the network provides the basis for an interest-
ing account of the syntactic structure of causative sentences—
specifically, of the relation between a cause predicate and the
action which this predicate introduces.
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