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Abstract
In this paper we present a model of how events and their partic-
ipants are represented in working memory (WM). The model’s
central assumption is that events are experienced through se-
quentially structured sensorimotor (SM) routines—as are the
individuals that participate in them. In the light of this assump-
tion, we propose that events and individuals are stored in WM
as prepared SM routines. This proposal allows a new mech-
anism for binding representations of individuals to semantic
roles such as AGENT and PATIENT. It also enables a novel
account of how expectations about forthcoming events can in-
fluence SM processing in real time as events are perceived.
Finally, it supports an account of the interface between WM
representations and language.
Keywords: event perception; working memory; embodied
cognition; neural networks; syntactic heads

Introduction: semantic working memory
In this paper we present a model of how the brain encodes
events and their participants in working memory (WM). The
WM medium that stores events was dubbed the ‘episodic
buffer’ by Baddeley (2000). We adopt the slightly broader
term semantic WM, because our model represents individu-
als and their properties as well as events. (The term also em-
phasises the non-phonological character of the WM medium
we are modelling.) For Baddeley, the episodic buffer is an
interface medium, linking to three distinct neural systems:
the sensorimotor (SM) system, through which events are di-
rectly experienced, the episodic memory system, in which
they are stored in long-term memory (LTM), and the lan-
guage system, through which they are communicated. Here
we consider the semantic WM system as it interfaces with the
SM system and language; in a companion paper (Takac and
Knott, this volume), we consider its interface with LTM.

Experimental work on the WM system has focussed on rel-
atively simple representations: representations of spatial lo-
cation, visual properties, and prepared motor actions. How-
ever, semantic WM is also assumed to be the medium where
such representations are combined or bound into complex
semantic structures. A binding mechanism is crucial for rep-
resenting events: in particular, representations of individuals
must be bound to semantic roles such as AGENT and PATIENT.
Note that representations of individuals have their own inter-
nal structure, which must be created through some form of
binding. An individual has properties (shape, type etc), but
also a spatial location. And it can be a singular entity, or a
group. It is important that the mechanism binding individuals
to semantic roles can operate on compositionally structured
representations of individuals, as well as on atoms. Experi-
ments have not revealed much about this binding mechanism,
but it is a key topic for neural network research (e.g. van der
Velde and de Kamps, 2006; Stewart and Eliasmith, 2012).

In the current paper, we will introduce a new network
model of semantic WM, which makes some new proposals
about the binding operations that create event representations.
We show that the event representations in this model are well
suited to support accounts of the role of semantic WM in on-
line SM experience and in sentence processing.

Background: a model of event perception
WM representations of experienced events have to be created
during experience. Events take time to occur, so the SM pro-
cesses through which they are experienced must be similarly
extended in time. The founding assumption in our model is
that event-perception processes have a well-defined tempo-
ral structure—and that the mechanism representing events in
WM capitalises on this well-defined structure. In this section
we outline what this structure is; for details, see Knott (2012).

We argue that perceiving an episode involves a relatively
discrete sequence of SM operations. This assumption rests
on some well-accepted findings about perceptual processes.
Firstly, there is good evidence that focal attention must be al-
located to an individual in order to process it in any detail
(see Walles et al., 2014 for a summary). If an event involves
several participant individuals, therefore, the observer must
attend to them one by one, rather than in parallel. Secondly,
when an event is perceived, participants playing certain se-
mantic roles are recognised first. For transitive events, we
argue the AGENT participant must be attended to before the
PATIENT (Knott, 2012).1 If the observer is executing the ac-
tion, this is because the decision to act must precede selection
of a target; if the agent is watching an action, it is because s/he
must monitor the agent to identify the intended target (Webb
et al., 2010). Thirdly, a representation of the motor action
cannot be evoked until the target object has been attended
to. In action execution, the agent must activate a represen-
tation of the target object before its motor affordances can
be computed (Johansson et al., 2001); in action perception,
the observer must compute the trajectory of the agent’s hand
onto the target (e.g. Oztop et al., 2004). If these assump-
tions, which are individually quite well accepted, are brought
together, an interesting model of event perception emerges,
in which apprehending a transitive event involves a sequence
of three SM operations: attention to the agent, then attention
to the target, then activation of a motor programme. The idea
that events have a characteristic temporal structure is certainly
present in other models of event perception, in particular that
of Reynolds et al. (2007). For Reynolds et al., these sequen-

1Our terms ‘agent’ and ‘patient’ refer to Dowty’s (1991) more
general concepts ‘proto-agent’ and ‘proto-patient’.



tial regularities relate primarily to the structure of an agent’s
movements: they are the kind of regularities that the ‘biolog-
ical motion’ system becomes attuned to. In our model, such
regularities are encoded within the action representation sys-
tem, as discrete actions. But there is more to an event than
an action. In our model, experiencing an event also involves
a higher-level sequence, of relatively discrete SM operations.
One of these is the activation of an action representation. But
this operation must be preceded by an action of attention to
the agent, and then an action of attention to the patient (if
there is one). In our model, the notions of agent and patient
are in fact defined by the serial order of attentional operrations
in this SM sequence: the (proto-)agent is the first individual
attended to; the (proto-)patient is the second.

Alongside this model of event perception, we also assume
that the perception of each participant in an event involves its
own canonically-structured sequence of SM operations. It is
well established that in order to classify an object, an observer
must first direct focal attention to the region of space it occu-
pies. But observers can also attend to a region of space con-
taining a homogeneous group of objects. Walles et al. (2014)
argue that in between focal attention and object classifica-
tion there is an intervening attentional operation that selects
a spatial scale at which the classifier will be deployed, de-
termining whether the classifier identifies the local or global
form (Navon, 1977) of the attended stimulus. This operation
determines whether a single individual is classified or a ho-
mogeneous group of individuals. In summary, perception of
an individual involves a SM routine comprising three oper-
ations: selection of a salient region of space, then selection
of a classification scale (determining whether a singular or
plural stimulus will be classified), and finally activation of an
object category. Event perception, in turn, is a higher-level
sequential SM routine, some of whose elements have their
own sequential structure.

WM representations as prepared sequences

We propose that representations in semantic WM exploit the
sequential structure of perceptual processes. Specifically,
we propose that WM representations of both individuals and
episodes take the form of prepared sequences. This proposal
is attractive for several reasons. For one thing, it offers a clear
account of how semantic WM representations can influence
SM processing: a prepared SM sequence is an ‘executable’
structure, that can initiate sequentially structured SM activity
(including actions). For another thing, it suggests an account
of a puzzling recent finding: stimuli held in WM appear to
be transiently reactivated in SM areas during the delay pe-
riod (see e.g. Meyers et al., 2008). If WM representations
are prepared SM routines, that can be executed in simulation,
then active simulation processes could occur during the de-
lay period, resulting in these transient patterns of SM activ-
ity. Finally, the proposal places semantic WM representations
within a class of neural representation that is relatively well
understood. We know a lot about how prepared sequences of

attentional or motor operations are represented, particularly
in macaques. The relevant representations are predominantly
in prefrontal cortex (PFC), which is also a key site for seman-
tic WM. A particularly interesting result is from Averbeck et
al. (2002). They showed that the PFC assembly that stores a
prepared sequence of SM operations contains sub-assemblies
representing each individual operation—and moreover, that
these sub-assemblies are active in parallel in the structure
representing a planned sequence, even though they represent
operations that are active one at a time. Our model will make
use of this finding.

A model of semantic role-binding using
sequentially-structured WM representations

Modelling semantic WM representations as prepared se-
quences suggests a novel account of how semantic roles are
bound to participants in representations of events. Our ac-
count makes use of three ideas, which we introduce below.

The key idea is that the binding mechanism is implemented
as part of the active process of rehearsing SM routines, rather
than within a static representational structure. The classic
binding problem arises because the SM media representing
an individual’s properties (location, shape etc) naturally rep-
resent just one individual: if the properties of several indi-
viduals are represented, it is hard to specify which properties
belong to which individual. If a WM event representation
supports the simulation of a sequential SM routine in which
representations of agent and patient are active in these media
at different times, many of these problems go away.

Of course, the event representation must still make refer-
ence to both participants, so it can activate these temporally
separated representations. The second idea in our binding
scheme is that event representations represent participants us-
ing pointers into the medium representing individuals—and
that there are separate pointers for agent and patient. The
pointers are active simultaneously in a WM event representa-
tion, but they are only followed sequentially, when an event is
rehearsed. (Event representations thus conform to the prop-
erties of prepared sequences identified by Averbeck et al.) In
neural networks terms, agent and patient are coded ‘by place’
in our WM event representations, in separate groups of units.
Place coding of this kind is not normally seen as a viable way
of implementing role-binding: a simple place-coding scheme
suffers from the fact that there is nothing in common between
representations of John-as-agent and John-as-patient. But if
the place-coded representations of agent and patient just hold
pointers into the medium representing individuals, which are
activated at different times, this problem does not arise.

The third idea in our binding scheme is that the place-
coded pointers in WM event representations do not point di-
rectly to SM media representing individuals, but rather to a
WM medium holding representations of individuals. Recall
that representations of individuals also have internal struc-
ture: we proposed above that the WM representation of an
individual is also stored as a prepared, replayable SM routine.
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Figure 1: Architecture of the model of semantic WM

In our model, WM representations of recently-perceived indi-
viduals are held in a separate WM medium: the agent and pa-
tient representations in a WM event point to, and sequentially
re-activate, representations within this WM medium. Dur-
ing rehearsal of a WM episode, these sequentially reactivated
representations create opportunities for secondary rehearsal
operations, simulating the steps involved in perceiving the
participant individuals. This scheme introduces a measure
of hierarchy in the model of role-binding, enabling the repre-
sentations filling semantic roles to have a degree of internal
structure—an important requirement, as noted earlier.

A model of WM episodes and WM individuals
Our model is illustrated in Figure 1. SM media are below the
grey line; WM media are above it. The WM system repre-
senting individuals is on the left, and that representing events
(or ‘episodes’, as we call them here) is on the right. The copy
operations implementing pointers are highlighted in red.

The WM medium on the left holds a representation of a
single selected individual, a WM individual, stored as a pre-
pared sequence of a location, a number (i.e. classification
scale) and a set of perceptual properties. These three rep-
resentations are activated in parallel in the WM medium, but
when the prepared sequence is executed or rehearsed, they ac-
tivate associated first-order representations in the attentional
and classification systems one at a time, as discussed above.

The media representing a WM individual provide input to
another layer, the candidate WM individuals (cWM-ind)
layer, which stores combinations of location, number and
type over a short time period, and thus represents the set of
recently-attended individuals. A partially specified WM indi-
vidual can function as a query to the cWM-ind layer: if we
specify a location, we may be able to retrieve an associated
type and number (and vice versa). If we can, then the indi-
vidual retrieved is classed as ‘old’; if we cannot, it is classed
as ‘new’. These attributes are recorded in a status field of the
WM individual, which is not part of the prepared sequence.
Queries formed from partially-specified WM individuals can
be used to generate expectations about the location or proper-
ties of individuals in the current scene, as we discuss below.

The WM episodes system is structurally similar to the WM
individuals system. It holds a representation of a single se-
lected episode, a ‘WM episode’, stored as a planned sequence
of operations activating an agent, a patient and an action.

As noted above, the agent and patient media hold content-
addressed pointers to representations in the WM individual
medium. All the media within a WM episode are active in
parallel, but when a WM episode is executed or rehearsed, the
representations they point to become active sequentially: the
‘agent’ and ‘patient’ media activate two successive represen-
tations in the WM individual medium, and then the ‘action’
medium activates a representation in the (pre)motor system.

The prepared operations in a WM episode also provide in-
put to a layer holding episode representations learned over a
longer timespan, the candidate episodes (c-ep) layer. This
layer is a self-organising map (SOM): when exposed to train-
ing episodes, it learns to represent episodes as localist units,
organised so that similar episodes are close together in the
map. Each unit can encode a particular combination of rep-
resentations in the agent, patient and action media, and thus
can represent a complete episode by itself. Note this localist
scheme is enabled by our model of binding: the ‘agent’ and
‘patient’ fields of a WM episode index their fillers by place,
so carry information about both roles and fillers. Clearly, we
cannot represent every possible episode using localist units.
But that is not the purpose of the c-ep SOM: its role is rather
to represent the episodes that occur frequently, so these can
provide a top-down bias on SM processing during experience.
Since the c-ep SOM uses localist representations, it can also
represent multiple expected episodes simultaneously: a use-
ful property, as we will show.

A final component of the network is a layer representing
the current situation. In our model, this is the hidden layer
of a recurrent network that learns to predict the next episode,
given the episode that has just occurred, plus a copy of its
hidden layer at the previous time point. The current situa-
tion network learns to predict a distribution of possible next
episodes in the c-ep SOM (exploiting its ability to represent
multiple episodes). (It is somewhat analogous to Reynolds
et al.’s (2007) recurrent network for event representation, but
Reyonlds et al.’s network predicts the next component of an
episode, rather than the next discrete episode.)

One useful feature of our model is that that the c-ep SOM
can learn generalisations over episodes. One kind of general-
isation is hard coded in the model: the copies of WM individ-
uals created in the agent and patient fields ignore location in-
formation, so representations of episodes in the SOM abstract
over the location of participants. In our model, expectations



about the locations of objects are dealt with in the WM indi-
viduals system, as we will illustrate below. This step consid-
erably reduces the combinatorial possibilities that need to be
represented in the SOM. But the SOM also learns generalisa-
tions of its own. The ability to generalise is a standard feature
of learning in SOMs, since episodes that are sufficiently sim-
ilar will activate the same localist unit. In particular, since
the representations of agents and patients providing input to
the SOM are distributed, the SOM can learn to abstract away
from the properties of token individuals and represent the par-
ticipants of episodes as types, as we will show.

Here are some technical details about the network’s ar-
chitecture. The WM individual layer consists of localist
sets of feature units for person (1/2/3), number (Sg/Pl), gen-
der (Male/Female/Neuter) and status (new/old). Each set
of units can either encode a single property unambiguously,
or a probability distribution over properties. The type area
also contains feature sets coding animacy, and object type
(person/dog/cat/bird/cup/ball/chair). Object location, situ-
ated on a 100×100 grid, is coded by a population of 6×6
neurons with Gaussian receptive fields evenly covering the
grid. Colour is coded by a population of 11 neurons with
Gaussian receptive fields in 3D RGB space maximally re-
sponding to standard 11 basic colours (see Figure 3a). Such
population coding is neurally plausible and there is a straight-
forward mathematical way of computing the likelihoods of
different stimuli given the activities of neurons in the pop-
ulation (Jazayeri and Movshon, 2006). SM representations
(below the grey line in Figure 1) are isomorphic to the WM
areas they interface with. Likewise, agent and patient lay-
ers of a WM episode are isomorphic to the relevant parts of
a WM individual. The ‘action’ area consists of 22 localist
units for actions (see the x-axis legend in Figure 2a) and 11
units for their distributed featural codes. The cWM-ind layer
is a variable-sized convergence zone of units fully connected
with the WM individual layer. When a novel candidate in-
dividual is encountered, a new unit in the cWM-ind layer is
recruited and the current values of WM individual units are
copied into its connection weights (one-shot learning). The
c-ep layer is a SOM with 400 units. Each unit also main-
tains a scalar weight reflecting the frequency of ‘hits’ for this
unit, i.e. the number of times it was the most active unit.
These frequency weights serve as priors for computing the
Bayesian probability that the current input corresponds to an
episode represented by a particular unit (for details see Takac
and Knott, 2016). The network that represents the current
situation is a recurrent SOM (a ‘Merge SOM’, Strickert and
Hammer, 2005). This provides input to a layer of linear per-
ceptrons which are trained to predict the next episode. Details
of all these networks can be found in Takac and Knott (2016).

Training and testing of the network

Training We trained the network by simulating SM experi-
ence of a sequence of episodes. Each episode is represented
in the SM system as a complex sequence of SM operations.

We begin by describing the properties of the individuals that
featured in episodes. We created a fixed population of to-
ken individuals: each with a type, a number, and location and
colour properties that are stochastically chosen based on its
type. Locations are quasi-randomly generated as positions on
a 100×100 grid (which in the system’s 6×6 location medium
are represented using coarse coding). Colours are stochasti-
cally generated from Gaussian distributions centred on 11 ba-
sic colours. We then generated a stream of episodes involving
these token individuals. Each episode is presented to the WM
system as a sequence of SM input items. Episodes are of three
types: transitive (agent�patient�trans-action), intransitive
(agent�intrans-action) and causative (agent�patient�cause-
signal�unaccusative-action). In each case the agent and pa-
tient signals has a sequential structure of their own, namely
location�number�type/properties. Each of these latter se-
quences is sent to the WM individuals medium, activating the
different components of a WM individual representation one
by one. When complete, the WM individual was first passed
as a query to the cWM-ind layer, to find out whether the in-
dividual it represents has already been encountered. For each
candidate unit currently active in the cWM-ind layer, we com-
pute the likelihood that it corresponds to the current stimulus
in the WM individual (Jazayeri and Movshon, 2006). This
reduces to the average pairwise Kullback-Leibler divergence
between the respective areas of the WM individual and the
candidate unit weights (see Takac and Knott, 2016 for de-
tails). If a likely-enough candidate is returned, it is updated
if necessary and the WM individual’s status is set to ‘old’;
otherwise a new entry in the layer is created and the WM in-
dividual’s status is set to ‘new’ (candidate units that have not
been updated for N episodes are removed). The WM indi-
vidual is then copied (along with its status) to the appropriate
layer in the WM episode medium: either the ‘agent’ layer
or the ‘patient’ layer. When a complete episode has been pre-
sented to the system, the layers in the WM episode are passed
as input to the c-ep SOM. This SOM learns in the standard
way. Note that while learning in the cWM-ind layer happens
in a ‘one-shot’ manner, it only happens gradually in the c-ep
SOM, current situation and next episode media.

Testing the sequence-based binding scheme To demon-
strate the new binding scheme, we must show how the WM
representations created during experience of an episode allow
it to be replayed. To test this, after each episode is presented,
the WM episode medium is used as input to a replay process,
in which the layers in this medium activate the representations
they point to one by one. When the activated representations
are in the WM individual layer, they are used as a query to
retrieve a location representation (recall that the location of
individuals is not copied to the WM episode). If the binding
scheme is effective, this process should regenerate the same
sequence of first-order SM signals that was presented to the
network during experience of the episode. In our tests, the
sequence was perfectly reconstructed for 99.6% of episodes;
this shows that our proposed binding mechanism is effective.
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Figure 2: (a) Action types predicted in the c-ep layer for
3 episode fragments. From top to bottom: man�dog�?,
man�cat�?, bird�?. (b) Patient types predicted for Se-
quence A (top) and Sequence B (bottom).

Testing the network’s prediction/generalisation abilities
The network can make several kinds of prediction; we will fo-
cus on three progressively more complex predictions. Firstly,
the c-ep SOM can make predictions about the episode cur-
rently being experienced, as experience is under way. Predic-
tions about actions are easiest to demonstrate, since it repre-
sents actions directly. To evaluate these predictions, we intro-
duced some regularities in the episodes presented to the sys-
tem. Birds always sang (bird�sing); also when people inter-
acted with dogs and cats, they always patted dogs and stroked
cats (person�dog�pat, person�cat�stroke). We presented
the c-ep SOM with episodes involving these participants,
leaving the action field blank, and generated a distribution
of expected episodes in the SOM; from this we reconstructed
a distribution of expected actions, by linear combination of
the weight vectors of SOM units, weighted by unit activity.
Figure 2a shows these distributions are correctly weighted to-
wards the actions encountered during training.

The c-ep SOM can also make predictions about the agents
and patients of episodes. These are more complex, because
its predictions are relayed to the WM individuals system,
which refines them based on its own knowledge. To illus-
trate this process, we introduced a further regularity into the
training episodes: in all episodes involving people interact-
ing with dogs, the dogs were black if the agent was a man,
and white if the agent was a woman; additionally, people al-
ways appeared in the top-left quadrant of the spatial array,
and animals in the top-right quadrant. We then generated
an underspecified representation in the WM episode: in the
agent part, we activated a representation of a person (either
man or woman), and in the patient part we activated the type
‘dog’, unspecified for colour. We used this representation to
generate a distribution in the c-ep SOM, from which we re-
constructed a predicted distribution of patient features. This
whole distribution was copied to the WM individual medium,
where it activated a distribution of units in the cWM-ind net-
work. This distribution was used top-down to reconstruct a
distribution over expected locations for the patient individual,
and to refine the distribution over expected types and proper-
ties. Figure 3a shows activity in the colour-coding features
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Figure 3: (a) Expectations about the colour of the patient
generated by the c-ep and cWM-ind layers for episodes
woman�dog (top) and man�dog (bottom). (b) Expecta-
tions about location of the patient generated by the cWM-
ind layer for these episodes. Darker areas mean stronger ex-
pectations. Black dots represent actual locations of currently
present white dogs (top) and black dogs (bottom).

of the resulting WM individual expectation. The system cor-
rectly predicts a colour centred on black in RGB space for
man�dog episodes, and on white for woman�dog episodes.
Importantly, the cWM-ind layer can also generate expecta-
tions about the location of the dog—see Figure 3b. There is
a general bias towards the quadrant containing animals, since
dogs always appear in this quadrant. But there are also spe-
cific biases towards the location of the black or white dogs
that the system has recently encountered, that are based on
its expectations about the colour of the patient dog.

Finally, the network can make predictions about the next
episode, using its representation of the current situation.
To show this, we presented it with a sequence of training
episodes, with constraints on transitions between episodes:
when a person hit a dog and then patted the same dog (‘se-
quence A’), the dog always bit the person; when a person
patted a dog after some other episode (‘sequence B’), any
random episode could follow. We tested the network by pre-
senting sequences A and B, propagating activity through the
Current situation and Next episode prediction layers to ob-
tain a prior distribution over predicted next episodes in the
c-ep layer. From this we reconstructed an expected distribu-
tion of agents, patients and actions in the WM episode. The
network correctly predicted ‘dog-bite-man’ after Sequence A,
and made a more neutral prediction after Sequence B (see
Figure 2b). The learned update rule encodes something like
‘If a man hits a dog then pats it, the dog bites the man.’

Roles for the network in language processing
As discussed at the outset, semantic WM representations
must do service in language processing as well as in SM pro-
cessing. Our WM model was designed with this in mind.



We envisage several linguistic roles for the network. The
cWM-ind medium can function as the medium storing salient
discourse referents, and the current situation medium can be
understood as holding a representation of the current dis-
course context; for details on these ideas, see Takac and Knott
(2016). We also envisage that the WM model plays a role in
sentence processing. Specifically, we propose that generat-
ing a sentence reporting an episode stored in WM involves
rehearsing this episode, in a special cognitive mode in which
SM/WM representations can trigger output phonology. We
built a neural network model of sentence generation imple-
menting this idea (Takac et al., 2012). Within this model,
we argue that the syntactic concept of a head can actually
be derived from the architecture of the semantic WM sys-
tem. In syntactic theory, information conveyed by a syntac-
tic head spreads through its local syntactic domain (e.g. a
clause or noun phrase (NP)). This spreading process is seen
most clearly in agreement phenomena: for instance, subject-
verb agreement within a clause, or determiner-noun agree-
ment within a NP). In a NP, agreement rules relate to the
head features person, number, type, semantic gender and
definiteness: exactly the information that is maintained ton-
ically in a WM individual during its rehearsal.2 Heads in a
clause can convey all this information about the subject and
object, and additionally information about the type of the ac-
tion: exactly the type of information maintained tonically in
a WM episode during its rehearsal. We argue that syntac-
tic heads have an extended syntactic domain because they are
read from WM representations that are tonically active during
rehearsal, and so can influence phonology at multiple points.
Again see Takac and Knott (2016) for further discussion.

Discussion
In this paper we propose that events and their participants are
represented in WM as prepared SM sequences. This has sev-
eral benefits. It permits a direct account of how WM event
representations are created during experience, and of how
they in turn influence event perception by generating top-
down expectations. It enables a new model of role-binding,
that allows hierarchical representations of event participants,
and localist representations of candidate events, through a
novel use of indexing and place-coding. This in turn allows
the model to represent large distributions of expected events:
a very useful ability, which the models of van der Velde and
de Kamps (2006) and Stewart and Eliasmith (2012) do not
have. Finally, the network supports several aspects of a model
of language processing; most interestingly, it creates a frame-
work within which aspects of syntactic structure can seen as
deriving from the structure of the semantic WM system.

The model as illustrated here leaves many open questions.

2‘Person’ is conveyed as a special kind of location information:
the location can be a point in external space (in which case the point
is also specified) but it can also be a direct reference to the speaker or
interlocutor, whose location is presumed to be independently given.
Type and semantic gender are expressed within the complex of per-
ceptual properties. Definiteness is expressed by status (new or old).

One question concerns space requirements. Our place-coding
scheme for event participants requires creating several sepa-
rate copies of the WM individual medium, which is expen-
sive as regards storage space. However, storage is within
acceptable limits when scaled up to a memory of realistic
size, as discussed in Takac and Knott (2016). Another ques-
tion concerns recursive representations. While the model de-
scribed here implements a notion of hierarchical representa-
tions, these representations are not recursive. Again, this is-
sue is addressed in Takac and Knott (2016), where we argue
that the current scheme extends well to an account of com-
plement clauses, subordinate clauses, and relative clauses.
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