
Representing reach-to-grasp trajectories using
perturbed goal motor states

Jeremy Lee-Hand, Tim Neumegen, Alistair Knott

Dept of Computer Science, University of Otago, New Zealand

Abstract. In the biological system which controls movements of the
hand and arm, there is no clear distinction between movement planning
and movement execution: the details of the hand’s trajectory towards a
target are computed ‘online’, while the movement is under way. At the
same time, human agents can reach for a target object in several dis-
cretely different ways, which have their own distinctive trajectories. In
this paper we present a method for representing different reach move-
ments to a target without reference to full trajectories: movements are
defined through learned perturbations of the hand’s ultimate goal motor
state, creating distinctive deviations in the hand’s trajectory when the
movement is under way. We implement the method in a newly developed
computational platform for simulating hand/arm actions.
Keywords: reach/grasp actions, touch receptors, reinforcement learning

1 Introduction: biological models of reaching, and the
problem of action representation

In this paper, we consider how human infants learn to reach and grasp target
objects in their immediate environment. Performing this task is complex, as the
human hand/arm system has many degrees of freedom. For any given periper-
sonal target, the infant must issue a sequence of commands to the muscle groups
of the shoulder, elbow, wrist and fingers which result in her hand achieving a sta-
ble grasp on the target. Theorists term the function which computes a sequence
of commands the motor controller. The research question for us is how infants
learn a motor controller which lets them reach and grasp target objects.

Traditionally, control theorists have construed the motor controller as two
separate functions: one which plans a trajectory along which the effector must
move, and one which computes the appropriate motor commands to issue at each
point to cause it to describe this trajectory (see e.g. Jordan and Wolpert, 2000).
However, there is a growing consensus that the biological motor controller does
not work in this way; in the biological system, it appears that a detailed trajec-
tory is only computed while the movement is actually under way (Cisek, 2005).
Before the movement is initiated, the agent only computes a rough trajectory
representation, which specifies little more than the basic direction the movement
will be in. The main evidence for this suggestion is that the regions of the brain
in which reach-to-grasp movements are prepared overlap extensively with those



2 Jeremy Lee-Hand, Tim Neumegen, Alistair Knott

involved in actually executing movements. The preparation of a visually guided
reach-to-grasp movement involves activity in a neural pathway running from pri-
mary visual cortex and somatosensory cortex through posterior parietal cortex
to premotor cortex (see e.g. Burnod et al., 1999). When a prepared action is
executed, these same pathways are involved in delivering a real-time signal to
primary motor cortex, which sends torque commands to individual joints (see
e.g. Cisek et al., 2003; Cisek, 2005), bringing about motor movements. These
movements create new reafferent sensory states, which provide updated inputs
to the pathway, which in turn result in new motor commands, and so on, in a
loop. In this conception of motor control, movements of the arm/hand are de-
scribed by a complex dynamical system whose components are partly physical
and partly neural: the task of the neural motor controller is to set the parameters
of this system so that the attractor state it moves towards is one in which the
agent’s hand achieves the intended goal state. This model of motor control was
first posited by Bullock and Grossberg (1988), and is now quite well established
(see e.g. Hersch and Billard, 2006).

While there is some consensus that a detailed hand trajectory is not precom-
puted by the agent, at some level of abstraction human agents are clearly able to
represent a range of different trajectories of the hand onto a target. For instance,
when confronted with a target object, we can choose different ways to grasp it,
which require the hand to approach from different angles. We can also choose
to perform actions other than reaching-to-grasp, which have their own idiosyn-
cratic trajectories. For instance, to ‘squash’ the target our hand must approach
it from above, while ‘slapping’ the target requires an approach from the side;
‘snatch’, ‘punch’ and ‘stroke’ likewise have distinctive trajectories. If we do not
compute detailed hand trajectories, how do we represent the discrete alternative
grasps afforded by target objects, and how do we represent discretely different
transitive actions like ‘squash’ and ‘slap’? In this paper we propose an answer
to this question, and investigate its feasibility in some initial experiments.

2 Representing reach-to-grasp actions using perturbed
goal motor states

Any model of reaching-to-grasp needs to make reference to the concept of a
goal motor state: the state in which the agent has a stable grasp on the target
object, and which must function as an attractor for the hand-arm system as
a whole. We first envisage the existence of a simple feedback controller, which
works to minimise the difference between the current and goal motor states of
the hand and arm by generating a force vector in the direction of the difference.
This controller defines a ‘default’ trajectory of the hand towards the target,
which will be suboptimal in many ways, but which provides a framework for
specifying more sophisticated controllers.

Our main proposal is that on top of the basic feedback controller there is a
more abstract motor controller which is able to generate arbitrary perturbations
of the goal motor state provided to the feedback controller. A given perturbation,



Representing reach-to-grasp trajectories using perturbed goal motor states 3

applied for a specified amount of time, will cause a characteristic deviation in
the hand’s trajectory to the target. For instance, if the higher-level controller
initially perturbs the goal motor state some distance to the right, the feedback
controller will generate a hand trajectory which is deviated to the right.

Of course, appropriate perturbations, or perturbation sequences, must be
learned. We suggest that infants learn useful trajectories bringing the hand into
contact with a target object by exploring the space of possible perturbations of
the goal hand state in which the hand is touching the object, and reinforcing
those perturbation sequences which have successful consequences. The model we
propose is a learning model, intended to simulate certain aspects of the motor
learning done by infants.

Our perturbation model echoes a number of existing proposals. Oztop et
al. (2004) present a model of infant reach-to-grasp learning in which infants
learn ‘via-points’ for the hand to pass through on its way to the target. Their
scheme conforms to the classical motor control model in which trajectories are
first planned and then executed; they use a biologically plausible neural network
to learn suitable via-points for reaches to a range of object locations, and then
use techniques from robotics to compute the kinematics of a reach which brings
the hand first to the appropriate via-point and then to the target. Via-points
are specified in a motor coordinate system centred on the goal motor state, as
our perturbed goal states are. However, in Oztop et al.’s model, the agent’s
hand actually reaches the learned intermediate state on its way to the target; in
our model, the learned perturbation pulls the hand’s trajectory in a particular
direction, but the hand would not typically reach the perturbed goal state. Our
model allows less fine-grained control over hand trajectory than Oztop et al.’s—
of necessity, because it does not allow the precomputation of detailed trajectories.

Another notion of intermediate goal states is implemented in Fagg and Ar-
bib’s (1998) model of reaching-to-grasp. This model focusses on the grasp com-
ponent of the reach, which maps a visually derived representation of the shape
of the target onto a goal configuration of the fingers. It is important that the
fingers are initially opened wider than this goal configuration, so that the hand
can move to its own goal position close to the target. Fagg and Arbib model a
circuit within the grasp pathway which operates simultaneously with the reach
movement, which first drives the fingers to their maximum aperture, and then
brings them into their goal configuration. In our model, we can think of the larger
grasp aperture achieved during the reach movement as generated by a learned
perturbation of the goal state of the fingers, rather than through a specialised
circuit.

The idea that biological motor control involves a combination of a simple
feedback controller and a more complex learned controller is fairly uncontrover-
sial (see e.g. Kawato et al., 1987). The learned controller is often modelled as a
feedforward controller, which takes the current motor state and the goal motor
state at the next moment and returns the command which produces this state.
But this way of modelling it assumes a fully precomputed trajectory: since this
assumption cannot be sustained, we have to find another way of representing



4 Jeremy Lee-Hand, Tim Neumegen, Alistair Knott

the learned aspect of motor control. Our model provides a way of describing
how learning supervenes on basic feedback control which does not depend on
the assumption of a precomputed trajectory.

3 A developmental methodology

It remains to be seen whether learned perturbations to goal motor states provide
a rich and accurate enough way of representing motor movements. To answer
this question, we need to propose mechanisms which learn perturbations, and
examine their effectiveness. Our approach is to model an agent learning simple
perturbations, which support the action of reaching-to-grasp. The agent is as-
sumed to be an infant, learning its earliest reach-to-touch and reach-to-grasp
actions. We assume a reinforcement learning paradigm: the infant learns motor
behaviours which maximise a reward term, which is derived from tactile sensa-
tions (what Oztop et al., 2004 call ‘the joy of grasping’). The assumption is that
early in infant development, touch sensations are intrinsically rewarding, so that
the infant’s behaviours are geared towards achieving particular kinds of touch.

Roughly speaking, infants first learn actions which achieve simple touches on
target objects, and later learn actions more reliably achieve stable grasps. Before
five months of age, infants’ fingers do not move as they reach for objects, and
hand trajectories (in Cartesian space) are relatively convoluted; at around five
months, reaches reliably touch their targets, but grasps are only reliably achieved
from around nine months (see e.g. Gordon, 1994; Konczak and Dichgans, 1997).

Our agent learns in two phases, which roughly replicate these two develop-
mental stages. During Stage 1, the agent learns a simple function in the reach
sensorimotor pathway, which transforms a retinal representation of target loca-
tion into a goal motor state. This function is trained whenever the agent achieves
a touch sensation anywhere on the hand. In this stage, the agent’s movements are
generated by a simple feedback controller, with no perturbations; when learning
at this stage is complete, the agent can generate an accurate goal motor state for
targets presented at a range of retinal locations, and can reliably reach to touch
these objects (through somewhat suboptimal trajectories). During Stage 2, the
agent learns a function which perturbs the goal motor state generated from vi-
sion during the early reach. This function is trained whenever the agent achieves
a particular kind of touch—an ‘opposition touch’ where contact is felt simulta-
neously on the inner surfaces of the thumb and opposing fingers, or (better still)
a stable grasp.

One point to mention about infant motor development is that infants’ reach-
to-grasp actions become reliable some time before they become straight. A hall-
mark of adult point-to-point hand movements is that they are straight in Carte-
sian space (see e.g. Morasso, 1996). While infant grasps are reliable from around
9 months, the hand trajectories produced during grasping only become straight
at around 15 months (see again Konczak and Dichgans, 1997). Until recently,
the straightness of adult reach trajectories was taken as evidence that agents
explicitly precompute trajectories—and moreover, that they do so using Carte-



Representing reach-to-grasp trajectories using perturbed goal motor states 5

sian (or at least, retinal) coordinates. However, there are ways of generating
straight Cartesian trajectories without precomputing them: as Todorov and Jor-
dan (2002) have shown, if reach movements are optimised to minimise error, and
movement errors are represented in visual coordinates, this suffices to produce
straight reach trajectories. In our current simulations, we want to model the
developmental stage when infants reliably reach, but have not yet begun to op-
timise their reaches using visual error criteria. We will briefly discuss how this
optimisation might happen in Section 7.

4 A platform for modelling reach-to-grasp actions

We developed a new suite of tools for simulating hand/arm actions to investigate
the model of reaching-to-grasp outlined in Section 2. There were two motivations
for this. One was a desire to use a general-purpose physics engine to model the
physics of the hand/arm and its interactions with the target. Grasp simula-
tion packages often implement special-purpose definitions of ‘a stable grasp’; we
wanted to define a concept of stable grasp using pre-existing routines for colli-
sion detection and force calculation, to ensure that no unrealistic assumptions
are built in. The second motivation was a desire to model the tactile system in
more detail than most simulation environments allow. Our learning methodol-
ogy assumes a gradation of tactile reward signals: we wanted to ensure that the
signals we use correspond to signals which are obtained by the human touch
system. These two motivations are in fact linked; the notion of a stable grasp
should make reference to general-purpose physics routines, but must also make
reference to the tactile system, because the agent’s perception that a stable grasp
is achieved occurs mainly through tactile representations.

4.1 Software components

Our simulation package makes use of a Java game engine called JMonkey (jme2,
http://jmonkeyengine.com). JMonkey combines a physics engine called Bullet
with the OpenGL graphics environment. The basic unit of representation in
JMonkey is the node: a rigid body with a defined shape and mass; JMon-
key calculates the forces on nodes, and OpenGL renders them graphically. The
user can connect nodes together using various types of joint; Bullet uses rigid
body dynamics to compute their movements, interpreting joints as constraints on
movement. On top of this, our own simulation defines routines for constructing
a simple hand/arm system, a simple model of the visual field from a fixed point
above the hand/arm, a basic feedback controller which moves the hand/arm from
its current state to an arbitrary goal state, a manual controller which allows a
user to select goal states, and a collection of neural networks which support mo-
tor learning. All these will be described in more detail in the remainder of the
paper. The software implementing the physics, graphics and motor controller is
available at http://graspproject.wikispaces.com.



6 Jeremy Lee-Hand, Tim Neumegen, Alistair Knott

(a) (b)

Fig. 1: (a) The hand/arm system. (b) detail of a single finger pad

The hand/arm system we describe in this paper is illustrated in Figure 1a.
It has five degrees of freedom: the shoulder can rotate in two dimensions, the
elbow can bend, the forearm can twist, and the fingers of the hand can open
and close. (A single parameter controls the angles of both thumb joints and all
finger joints, so that fingers and thumb are straight when open and curled when
closed.)

4.2 A model of soft fingers

An important physical property of fingers is that they are not rigid: they de-
form if they make (forceful) contact with an object. There are many computa-
tional simulations of ‘soft fingers’. One common solution is to model fingertips
as spheres, and compute the deformations on these spheres which contacting
objects would produce, using the result to calculate forces at the fingertips (see
e.g. Barbagli et al., 2004). But we implemented an alternative strategy inspired
by a model of deformable objects from computer graphics, which represents a
deformable object as a lattice of rigid cubes connected by springs (Rivers and
James, 2007). This model allows us to obtain fine-grained tactile information
from the fingertips: each object in the lattice delivers information about the
forces applied to it. The structure of a single finger pad is shown in Figure 1b.

4.3 The touch system

The inputs to the human touch system come from neurons called mechanore-
ceptors in the top two layers of the skin (the epidermis and the dermis). There
are several types of mechanoreceptor: the most relevant ones for grasping are
Meissner’s corpuscles which sense light touches which do not deform the
skin, Pacinian corpuscles which sense firmertouches which deform the skin
surface, Merkel’s cells which detect the texture of objects slipping over the
skin, and Ruffini endings which detect stretches in the skin. The latter two
detectors combine to provide information about the slippage of objects the agent



Representing reach-to-grasp trajectories using perturbed goal motor states 7

is attempting to grasp: roughly speaking, a stable grasp is one where no slippage
is detected at the points the hand is contacting the object, even when the arm
is moved.

Our current implementation of touch sensors simulates Meissner’s corpuscles
by reading information about contacting objects from each link in each finger pad
into an array of real-valued units (see Fig. 2a) and Pacinian corpuscles by reading
information about the deviation of each link from its resting position (Fig. 2b).
We simulate slip sensors by consulting the physics engine, and computing the

(a) (b)

Fig. 2: Sensor outputs for a single fingerpad light touch (a) and firm touch (b).
Strength of contacting force for links in the pad is shown by the shade of circles;
degree of deformation of a link is shown by the shade of a circle’s background.

relative motion of each fingerpad link with any object contacting it.

4.4 A basic feedback motor controller

We assume a hardwired feedback motor controller. The one we implement is a
proportional-integral-derivative (PID) controller (see Araki, 2006), which com-
putes an angular force vector u(t) based not only on the current difference e(t)
between the actual and goal motor states (given in joint angles) but also on the
sum of this difference over time, and on its current rate of change.

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t)

The integral term is to ensure the hand does not stop short of the goal state.
The derivative term is to slow the hand’s acceleration as it approaches the goal
state, to minimise overshoot and help suppress oscillations around the goal state.
The parameters Kp, Ki and Kd were optimised for a combined measure of reach
speed and accuracy on a range of randomly selected target locations.



8 Jeremy Lee-Hand, Tim Neumegen, Alistair Knott

5 Stage 1: reaching-to-touch

The first developmental stage in our simulation involves learning a function
which maps a retinal representation of target location onto a goal hand state.
In this stage, the fingers of the hand are not moved; a ‘goal hand state’ is any
state in which a touch sensation is generated anywhere on the hand.

The model proceeds through a series of trial reaches, each from the same
starting position. In each trial, a horizontally oriented cylindrical target object
is presented at a random location in reachable space (on average 40cm away
from the hand), and its projection onto a simulated retina is calculated. The
centroid of this projection is computed, to provide approximate x and y retinal
coordinates of the object, and the physics engine is consulted to provide a retina-
centred z (depth) coordinate (which in a real agent would be computed from
depth cues, in particular stereopsis). These three coordinates are provided as
input to a reach network, whose structure and training are described below.

Network structure The reach network is a feedforward neural network which
takes a 3D retina-centred location as input and produces a 3D goal motor state
as output. The network’s output layer has three units, which represent goal
angles for the two shoulder joints and the elbow joint, encoded using a localist
scheme. Its structure is shown in Figure 3a.

target posn

goal arm state

retinal

(a)

goal arm state

pert. dimension 1

WTA

WTA

WTA

pert. dimension 2

pert. dimension 3

N2

N3

N1

perturbed goal arm state

(b)

Fig. 3: (b) The reach network. (b) The arm perturbation network.

Training In each trial, the goal arm state computed by the reach network is
combined with a noise term, and the resulting vector is given to the feedback
controller, which executes a reach to this state. The noise term is initialised to
a high value, and gradually annealed over trials, so the arm begins by reaching
to random locations, and over time comes to reach accurately to the location
computed by the network.

The reach network is trained every time a touch sensation is generated. Dur-
ing each frame of each trial, a touch-based reward value is calculated, which



Representing reach-to-grasp trajectories using perturbed goal motor states 9

sums touch inputs across all parts of the hand, including the back of the fin-
gers and thumb as well as the pads. Each hand part contributes a touch value,
and these values are summed to generate the reward value. The frame with
the highest (non-zero) reward value is used to log a training item, pairing the
visually-derived location of the target with the current motor state (the joint
angles of the elbow and shoulder in that particular frame). The most recently
logged training items are retained in a buffer (of size 175 in our experiments);
the network is trained on all the items in this buffer after each trial in which a
positive reward value is generated. The training algorithm is back-propagation
(Rumelhart et al., 1986). Each training item is also tagged with the magnitude
of the reward, which is used to set the learning constant for that item, so that
more learning happens for higher rewards.

Results After training for 300 trials using the above scheme, the agent learns to
reach for objects at any location quite reliably. It achieves a successful touch on
objects at unseen locations in 76% of tests, and in the remainder of tests, gets
on average within 3.5cm of the target (SD=1.3cm). A plot showing the areas of
motor space where successful touches are achieved is shown in Figure 4a, and a
learning curve showing error performance is shown in Figure 4b.

(a) (b)

Fig. 4: (a) Coverage of the trained reach network, in motor coordinates. (Large
dots denote touches, small dots denote misses.) (b) Root mean squared error (in
cm) on unseen objects during training.

6 Stage 2: reaching-to-grasp

During the second developmental stage, the agent learns to generate a single
perturbation to the visually computed goal motor state, which helps the hand
achieve a more grasp-like touch on the target, and eventually a reliable stable
grasp. The perturbation is computed by a second network, the arm perturba-
tion network; it is applied at the start of the reach, and is removed when the
hand reaches a certain threshold distance from the target.



10 Jeremy Lee-Hand, Tim Neumegen, Alistair Knott

Network structure The arm perturbation network takes a goal arm state as in-
put, and computes a perturbation of this state as output. Its structure is shown
in Figure 3b. To allow the representation of multiple alternative perturbations
(and therefore multiple alternative trajectories), the network uses population
coding to represent perturbations. Each of the three motor dimensions in which
perturbations are applied is represented by a bank of units, with Gaussian re-
sponse profiles tuned to different values in the range of possible perturbations.
The network can generate more than one value for a given dimension; in order to
return a single value, each bank of units also supports a winner-take-all (WTA)
operation, which chooses the most active population in the layer.

As shown in Figure 3b, the arm perturbation network comprises three sepa-
rate subnetworks, N1–N3, which compute the three dimensions of the perturba-
tion separately, in series. Each subnetwork takes as input the goal motor state,
plus the dimensions of the perturbation which have been computed so far. Sub-
networks apply the WTA operation before passing their results on, to ensure
that decisions in subsequent networks reflect a single selected value. When all
three dimensions have been computed, they can be added to the goal arm state.
(Note that although perturbations are defined in relation to the goal arm state,
it is still important to provide this goal state as input to the network. This is a
matter of fine-tuning: the perturbations which should be applied when grasping
an object at different points in space will be similar, but not identical.)

Training regime As in Stage 1, training happens in a series of reach trials to
targets at different locations. In each trial, a target is presented and the reach
network generates a goal arm state from visual information; the arm pertur-
bation network then uses this goal state to compute a perturbation. The arm
perturbation network’s outputs are annealed with noise over the course of Stage
2, so that early trials explore the space of possible perturbations, and later trials
exploit learning in the network.

As before, training data for the network is only logged to the training buffer
when a tactile reward is obtained. But now rewards have to be more grasp-like
touches: either opposition touches, with contact on both the thumb and opposing
fingers, or (better still) a fully stable grasp, detected through the hand’s slip
sensors. Tactile rewards again vary on a continuum, and training items are tagged
with their associated reward, so that the learning constant used by the training
algorithm (again backprop) can be adjusted to reflect reward magnitudes.

Results During Stage 2 training, the arm perturbation network learns to produce
trajectories which bring the target object into the open hand, since these states
are those with the highest tactile rewards. The fingers of the hand are hardwired
to close when contact is felt on the fingerpads. After training, the network was
presented with objects at a grid of locations unseen during training. Figure 5a
shows the perturbations applied for objects at each point in the grid, in motor
coordinates. As can be seen, they vary continuously over the reachable space.
Figure 5b shows the coverage of the network. There are regions of space where
grasps are reliably achieved, but also regions where grasps are not achieved. Note



Representing reach-to-grasp trajectories using perturbed goal motor states 11

(a) (b)

Fig. 5: (a) Perturbations for each point in reachable space (in motor coordinates).
(b) Coverage of the trained perturbation network, in motor coordinates. (Large
dots denote successful grasps, small dots denote misses.)

that the reach network trained in Stage 1 continues to learn during Stage 2, so
that by the end of this stage the goal arm state computed from vision is a state
achieving a stable grasp on the target, rather than just a touch. As the goal arm
state changes, so do the optimal perturbations which must be applied to it, so
learning happens in parallel in the two networks during Stage 2.

7 Conclusions and further work

From the experiments reported above, there is some indication that learned goal
state perturbations can support the learning of useful hand trajectories. But
these results are quite preliminary; there are many questions which remain to be
explored. For one thing, our current model does not simulate the grasp compo-
nent of reaching-to-grasp in any detail. The human grasp visuomotor pathway
maps the visually perceived shape of an attended object onto a goal hand motor
state; we need to add functionality to Stage 2 to implement this. For another
thing, there are gaps in our current network’s coverage of reachable space, es-
pecially for the Stage 2 network. We need to investigate the interpolation and
generalisation potential of the combined networks, to determine if the perturba-
tion model is a practical possibility. We know that population codes are helpful
in this regard, but we do not have a good idea of the magnitude of the learning
task. Finally, as mentioned at the outset, our main goal is to represent the char-
acteristic trajectories associated with high-level hand/arm motor programmes
such as ‘squash’, ‘slap’ and ‘snatch’. It remains to be seen whether perturba-
tions can be learned which implement high-level motor actions like these.



12 Jeremy Lee-Hand, Tim Neumegen, Alistair Knott

References

Araki, M. (2006). PID control. In H. Unbehauen, editor, Control Systems,
Robotics and Automation Vol. II .

Barbagli, F., Frisoli, A., Salisbury, K., and Bergamasco, M. (2004). Simulating
human fingers: A soft finger proxy model and algorithm. In Proceedings of the
International Symposium on Haptic Interfaces, pages 9–17.

Bullock, D. and Grossberg, S. (1988). Neural dynamics of planned arm move-
ments: Emergent invariants and speed-accuracy properties during trajectory
formation. Psychological Review , 95(1), 49–90.

Burnod, Y., Baraduc, P., Battaglia-Mayer, A., Guigon, E., Koechlin, E., Fer-
raina, S., Laquaniti, F., and Caminiti, R. (1999). Parieto-frontal coding of
reaching. Experimental Brain Research, 129, 325–346.

Cisek, P. (2005). Neural representations of motor plans, desired trajectories, and
controlled objects. Cognitive Processes, 6, 15–24.

Cisek, P. and Kalaska, J. (2005). Neural correlates of reaching decisions in dorsal
premotor cortex. Neuron, 45, 801–814.

Cisek, P., Cramond, D., and Kalaska, J. (2003). Neural activity in primary
motor and dorsal premotor cortex in reaching tasks with the contralateral
versus ipsilateral arm. Journal of Neurophysiology , 89, 922–942.

Fagg, A. and Arbib, M. (1998). Modeling parietal-premotor interactions in pri-
mate control of grasping. Neural Networks, 11(7/8), 1277–1303.

Gordon, A. (1994). Development of the reach to grasp movement. In K. Bennett
and U. Castiello, editors, Insights into the reach to grasp movement , pages 37–
58. Elsevier, Amsterdam, New York.

Hersch, M. and Billard, A. (2006). A biologically-inspired controller for reaching
movements. In Proceedings of the 1st IEEE/RAS-EMBS Intl. Conference on
Biomedical Robotics and Biomechatronics, pages 1067–1072, Pisa.

Jordan, M. and Wolpert, D. (2000). Computational motor control. In M. Gaz-
zaniga, editor, The New Cognitive Neurosciences, pages 71–118. MIT Press.

Kawato, M., Furawaka, K., and Suzuki, R. (1987). A hierarchical neural net-
work model for the control and learning of voluntary movements. Biological
Cybernetics, 56, 1–17.

Konczak, J. and Dichgans, J. (1997). The development toward stereotypic arm
kinematics during reaching in the first 3 years of life. Experimental Brain
Research, 117(2), 346–354.

Morasso, P. (1996). Spatial control of arm movements. Experimental Brain
Research, 42, 223–227.

Oztop, E., Bradley, N., and Arbib, M. (2004). Infant grasp learning: a compu-
tational model. Experimental Brain Research, 158, 480–503.

Rivers, A. and James, D. (2007). FastLSM: Fast lattice shape matching for
robust real-time deformation. ACM Trans. Graphics, 26(3), Article 82.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal
representations by error propagation. In PDP Vol. 1: Foundations, pages
318–362. MIT Press, Cambridge, MA, USA.

Todorov, E. and Jordan, M. (2002). Optimal feedback control as a theory of
motor coordination. Nature Neuroscience, 5, 1226–1235.


