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Abstract We present a neural network model of the
storage of episode representations in working memory

(WM). Our key idea is that episodes are encoded in WM as

prepared sensorimotor routines, i.e. as prepared sequences
of attentional and motor operations. Our network repro-

duces several experimental findings about the representa-

tion of prepared sequences in prefrontal cortex. Interpreted
as a model of WM episode representations, it has useful

applications in an account of long-term memory for epi-

sodes and in accounts of sentence processing.

Keywords Working memory ! Neural network
modelling ! Sequence learning ! Action preparation !
Language processing

Introduction

Working Memory for Episodes

The classical model of working memory (WM) by Bad-

deley and Hitch [1] posits two representational media: one

for visual material (the visuospatial sketchpad) and one for
phonological material (the phonological buffer). Baddeley

[2] revised the model to include a new third medium,

holding semantic material, called the ‘episodic buffer’.
This medium stores semantic representations of actions, or

events, or stative propositions: we will use the term epi-

sodes to refer to these representations. Our paper is about
the episodic buffer.

Baddeley argues for the episodic buffer on several

grounds. One argument concerns the process through
which episode representations are stored in long-term

memory. The long-term neural storage of an episode is

widely agreed to involve the hippocampus [3]: specifically,
the creation of links between hippocampal assemblies

representing the various semantic components of the

episode.
But associations between hippocampal assemblies can

only be learned if they are active in quick succession,

within around 100 ms of one another [4]. Experiencing an
episode often takes much longer than this. So, we must

envisage that episode representations are initially buffered

in some WM medium and are only relayed from there to
the hippocampus when they are complete.

Another argument for the episodic buffer relates to
language processing. When a speaker produces a sentence,

the message to be expressed is standardly assumed to be

held in a WM medium holding semantic representations
(see, for example, Levelt [5]). When a hearer interprets a

sentence, the inferred meaning is likewise assumed to be

assembled in a WM medium holding semantic represen-
tations (e.g. [6, 7]). Baddeley [2] suggests that the episodic

buffer is also the medium holding semantic representations

in sentence processing tasks; accordingly, he suggests that
it is connected bidirectionally to the phonological buffer,

so that words and semantic representations can activate one

another during sentence processing. Thus, the episodic
buffer is accorded a role in language processing as well as a

role in creating long-term memories.
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In this paper, we present a connectionist model of WM

storage which supports both memory and language-pro-
cessing functions of the episodic buffer. Our main novel

proposal is that episodes are stored in WM as prepared

sequences of attentional and motor operations (see the next
section). This proposal places WM episodes within a class

of mental representation that is relatively well understood:

we know a lot about how the primate brain (in particular, the
prefrontal cortex) stores prepared sequences of attentional

and motor movements, from single-cell studies in monkeys.
The proposal also gives a natural account of how WM

episode representations are communicated to the hip-

pocampus and how they interface with language: if episodes
are represented as prepared sequences, they can be trans-

mitted to other cognitive modalities by being replayed.

In the next two sections, we introduce our proposal that
episodes are stored in WM as prepared sensorimotor se-

quences and we review evidence from monkey studies that

prepared sensorimotor sequences are stored in prefrontal
cortex, in a number of distinct formats.

WM Episode Representations as Prepared
Sensorimotor Routines

Our model is founded on the assumption that WM episodes
provide an interface between the sensorimotor mechanisms

through which episodes are apprehended and the hip-

pocampal structures in which they are stored. On this as-
sumption, we expect the structure of WM episode

representations to reflect both the structure of sensorimotor

processes and the structure of hippocampal representations.
A strong commonality in the structures of these two do-

mains is sequential organisation.

Sensorimotor processing is strongly sequential at certain
timescales, because it involves sequential deployments of

the agent’s sensory and motor apparatus. (For instance,

saccades deploy the agent’s fovea sequentially to targets in
the world.) Ballard et al. [8] propose that sensorimotor

processing is organised into sequentially structured routi-

nes, whose atomic elements are discrete sensory or motor
actions. These actions are termed deictic operations, and a

sequence of such actions is termed a deictic routine.

Through a case study of episodes involving reach-to-grasp
actions, Knott [9, 10] argues that the sensorimotor pro-

cesses through which concrete episodes are apprehended

take the form of sequentially structured deictic routines.
The hippocampus stores associations between stimuli of

many different kinds. But an emerging idea is that it is

specially good at storing associations between sequentially
structured items [11]. One finding which strongly supports

this idea is that the hippocampus actively replays se-

quences of representations evoked during sensorimotor
experience [12] (see [13] for a model). The key result is

that sequences of hippocampal place cells activated when a

rat navigates a maze are replayed later when the rat is
asleep. (Sequences are replayed at much higher speeds,

consistent with the hippocampus’ natural recurrent dy-

namics.) Since episodes appear to be apprehended through
well-defined sequences of sensorimotor operations and

sequences appear to be a natural unit of storage in the

hippocampus, an interesting possibility is that WM epi-
sodes are also stored as sequences. Our model of WM

episodes basically implements this idea.
Our core proposal is that a concrete episode is stored in

WM as a representation of the sequence of sensorimotor

operations through which it was experienced. This proposal
suggests a novel style of solution to a well-known problem

for models of neural episode representation. An episode

representation must include representations of the indi-
vidual participants in an episode, but must also bind each

participant representation to the particular role it plays in

the episode (e.g. ‘agent’ or ‘patient’). There is no consensus
as to how this binding is implemented in the brain. (We will

review some of the suggestions in ‘‘Comparison with Other

Models of Episode Representation’’.) Our novel proposal is
that the order of sensorimotor operations in a deictic routine

implicitly identifies the roles played by participants in the

observed episode, because participants playing particular
roles are attended to at canonical positions in the routine.

This position is argued for in detail by Knott in [9]. We

will illustrate by briefly considering the process involved in
experiencing a man grabbing a cup. If the observer is the

man performing the action, the first operation he must

perform is to decide to act [14]; it is only after this decision
is made that his motor system is configured for action

execution [15]. The decision to act activates a representa-

tion of the self as the agent of the forthcoming action [14,
16]. Having decided to act, the agent cannot immediately

execute a transitive motor action; a target for this action

must first be selected [17] and then attended to, so that its
detailed motor affordances can be computed [18]. Only

then can a specific motor programme be selected and

executed. On this analysis, experiencing a reach-to-grasp
episode from the perspective of the agent involves a strict

sequence of sensorimotor operations: ATTEND-TO-AGENT,

ATTEND-TO-TARGET, ACTIVATE-GRASP-PROGRAMME. A similar
analysis is given for the process involved in perceiving an

external agent performing a grasp action; see Knott [9] for

details. There is also evidence for distinct sequences of
sensorimotor operations associated with experiencing

communicative actions [19, 20], causative actions such as

opening and breaking [21], and actions involving moving
oneself or a controlled object along a trajectory.1

1 Manuscript in preparation, Knott and Takac: Locomotion actions as
sequentially structured sensorimotor routines.
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Our specific proposal is that episodes are stored in WM

as prepared sequences of attentional and motor operations,
in a medium in prefrontal cortex that holds prepared be-

havioural sequences. This proposal is roughly in line with

Baddeley’s own sketched idea that the visuospatial
sketchpad and episodic buffer are rehearsed by a general

process of ‘sequential attention’ (Baddeley [2: 420]), and

with Curtis and D’Esposito’s [22] general proposal that
WM representations are held in high-level motor control

regions. But more importantly, it has several advantages in
its own right. For one thing, as already mentioned, we

know something about how prepared sequences are stored

in this prefrontal medium, so the proposal places WM
episode representations within a class of neural represen-

tation about which something is already known. In addi-

tion, the proposal fits well with simulationist theories of
meaning, of the kind that feature prominently in embodied

models of cognition. In these theories, activating a se-

mantic episode representation involves actively simulating
the process of experiencing the episode (see, for example,

Barsalou [23] or Glenberg and Gallese [24]). If a WM

episode is a prepared sensorimotor routine, it is naturally
something that can be executed, either in overt behaviour

or in simulation, so there is a natural implementation of the

process of simulating an episode. Finally, our proposal
allows a natural account of how WM episodes are trans-

mitted to long-term memory and are expressed linguisti-

cally. If WM episodes can be replayed, we can envisage
that transmission involves a replay operation, taking place

in a mode of brain connectivity where sensorimotor signals

activate assemblies in some selected cognitive medium, at
a speed commensurate with that medium. An episode

stored as a prepared sequence in WM can be transmitted to

the hippocampus by being replayed fast, at around the
100 ms timescale, with the hippocampus configured to

encode an incoming sequence of stimuli; or it can be re-

layed to the speech production system by being replayed at
a timescale commensurate with the production of a stream

of words, in a mode where sensorimotor signals activate

output phonology. In summary, in our proposal, episodes
are experienced as sequences and stored in WM as pre-

pared sequences; they can then be replayed to the hip-

pocampus where they are stored more permanently as
sequences, or replayed to the linguistic system, where they

generate sequences of words.

Since we envisage WM episode representations as
having a role in the creation of longer-term episode rep-

resentations in the hippocampus, it is useful to situate our

model in relation to the classic account of hippocampal
episodic memory (see, for example, Tulving [25]). For one

thing, while Tulving’s model concerns the storage of epi-

sodes in LTM, our model focusses on the storage of epi-
sodes inWM, prior to their storage in the hippocampus. For

another thing, while Tulving’s model emphasises the se-

quential structure of episodic memory, the items organised
into sequences in his model are whole episodes; our model

focusses on sequential structures within single episodes.

Representation of Prepared Sequences in Prefrontal
Cortex

A bonus of the model just outlined is that the neural

mechanisms supporting preparation of sensorimotor se-
quences have been extensively studied, in single-cell

recording experiments in monkeys. The principal

mechanisms supporting sequence preparation are in dor-
solateral prefrontal cortex (dlPFC) [26, 27]. Several

schemes for encoding prepared sequences have been found.

In this section, we will review these.
In one scheme, individual neurons encode specific

movements in particular contexts. For instance, Barone and

Joseph [26] found neurons which were active when a
monkey prepared movement A, but only when it was fol-

lowed by another movement B. We could call these rep-

resentations ‘place-coded’ representations of sequences.
In another scheme, neurons encode individual move-

ments, and their position in the prepared sequence is given by

their activation levels. For instance, in a monkey preparing a
sequence of three movements A; B; and C, Averbeck et al.

[27] found neurons representing each prepared action which

were active in parallel, with the neuron encoding A most
active and that encoding C least active. Interestingly, when

the prepared sequence is executed, neurons encoding

specific actions using this scheme are inhibited just after their
associated action is produced. Averbeck et al.’s [27] findings

strongly support a ‘competitive queueing’ model of se-

quence preparation, in which PFC assemblies encoding
different actions compete against one another, with the

winner triggering the associated action, but also an operation

to inhibit itself, so the next-most active assembly wins the
competition at the next time point [28]. In competitive

queueing, the representation of a prepared sequence is de-

structively updated in the medium in which competition
occurs. We will call the sequence representations in this

medium ‘dynamic’. However, there is also evidence that

prepared sequences are represented in aWMmedium which
is not destructively updated when a sequence is replayed. A

simple argument for this is that a given prepared sequence

can be executed several times: each time, the sequence
representation in the dynamic medium must somehow be

restored from some more enduring medium. We will call

representations in the enduring medium ‘static’.
There is also evidence that a monkey can represent

multiple alternative prepared sequences in dlPFC, in a

medium which allows competition between candidate se-
quences and the selection of a winner. This evidence comes
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from a study of Averbeck et al. [29], in which monkeys

were trained to perform two sequences in response to two
cues. Each day, different cues were chosen to represent the

two sequences. Halfway through the day, the mapping from

cues to sequences was reversed, so the monkeys had to
gradually learn the new mapping. During this period,

dlPFC assemblies could be identified representing each

prepared sequence, and the relative activation of the two
assemblies after presentation of a cue could be used to

predict the sequence which the monkey actually performed.
In summary, the prefrontal mechanism implementing

sequence preparation appears to involve four distinct media.

There is a medium holding representations of individual
operations in a sequence, which encodes the context inwhich

they appear. There is a medium holding distributed repre-

sentations of whole sequences, in assemblies whose com-
ponents encode individual actions, whose order is

determined by their level of activation. Sequence represen-

tations in this medium are destructively updated when a
prepared sequence is executed. But there is also a medium

holding sequence representations which are not destroyed.

Finally, there is a medium in which alternative candidate
sequence representations are active in parallel and compete

with one another. If episodes are stored in WM as prepared

sensorimotor sequences, then this mechanism would allow
for WM episodes to be stored and replayed and also for

alternative WM episodes to compete amongst one another,

with the winner being selected.
There is also good evidence that dorsolateral PFC is

involved in planning sequences of actions in humans. This

area is active when subjects maintain complex prepared
actions in WM (see, for example, [22]), and damage or

inactivation of this area results in impairments in planning

performance (see, for example, [30, 31]). However, this
evidence is much less detailed than the single-neuron

studies, so we will rely mainly on the macaque studies in

developing our computational model.

Methods

A Neural Network Model for Storage and Selection
of WM Episodes

In this section, we describe a neural network model of the

sequence preparation mechanisms outlined in the previous
section.

We envisage the network being used to control the

process of ‘experiencing an episode’ both when the expe-
riencer is acting himself, and thus ‘bringing about’ the

episode, and when he is passively watching an external

episode. In the former case, the mechanisms that ‘select’ an
episode should be thought of as planning mechanisms that

decide what action to do; in the latter case, the same se-

lection mechanisms should be thought of as generating
expectations about the episodes that will happen next.

Thus, the function of the episode selection mechanism will

depend on the mode in which the network is being used. In
presenting the network, we will focus on cases where it is

used during perception.2

Our key aim for the network is that it learns the kind of
representations of prepared sequences which are found in

monkey PFC, as discussed above. However, there are also two
other design criteria. Firstly, we want there to be a medium in

which candidate sensorimotor operations compete with one

another at every stage during the execution of a sequence. At
any point, the operation which an agent executes is dictated

partly bywhat is plannedor expected, but alsopartlybybottom-

up stimuli. We want a medium which allows competition be-
tweenalternative operations fromboth these sources. Secondly,

it is important that themedium representing alternative possible

sensorimotor sequences avoids binding errors, whereby an
operation belonging to one sequence is falsely identified as part

of a different sequence. Given that this mediummust represent

multiple sequences simultaneously, this is a difficult require-
ment. To address both these criteria, a key design decision is to

use self-organising maps (SOMs) [33], both to represent the

individual sensorimotor operations presented to the system and
to represent sequences of these operations, as explained in the

following section.

Architecture

The architecture of our network is shown in Fig. 1. The
network takes as input a sequence of sensorimotor signals

at successive time points, evoked in the input SM signal

area. Input SM signals can be motor actions (representing
actions of the agent or of a perceived external agent) or

attentional actions (representing objects).3 In most of the

2 In fact, even when the network is used for perception of episodes,
the selection mechanism has an impact on the agent’s behaviour. The
expected episode is a sequence whose first two items are planned
attentional actions: during perception, these actions will actually be
executed by the agent, with results that depend on the world as well as
on the agent’s expectations and which might well result in revisions to
the selected episode. The model thus allows for active perceptual
operations during the process of selecting an episode, creating the
structural coupling between its representational system and the
environment that is characteristic of embodied systems (see, for
example, [32]).
3 The most obvious kind of ‘attentional actions’ are overt move-
ments, such as saccades. But attentional actions also involve cognitive
operations, in particular top-down activation of semantic represen-
tations. These top-down activation operations can encode either the
expected result of a forthcoming object classification process [34] or
the category of properties of a desired search target [35, 36]. Our
attentional actions represent objects in the sense that they represent
expected or sought-for object categories.
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experiments in this paper, we model individual SM inputs

as localist units. However, we also conducted some initial

experiments with distributed inputs, which are described in
a separate technical report [37]. In both cases, the experi-

ence of an episode produces a sequence of well-delineated,

discrete SM signals in the input area. Obviously, these
input stimuli greatly simplify the actual sensorimotor

stimuli that arise during experience of an episode, par-

ticularly in the localist implementation. However, while we
are undoubtedly simplifying, we argue that the clearly

structured temporal organisation of the inputs is a genuine

feature of SM processing: as already discussed, our con-
tention is that deictic routines deliver a reasonably discrete

sequence of SM representations. Our model is ‘embodied’

in that it leverages this temporal organisation, rather than
the internal composition of individual SM signals.

Input SM signals are fed through an aggregate SM

signal area (described below) to a signal-encoding SOM.

This SOM has recurrent connections, as described by

Strickert and Hammer [38]: it takes as an additional input a

set of context units, whose activations reflect the weight
vector of the winning unit at the previous time point. (The

weight vector of each unit now includes weights of con-

nections from the context units, which is what creates re-
currency in the network.)

When trained on a sequence of inputs, a recurrent SOM

organises itself so that individual units encode signals oc-
curring in particular sequential contexts, very much like the

PFC units identified by Barone and Joseph [26]. This

learning happens gradually over time and is implemented
in synaptic strengths rather than activations, so the signal-

encoding SOM does not hold WM episode representations

itself—but it provides the inputs from which WM episode
representations are created.

Units in the signal-encoding SOM represent signals in a

localist way, so that alternative signals compete with one

Fig. 1 Architecture of the
network. A temporal sequence
of input SM signals causes an
activity in the recurrent signal-
encoding SOM. The winning
units leave an exponentially
decaying activity trace in the
dynamic episodic buffer via
excitatory connections. After
the sequence is completed, the
trace is stored in the static
episodic buffer via excitatory
connections between
isomorphic units. The trace also
serves as training input for the
candidate episodes buffer,
which can provide top-down
bias (expectations) via static
episodic buffer back to the
dynamic one
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another. The winning signal at each time step is copied to

an area which is isomorphic with the recurrent SOM called
the dynamic episodic buffer (see Fig. 2). This area accu-

mulates representations of each signal in an input sequence,

with the first signal represented most strongly and subse-
quent signals being stored with decreasing activation, as in

the prefrontal area studied in [27]. The dynamic episodic

buffer holds an activity-based representation of a single
episode in WM. When an input sequence is encoded in the

dynamic episodic buffer, it can be replayed immediately by
iteratively sending the dynamic episodic buffer’s most

active unit to the signal-encoding SOM (via the ‘WTA’

link) and then inhibiting this winning unit (a process we
loosely term ‘inhibition-of-return’). To support repeated

execution of a sequence, it can be stored in a static episodic

buffer, which has the same structure as the dynamic one,
and later reloaded. The static episodic buffer is also an

activity-based medium: it holds a complete episode rep-

resentation in WM as an active pattern.
At the highest level in the network, there is another SOM

called the candidate episodes buffer. This area takes as its

input the distributed representations in the dynamic episodic
buffer and encodes them as localist units. During training, it

learns to represent episodes with similar encodings in the

dynamic episodic buffer in neighbouring positions in the
SOM. At every time point during presentation of a sequence,

this area represents a probability distribution over complete

episodes. (If the network is being used to control the agent’s
own actions, this distribution represents action sequences

which lead to reward; if it is being used to support obser-

vation of external episodes, it represents likely action se-
quences.) The distribution changes as new items arrive in the

sequence and become encoded in the dynamic episodic

buffer. Like the signal-encoding SOM, the candidate epi-
sodes buffer does not hold WM episode representations it-

self; rather it provides a learned top-down bias that

influences which episode is held in WM at any given time.
The winning unit in the candidate episodes buffer pro-

vides top-down activation to the static episodic buffer,

through weights which are copies of those delivering input
to the candidate episodes buffer. Since the winning unit

always encodes a complete episode, the static episodic

buffer likewise always encodes a complete episode, but in
the same distributed format used by the dynamic episodic

buffer. During presentation of a sequence, activity in the

static episodic buffer is fed back to the signal-encoding
SOM. This top-down input, when combined with the cur-

rent context representation, produces a pattern of activity

biased towards a representation of the next SM signal. The
pattern is passed back to the aggregate SM signal area at

the next time point. Thus, the aggregate area receives both

bottom-up inputs from the input SM signal and top-down
ones from the static episodic buffer. We think of the

aggregate area as the medium in which top-down goals or

expectations modulate bottom-up perceptual inputs, but in
the current model, this modulation is not implemented:

during training, all inputs to the area are bottom-up, and

during testing, all inputs are top-down.
Once a winner is selected in the candidate episodes

buffer, activity is propagated back through the network, a

process we call ‘top-down reconstruction’. This process
makes use of the special property of SOMs that the weights

of each unit explicitly encode the input pattern it is most
responsive to, allowing this pattern to be recreated top-

down. During reconstruction, the weights of the winning

unit in the candidate episodes buffer are copied back to the
static and then dynamic episodic buffer. Destructive it-

erative updating of the dynamic episodic buffer causes a

temporal sequence of activations of units in the signal-
encoding SOM, which in turn projects their weight vectors

back to the aggregate SM signal layer where they represent

top-down expectations.
Not all units in the candidate episodes buffer allow a

meaningful episode to be reconstructed. In particular, units

that have never been selected as a winner during training
are unlikely to have weights that allow the reconstruction

of a meaningful episode. If their weights have been trained

at all, it is because they are in the neighbourhood of units
that have been winners in the past. (They may be in the

neighbourhood of several such units, in which case we term

them ‘blend’ units.) We want to bias competition in the
candidate episodes buffer towards units that have been

selected as winners. In our implementation, each unit in the

candidate episodes buffer is associated with a second
(scalar) weight called the prior. During training, units

compete the standard way as is usual in SOMs, i.e. only

based on the distance of their weight vectors to the input.
Each time a unit becomes a winner, its prior is increased

(the update rule for original weights stays unchanged).

During prediction, the distance-based competition between
units is biased by their priors: the activity of each unit is a

weighted combination of its inverse distance from the

winning unit and its prior. Thus, units with higher priors
have a higher chance of becoming the winner.

Now, we report some technical details of the network

architecture. The input SM signal layer consists of 35 units;
SM signals are encoded with 1-hot localist coding, i.e.

there is one unit for each possible SM signal. The aggre-

gate SM signal layer is isomorphic with the input layer.
The signal-encoding SOM is a two-dimensional Merge

SOM [38] with 400 units and parameters a ¼ 0:4, b ¼ 0:5,
constant learning rate c ¼ 0:1; and Gaussian neighbour-
hood with linearly decreasing r from 10 to 0.5 in 25,000

steps [see Eq. (4) below].

The dynamic episodic buffer and the static episodic
buffer are both 2D maps (not SOMs) isomorphic with the
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signal-encoding SOM, i.e. they have 400 units each. Each

unit in the dynamical episodic buffer is connected to the
corresponding unit of the signal-encoding SOM.

Experiencing a sequence of SM operations creates a

temporal pattern of active units in the signal-encoding
SOM. Activity of the i-th unit at time t is inversely pro-

portional to a combined squared Euclidean distance

dist iðtÞ between its regular weight wi and the input vector
xðtÞ, and between the context weight ci and the recursive

context descriptor cðtÞ (for details, see [38]):

dist iðtÞ ¼ ð1% aÞ ! xðtÞ % wik k2þa ! cðtÞ % cik k2 ð1Þ

This activity is further decreased by the current activity
DiðtÞ of the corresponding unit in the dynamical episodic

buffer via an inhibitory connection, so that the resulting

activity AiðtÞ of the i-th unit of the signal-encoding SOM is

AiðtÞ ¼ max 0; e%distiðtÞ % DiðtÞ
! "

ð2Þ

Then, the unit I with the highest activity AI activates its

isomorphic unit in the dynamical episodic buffer via an
excitatory connection modulated by an independent expo-

nentially decaying temporal signal dt, so that the sequence
of winning units leaves a ‘trace’ of exponentially decaying

activities in the isomorphic units in the dynamic episodic

buffer:

Diðt þ 1Þ ¼ dt if i ¼ I;
DiðtÞ otherwise

#
ð3Þ

where d ¼ 0:8 and all units start with zero activity Dið0Þ ¼
0 (time t denotes the number of elements in the sequence
seen so far). The inhibition from the dynamic episode

buffer forces the signal-encoding SOM to select a new

winner in each step of the sequence, in order to prevent the
confusion of elements in the trace. The static episodic

buffer is connected to the dynamic episodic buffer via

excitatory connections between corresponding isomorphic
units so that the activity from one buffer can be copied to

the other one.

The weights of the signal-encoding SOM are updated
using the standard SOM learning rule

wiðt þ 1Þ ¼ wiðtÞ þ c ! NðI; iÞ ! xðtÞ % wiðtÞ½ ( ð4Þ

where N is a Gaussian neighbourhood function

NðI; iÞ ¼ expð% rI % rik k2=r2Þ, I is the index of the win-

ning neuron, and rI ; ri are vectors of lattice coordinates of
neurons I; i.

After completing the whole sequence, the 400-dimen-

sional vector representing its trace serves as a training input
to the candidate episodes buffer with 900 units, constant

learning rate c ¼ 0:9 , and Gaussian neighbourhood with

linearly decreasing r from 10 to 0.5 [see Eq. (4)]. The
candidate episodes buffer is a standard SOM with modifi-

cations mentioned above: each unit maintains a scalar prior

weight pi that is increased each time this unit becomes the
winner. The result of this is

Fig. 2 Activity in the signal-encoding SOM (top row) and the trace it
leaves in the dynamic episodic buffer (bottom row) during sequential
presentation of an episode consisting of SM elements DOG (a) CHAIR

(b) SLEEP (c) UNDER (d). The activities are colour-coded in shades of
grey from white (activity = 0) to black (activity = 1)
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pi ¼ 1% e%c!N ð5Þ

where N is the number of times the unit became the winner
and c ¼ 0:01 is a scaling constant. During prediction,

competition between active units is biased by prior weights

in that the activity Ci of the i-th unit is computed as

Ci ¼ ð1% aÞ ! e%di þ a ! pi ð6Þ

where di is a standard SOM Euclidean distance between the

unit’s weight vector and the SOM’s input and a ¼ 0:35 is a
mixing coefficient.

Training

We trained the model on sequences of sensorimotor sig-

nals, representing the sensorimotor routines through which
different episodes are experienced. The sequences were

built from 35 sensorimotor signals corresponding to six

attentional actions (representing objects MAN, DOG, CAT, CUP,
BALL, and CHAIR), 25 motor programs (e.g. SIT, GRAB, PUSH,

CAUSE, BREAK), three prepositional relations (UNDER, BEHIND,

and NEAR), and an end-of-episode signal (.).4 The order of
signals in a sequence was not arbitrary, but was determined

by the type of a represented episode, e.g. MAN SNEEZE (in-

transitive episode), MAN CUP GRAB (transitive), MAN SLEEP

CHAIR NEAR (intransitive with prepositional phrase comple-

ment), MAN CUP CAUSE BREAK (simple causative), and DOG

BALL CAUSE GO CHAIR UNDER (causative with prepositional
phrase). Detailed justification of the orderings in these

sequences exceeds the scope of this paper, but it can be

found in [9, 20, 21].
We repeated each simulation 10 times with different

random initialisations of connection weights in the model

and different training sets. Each training set consisted of
500 sequences stochastically generated by the same set of

transcription rules (see Table 1). The training sets con-

tained on average 2.6 % sequences of length 2, 17.3 % of
length 3, 25.2 % of length 4, and 54.9 % of length 6. Se-

quences could contain duplicates: in all, 19.1 % of se-

quences contained two copies of a single signal and 0.9 %
contained 3. The training took 200 epochs; in each epoch,

the training sequences were presented in random order and

the Merge SOM context was reset after each sequence.

Results

After training, we tested the network in two tasks: imme-
diate serial recall and prediction of complete episodes from

their fragments. All tests were repeated for the 10 different

simulation runs and averaged.

Immediate Serial Recall

The basic requirement for our network is that it can store

and replay individual behavioural sequences. This capa-

bility relies on interactions between the signal-encoding
SOM and the dynamic episodic buffer. We presented the

trained network with 200 sequences of input signals: 100

taken from the training data and 100 new ones not seen
before. Each sequence was coded in the dynamic episodic

buffer; then, the signal-encoding SOM’s context was reset

and the winning unit in the dynamic buffer was iteratively
sent to the SOM and then inhibited. In total, 99.9 % (SD =

0.3 %) of training sequences were correctly replayed, and

98.9 % (SD = 1.14 %) of unseen sequences.
Note that the network is not confused by sequences

containing duplicate items. A regular competitive queueing
network has problems representing duplicate items, be-

cause after the first instance of the item is presented, it is

inhibited in the competitive medium. But since the dy-
namic episodic buffer receives inputs from the signal-en-

coding SOM where we forced a unique winner selection,

different instances of a given input are represented differ-
ently, and it does not suffer from this problem. To verify

this, we also tested the immediate recall on a set consisting

of 95 sequences with two repeating elements and five se-
quences with three repeating elements. The network cor-

rectly reconstructed all the sequences.

Predicted Completions of Sequences

The network is also designed to generate top-down pre-
dictions about sequences being experienced, through ac-

tivity in the candidate episodes buffer. The prediction is

actually a retrieval of a past episode most similar to the
episode fragment experienced so far. Past episodes are

remembered in the weights of units of the candidate epi-

sodes buffer. The fragment of an episode in the dynamic
episodic buffer is fed to the input of the candidate episodes

buffer, and the weights of its winning candidate are then

copied to the static episodic buffer and replayed in the
signal-encoding SOM where they generate top-down bi-

ases for sensorimotor elements. To test this ability, we

exposed the trained network to 100 sequences randomly
selected from the training set element by element and ex-

amined the prediction about the possible completion of the

4 Since WM representations are normally understood to be ‘main-
tained in the face of incoming perceptual stimuli’, we have to assume
a special operation to remove the current episode representation from
the dynamic episodic buffer before the next episode begins—an
operation that probably involves an element of self-inhibition (see, for
example, Mayr and Keele [39]). In previous work [19], we have
considered the nature of this operation, but in the present study, we
just use the end-of-episode signal to stand in for this operation.
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sequence after each element. The completion of fragments

is inherently ambiguous, as there may be more than one
possible continuation consistent with the episodes seen

during training.

We evaluated several measures of success in prediction.
The measures were separately evaluated for different

relative fragments lengths and also in total (regardless of

the relative fragment length).

Grammaticality: We evaluated the percentage of cases

when the predicted sequence of SM
signals represents a correctly formed

episode (i.e. with a correct order of

constituents).
Compatibility: Compatibility expresses the percentage

of cases when the predicted episode

starts with the presented fragment (for
example, for the fragment DOG CAT…,

the episode DOG CAT BITE is compatible,

but DOG MAN BITE is not).
Matches: The simplest measure expresses the

percentage of cases when the predicted

episode is equal to the one being
presented in fragments. However,

because an episode fragment can be

compatible with multiple episodes seen
during training, there is an inherent

ambiguity and a single ‘‘correct’’

answer does not have to exist.

Rank: Because the model cannot know which
of the episodes compatible with the

presented fragment the fragment is part

of, the best the model can do is to
predict according to the frequencies of

episodes seen during training. To verify

this expectation, we use a theoretical
variable-length Markov model

(VLMM) trained on the training set.

The VLMM yields possible
continuations ranked by their

frequencies for any fragment seen

during training. Hence, we can compare
the prediction of our model with that of

the VLMM; if the prediction is found

among those predicted by the VLMM,
we record its rank.5 In the ideal case

where the model always predicted the

most frequent continuation, the average
rank would be equal to 1.

Table 1 Transcription rules for
episodes of different types

Episode : Intransitive | IntrWithPPComplement | Transitive | SimpleCausative | CausativeWithPP

Intransitive : Agent IntrVerb.

IntrWithPPComplement : Agent IntrVerb2 PP.

Transitive : Agent Target TransVerb.

SimpleCausative : Agent Target CausativeVerb ResultVerb.

CausativeWithPP : Agent Target CausativeVerb ResultVerb2 PP.

Agent : AnimateObj

Target : AnimateObj | InanimateObj

PP: Preposition Landmark

Landmark : Target

AnimateObj : man | dog | cat

InanimateObj : cup | ball | chair

Preposition : under | behind | near

IntrVerb : die | walk | lie | sneeze | sit | sleep | smell | run | snore | breathe

IntrVerb2 : sneeze | sit | sleep | smell | run

TransVerb : grab | hit | push | shove | see | bite | hold | squeeze | kick | hug

CausativeVerb : caused

ResultVerb : break | stop | go

ResultVerb2 : go | hide

The colon separates the head and tail of each rule, and alternative tails are separated with |. Words starting
with capital letters are non-terminal symbols. There are 35 terminal symbols, corresponding to individual
sensorimotor signals/operations and an end-of-episode (.)

5 If the predicted episode ranked among multiple episodes predicted
by the VLMM with equal frequency, e.g. occupying 2nd–4th position,
its rank would be the upper bound, i.e. 2.
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Rank base: The drawback of the rank measure is
that not all predicted episodes can be

evaluated for rank: sometimes, the

predicted episode is not found among
those predicted by the VLMM, because

it is either ungrammatical, or correctly

formed but not found in the training set.
That is why the rank must always be

considered in connection with the

measure we call ‘‘rank base’’—the
percentage of predicted episodes that

were found among those predicted by

the VLMM (hence could be evaluated
for rank).

The results are summarised in Table 2 (top). To evaluate
these results, we compared them to a baseline case of

random predictions. The probability of generating a cor-

rectly formed episode by random chaining of sensorimotor
elements is very low, so we used a generator that randomly

selected episodes from the set of all possible grammatical
episodes. The results are summarised in Table 2 (bottom).

We can see that the random predictor has much lower

compatibility, much smaller rank base and the predictions
in the rank base have much lower rank. The random pre-

dictions hardly ever match the episodes being presented. If

we have a look at our model, the compatibility of predic-
tion is very high (higher for shorter fragments, because it is

easier to be compatible with one- to two-word fragments

than with almost the whole sequence). In terms of gram-
maticality, rank, and rank base, predictions are very good

for longer (50 %?) fragments: over 90 % of predictions

are grammatical and the average rank is close to 1, which
means the model almost always predicts the continuation

most frequent in the training data. For shorter fragments,

performance is not so good. It should be borne in mind that
our network is performing pattern completion, rather than

simply predicting the next element in a time-series; a

reasonable amount of the pattern must be presented in
order for it to work. In the next section, we discuss methods

for improving performance on shorter fragments.

Relation to Neural Activation Data

As discussed in ‘‘Representation of Prepared Sequences in
Prefrontal Cortex’’, PFC stores prepared sequences in

several ways. We examined the properties of representa-

tions in the trained network to see how they corresponded
to representations identified in monkey PFC.

Some PFC cells encode individual operations in a pre-

pared sequence, in a way which takes into account the
sequential context they appear in (see, for example, Barone

and Joseph [26]). An example of such a cell is given in Fig.

3a. Inspecting units in the signal-encoding SOM shows that
they have this property (see Fig. 4). Since the dynamic and

static episodic buffers are isomorphic to the signal-encod-

ing SOM, units in these media also have this property.
Figure 3b shows responses of a particular unit in the dy-

namic episodic buffer for the concept MAN in different se-

quential contexts.
Some PFC units encode individual operations in a pre-

pared sequence in a format where relative activation levels
indicate the serial order in which operations will be

executed [27]. Of these units, some have activity which

changes dynamically during execution of a prepared se-
quence, being maximal before execution of the action they

encode and being inhibited thereafter. Others are invariant

during execution of a planned sequence. Units in the dy-
namic episodic buffer have the former property, and units

in the static episodic buffer have the latter property. An

example of PFC cells with the former property is given in
Fig. 5a. An example of cells from the dynamic episodic

buffer with the same property is given in Fig. 5b.

Finally, some macaque PFC neurons hold representa-
tions of candidate alternative prepared sequences, which

appear to compete against one another so that a winning

sequence can be selected [29]. In our model, the candidate
episodes buffer holds units that have this function. Table 3

shows the five most active candidates in the candidate

episodes buffer as a response to the presentation of DOG

BALL and DOG BALL CAUSE fragments.6

Storage Capacity

Unlike in most traditional feature maps, the number of

different sequences that can be stored with m units in the
dynamical episodic buffer is not linear, but exponential in

m, thanks to its distributed nature. The combination of

the MSOM architecture of the signal-encoding SOM with
the isomorphic activity gradient-based dynamical episodic

buffer is functionally similar to the SARDNET archi-

tecture [41]: similar elements occupy similar positions in
the map (moreover, thanks to the recurrent nature of

MSOM, similar elements in similar contexts occupy

similar positions) and each sequence is represented by a
distributed pattern. Hence, the SARDNET capacity ana-

lysis [41] also applies to our model: if the maximum

length of a SM sequence is l and each position can be
occupied by max. k elements, the number of possible

sequences is approximately kl. Because sequences can

contain repeated elements and these must be represented

by different units, lk units are necessary to represent kl

6 Candidates were determined by top-down reconstruction, i.e.
replayed as a temporal sequence in the aggregate SM signal layer.
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sequences with unique distributed patterns. We ran ex-

periments with the same training sets as before (500
sequences built from 35 SM elements), focused on the

influence of the size of the dynamical episodic buffer

(which equals to the size of the isomorphic static
episodic buffer and signal-encoding SOM). For our input

data, the maximum sequence length is six, the number of

items being sequenced is 35, so the expected size for a
network with perfect storage is 6) 35 ¼ 210 units. Fig-

ure 6 shows the effect of the reduced capacity on the
immediate serial recall: the size of the network where

performance comes close to 100 % is roughly 225

(15) 15). The performance is equally good for unseen
sequences that sample the space of possible sequences

beyond the training set. Hence, the experimental results

correspond to our theoretical analysis.
Regarding the capacity of the candidate episode buffer,

this is linear in the number of units. However, as we dis-

cuss in ‘Coverage Issues’ below, this is not a medium
which needs to represent all possible episodes, rather its

role is to represent expected or desired episodes or episode
types. In this role, its limited capacity works well; due to

Table 2 Prediction performance of our model (top) and of a baseline model picking up a correctly formed episode at random (bottom), on initial
fragments of different lengths of 100 episodes from the training set

Fragment length 0–25 % 25–50 % 50–75 % 75–100 % 100 % Total

Our model

Grammaticality 42.1 % (37.1) 74.7 % (7.1) 90.1 % (3.2) 95.4 % (1.9) 96.2 % (1.6) 81.3 % (7.0)

Compatibility 100.0 % (0.0) 98.4 % (1.2) 95.2 % (2.9) 87.2 % (5.4) 90.3 % (4.0) 94.6 % (2.2)

Matches 0.0 % (0.0) 5.0 % (1.2) 41.8 % (2.5) 84.4 % (6.8) 88.5 % (4.4) 41.3 % (2.1)

Rank 5.06 (7.04) 2.19 (0.66) 1.27 (0.10) 1.02 (0.02) 1.00 (0.00) 1.92 (1.11)

Rank base 42.0 % (37.2) 74.7 % (7.1) 86.9 % (3.1) 85.1 % (5.7) 88.5 % (4.4) 77.5 % (7.2)

Baseline random model

Grammaticality 100.0 % (0.0) 100.0 % (0.0) 100.0 % (0.0) 100.0 % (0.0) 100.0 % (0.0) 100.0 % (0.0)

Compatibility 34.5 % (4.6) 7.2 % (1.7) 1.4 % (0.8) 0.1 % (0.3) 0.0 % (0) 7.0 % (0.8)

Matches 0.0 % (0.0) 0.0 % (0.0) 0.0 % (0.0) 0.0 % (0.0) 0.0 % (0.0) 0.0 % (0.0)

Rank 23.91 (3.43) 18.97 (7.89) 2.40 (1.74) 1.00 (0) 1.00 (0) 21.46 (2.1)

Rank base 12.7 % (5.6) 2.7 % (5.3) 0.4 % (5.0) 0.1 % (1.5) 0.1 % (0.3) 2.6 % (3.2)

Results are averaged over ten different simulation runs. Numbers in parentheses represent standard deviations

(a) (b)

Fig. 3 a Output from a PFC cell in Barone and Joseph’s [26]
experiment which fires when the monkey executes eye movement 2 in
some sequential contexts (sequences [2, 1, 3], [2, 3, 1], [1, 2, 3] and
[3, 2, 1]) but not others (sequences [3, 1, 2] and [1, 3, 2]). Picture
reproduced from Barone P, Joseph JP. Prefrontal cortex and spatial
sequencing in macaque monkey. Exp Brain Res. 1989;78:447–64
with kind permission from Springer Science and Business Media
(Original caption: Activation of a fixation cell. All rasters are aligned
with onset of the saccade towards target ‘‘2’’. In the first raster, trials

corresponding to sequences in which target ‘‘2’’ ranked first (213,
231) are gathered, in the second raster, sequences in which it ranked
second (123, 321) and in the third one, sequences in which it ranked
third (312, 132). The other conventions are the same as in Fig. 3. Note
that the cell shows a sustained activation whenever the animal fixates
target ‘‘2’’.) b The top-leftmost unit of the dynamic episodic buffer
fires for the signal MAN in some sequential contexts ([MAN DOG HUG],
[MAN BALL CAUSE HIDE MAN UNDER]), but not others ([MAN BALL CAUSE

HIDE MAN UNDER], [DOG CAT CAUSE HIDE MAN NEAR])
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the properties of the SOMs on the route, if the capacity is

exceeded, highly similar episodes will map to the same unit
and will be conflated together.

Discussion

This paper contains two proposals. The first is a general
proposal about how episodes are represented in semantic

WM. We propose that episodes are stored in this medium

as prepared sensorimotor routines. If this is the case, then

models of WM episode representations can draw on the
rich experimental tradition investigating representations of

prepared behavioural sequences in prefrontal cortex. Our

second proposal is a computational model of episode rep-
resentations that does exactly this. The model represents

episodes as prepared sensorimotor sequences; it stores

these sequences in three formats that have also been found
in monkey prefrontal cortex. We now assess these two

proposals.

Fig. 4 Exposure to a SM signal MAN in different contexts leads to
different activity profiles in the signal-encoding SOM (top row). A
unit with the highest activity is depicted in the corresponding frame in
the bottom row. This winning unit then activates a unit with the
isomorphic position in the dynamic episodic buffer. The different

contexts for the SM signal MAN were as follows: MAN DOG HUG (a), MAN

BALL CAUSE HIDE MAN UNDER (b), MAN BALL CAUSE HIDE MAN UNDER (c),
and DOG CAT CAUSE HIDE MAN NEAR (d). The activities are colour-coded
in shades of grey from white (activity = 0) to black (activity = 1)
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Fig. 5 a Output from four PFC cells in Averbeck et al.’s [27]
experiment, which encode a prepared motor sequence, executed at
time 0. The relative activation levels of the cells at time 0 indicates
the order in which the four movements will be executed. Picture
reproduced with permission from Averbeck B, Chafee M, Crowe D,
Georgopoulos A. Parallel processing of serial movements in pre-
frontal cortex. PNAS. 2002;99(20):13172–7. Copyright (2002)

National Academy of Sciences, U.S.A. b Relative activation of four
units in the dynamic episodic buffer encoding the SM sequence DOG

CHAIR SLEEP UNDER (see Fig. 2), showing a similar temporal profile. The
use of a relative measure of activation provides a simple approxima-
tion of the dynamics of a continuous circuit implementing winner-
take-all and inhibition-of-return (see, for example, the review in [40])
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Representing Episodes as Prepared Sequences

Coverage Issues

An obvious issue for discussion is whether a scheme that
represents episodes as sequences is sophisticated enough to

represent all possible episodes. We begin by considering

this question.

We certainly do not expect that the candidate episodes

buffer is able to represent all possible episodes. The role of
this medium is just to store a distribution of possible epi-

sodes, highlighting the most likely or desirable episodes.

The capacity to represent all possible episodes resides
elsewhere in the network, in the dynamic episodic buffer,

which stores a prepared sequence as a set of signals with

different levels of activation. This activity-based sequence
representation is quite productive for atomic episodes: the

network can encode and reproduce 98.9 % of unseen epi-
sodes (see ‘‘Immediate Serial Recall’’ section).

But we have not yet considered how a sequence-based

scheme could represent episodes in which other episodes
are nested. As well as atomic episodes like The dog

barked, we must also presumably be able to represent The

dog [which chased Mary] barked, Sally tells Bill that [the
dog barked], and so on. This requirement combinatorially

expands the number of episodes that the system must

represent.
In response, we suggest that it is important to distinguish

episode representations from representations of ‘sentence

meanings’. A sentence meaning may involve multiple
episode representations. For instance, when we entertain

the meaning of The dog [which chased Mary] barked, this

presumably involves representing two separate episodes:
the barking episode and the chasing episode. Secondly, our

general conception of semantic representations as stored

sensorimotor sequences means that we do not necessarily
have to model the meanings of all episodes in a nested

sentence in a single static pattern of activity. An alternative

open to us is to model complex meanings of this kind by
positing structures that cause the network to activate a

sequence of simple episode representations, in a manner

that indicates what relationship they have to each other. For
example, to model The dog [which chased Mary] barked,

we can begin simply by rehearsing the matrix episode The

dog barked. If, after having activated the initial represen-
tation of a token dog, we choose to enter a new cognitive

mode in which object representations are associated with

salient episodes in which they have participated, this could
cause us to temporarily activate a new subordinate episode

The dog chased Mary and rehearse this episode within the

original rehearsal process, resuming the top-level rehearsal
process when it is complete. (A scheme of this kind is used

in Miikkulainen’s [42] treatment of relative clauses.) This

device of interrupting processing is not available to
schemes which represent the complete meaning of a nested

proposition as a single static pattern of neural activity. We

see this as a strong advantage of representing episodes as
sequences. We have also used sequentially structured epi-

sode representations to provide an interesting representa-

tion of nested sentential complements such as Sally tells

Table 3 Activity levels of the top five most active units representing
episodes in the candidate episodes buffer predicted from the frag-
ments DOG BALL (left) and DOG BALL CAUSE (right)

Activity Reconstructed sequence

Sequence fragment: DOG BALL

0.30 DOG BALL PUSH

0.27 DOG BALL SEE

0.27 DOG BALL GRAB

0.26 DOG BALL KICK

0.25 DOG BALL HIT

Sequence fragment: DOG BALL CAUSE

0.33 DOG BALL CAUSE GO

0.32 DOG BALL CAUSE STOP

0.32 !DOG BALL CAUSE GO CAT BALL CAT CAUSE GO

0.29 DOG BALL CAUSE HIDE DOG NEAR

0.29 DOG BALL CAUSE HIDE MAN UNDER

The exclamation mark ‘!’ denotes an ‘ill-formed’ episode
representation.
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Fig. 6 Effects of the size of the dynamical episodic buffer on the
success in immediate serial recall for 100 sequences from the training
set (train) and 100 unseen sequences (test). We tested sizes 3) 3,
5) 5, 10) 10, 20) 20, 25) 25 units. The results were averaged
over three runs with different initial weights and training sets (the
graph also shows standard deviations, but they are very small). We
also analysed incorrectly recalled sequences: in all the cases except
3) 3 , only one element of the sequence was incorrectly recalled—all
the others were correct
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Bill that [the dog barked]; for details, see Caza and Knott

[19], Knott [20].

Sentence Processing

Any model of WM episode representations must ultimately

include an account of how these representations participate

in sentence processing. Baddeley [2] proposes links be-
tween the episodic buffer and the phonological buffer to

support sentence processing, but does not suggest in any
detail how these might be used. However, if episodes are

represented in WM as prepared sequences, this opens the

way for some interesting new proposals about sentence
processing.

We consider first sentence generation. In most neural

models of generation, the semantic inputs to the process are
static patterns of activation (see, for example, [43, 44]).

Since a sentence is a sequence of linguistic units, these

schemes see generation as involving a process of lineari-
sation, in which a static, declarative semantic representa-

tion is converted to a sequence of words. In our account,

episode representations in WM already have sequential
structure, allowing an alternative model of generation,

founded on the active rehearsal of an episode-denoting

sensorimotor sequence. A detailed model of sentence
generation based on this idea is given in [45]. In this model,

generating a sentence involves replaying a selected WM

episode, in a special mode where sensorimotor signals can
trigger learned phonological side effects. During this replay

process, an interesting mixture of sustained and transient

signals is evoked: in particular, there are tonically active
representations of each action in the planned sequence in

the static episodic buffer throughout the replay process.

These tonic representations permit a neat account of the
extended syntactic domain of verbs. Verbs can appear at

various different positions in the structure of a clause, and

they can carry inflections signalling agreement with argu-
ments at distant positions in the clause (for instance, sub-

jects). The neural basis for this non-locality is currently a

complete mystery. But if sentences are produced by re-
playing a prepared sensorimotor routine and if verbs and

their inflections are produced from planned motor and at-

tentional action representations which are tonically active
during replay, we have a promising explanation of this non-

locality: the semantic representations from which inflected

verbs are generated are active throughout the generation
process and can be produced at any time.

The WM episode network also has interesting uses in

models of sentence interpretation. Interpreting a sentence
involves selecting a single meaning from a large set of al-

ternative possible meanings, a process in which probabilistic

calculations play an important role [46]. In our network, the
candidate episodes buffer represents a set of alternative

episode representations from which a winner can be chosen.

This layer could be a useful medium for representing a
distribution of possible sentence interpretations, reflecting

the structure of the incoming sentence as it arrives incre-

mentally, but also the hearer’s general experience of epi-
sodes, and generating expectations about the rest of the

sentence. An attractive feature of the candidate episodes

buffer is that it allows a single winning episode to be selected
at any point during experience of an episode, which can

generate expectations about the remainder of the episode. If
these expectations are not forthcoming, it also permits the

inhibition of the predicted episode and the selection of an

alternative candidate—a process that could perhaps model
the ‘backtracking’ operation that occurs during the inter-

pretation of a garden-path sentence. This is an idea we are

pursuing in current work.

Predictions About Dysfunction

Our model sees a WM episode representation as a high-

level action plan implemented in dlPFC—a plan to repro-

duce the sequence of attentional and motor operations
through which a given episode was experienced. If there is

dysfunction in the prefrontal system that plans sequences

of attentional and/or motor operations, we therefore predict
two other types of impairment. First, we predict impaired

sentence processing abilities, since in our model, the WM

episode buffer is the medium that holds the semantic rep-
resentation of sentences. There are several studies indi-

cating that impairments in attentional sequencing tasks

correlate with impairments in sentence processing. For
instance, Dispaldro et al. [47] show that children with

specific language impairment also have impaired perfor-

mance on visual attentional sequencing tasks. Second, we
predict impaired storage of episodes in WM and LTM,

since in our model, the process of creating a LTM repre-

sentation of an episode relies on it first being stored in the
WM episodes buffer. There is good evidence that tran-

scranial magnetic stimulation over the dorsolateral PFC

disrupts both WM representations and the encoding of
representations in episodic LTM (see Balconi [48]). In

summary, studies of dysfunction support the idea that the

system involved in preparing sequences of attentional and
motor actions also has a role in encoding WM represen-

tations that interface to language and to LTM.

The SOM Model of Episode Representations

In this section, we assess the neural network model for
episode representations more technically and compare it to

existing models.
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The Use of Localist Representations in the Network

One issue to discuss is the network’s use of localist rep-
resentations. Both input signals and episodes are repre-

sented in a localist scheme. This is clearly unrealistic as a

model of biological neural networks; in addition, the net-
work may be better at representing generalisations over

episodes if it works with distributed input representations.

To investigate how our architecture works with distributed
representations, we implemented a revised version of the

network using distributed inputs, and distributed encodings

of signals and episodes in the SOM layers [37]. The net-
work correctly recalled 94.6 % (SD 3.8 %) of seen se-

quences, 93.3 % (SD 3.7 %) of unseen sequences, and

93.3 % (SD 6.3 %) of sequences containing repetitions,
when presented with the same sets of sequences as the

localist model, a drop of around 5 %. However, the dis-

tributed model’s performance in predicting episodes is
slightly better7 than that of the localist model. While there

is still room for improvement, these experiments provide

some indication that our proposed architecture can be
adapted to operate with distributed representations.

Comparison with Other Models of Sequence
Representation

There are numerous network models of WM for sequences.
Some represent the order of elements by their associations

with a context signal that evolves independently as a

function of time [49–51] or a context signal that evolves as
a function of its previous state [52]. Others represent the

order of elements by their level of activation [53] or in

sustained patterns of activation within a recurrent neural
network [54]. These models share several features with

ours: for instance, the use of a recurrent neural network for

context-dependent representation of sequence elements in
the signal-encoding SOM, and activation gradient and in-

hibition of the recent winner in the dynamic episodic

buffer. However, the cited models are explicitly stated as
models of phonological WM. We follow Baddeley [2] in

distinguishing between phonological WM and WM for

episodes. Most importantly, this means our model does not
have to reproduce the classic effects found in immediate

recall of phonological sequences, such as the primacy and

recency effects, list-length effect, transposition gradient.
Empirically, our focus is on modelling the neural sequence

preparation mechanisms found in monkeys, which it does

quite successfully. The sequences we use represent certain
internal thematic role structures of episodes (see

‘‘Training’’ section); hence, the order of elements is far

from arbitrary, and the classical immediate serial recall
behavioural data are not relevant.

There are some computational models which propose

the same mechanism for both phonological WM and pre-
pared action sequences—see, in particular, Rhodes et al.

[28]. We certainly envisage similarities between the

mechanisms subserving these tasks. (In particular, they
both appear to involve competitive queueing.) But our

suggestion is that they are separate, although, as Baddeley
suggests, there are links between them, which support

sentence processing.

Perhaps the model most closely related to ours is that of
Dominey and colleagues. Dominey et al. [55] developed a

neural network model of sequence preparation which is

explicitly based on data from single-cell recordings in
monkeys by Barone and Joseph [26]. This model was later

recruited in a neural network for sentence processing,

modelling how sequences of words are mapped onto work-
ing memory episode representations [56]. However, while

this model links prefrontal sequence preparation mechan-

isms with working memory episode representations, it does
not construe working memory episode representations

themselves as prepared sensorimotor sequences. In addition,

the model does not incorporate the interesting prefrontal
sequence preparation mechanisms identified by Averbeck

et al. [27]. Nonetheless, there are perhaps ways of integrat-

ing our model with that of Dominey et al. In their account of
sentence interpretation, nothing hangs on the particular

format of episode representations they choose, so there is

perhaps scope for combining their account of sentence in-
terpretation with our account of episode representations.

Comparison with Other Models of Episode Representation

There are many neural network models of episode repre-

sentation. A key question for these models is how to as-
sociate representations of participants in an episode with

the roles they play (e.g. ‘agent’ and ‘patient’). This binding

has been implemented using many techniques, including
synchronised neural firing (e.g. [57]), potentiated synaptic

associations (e.g. [43, 58]), high-dimensional representa-

tions (e.g. [59]), and self-organising maps (e.g. [7]). One
unifying aspect of all these models is that they use explicit

representations of semantic roles: roles like ‘agent’ and

‘patient’ are encoded as patterns of activity, in basically the
same way as the items they are bound to. It is not clear

whether humans represent roles explicitly in this way. If

they do, these explicit representations are certainly enor-
mously active in the cognitive system—common roles like

‘agent’ and ‘patient’ feature in nearly every episode. We

would certainly predict specific types of failure if one of
these representations were to be damaged. A key difference

7 The distributed model performed better by 3.7 % in total
grammaticality, 0.2 % in compatibility, 0.8 % in matches, 0.09 in
rank, and 5.1 % in rank base [37].
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in our model is that semantic roles are represented im-

plicitly, by particular positions within a sensorimotor se-
quence. This encoding avoids a troublesome assumption

with existing proposals. Instead, the notions of ‘agent’,

‘patient’, and so on, are defined through direct reference to
the processes by which episodes are actually experienced.

Another model we want to mention is the syntagmatic

paradigmatic model of Dennis [60]. Although stated as a
memory-based model of verbal processing, it deals with

tasks that are similar to those implemented by our model.
Dennis’ model represents propositional and thematic role

information in an interesting way. The model consists of a

long-term memory for sequences (sentences from a corpus)
and paradigmatic relations (information about which words

appear in similar contexts). A set of words that appear in a

similar context implicitly represents a specific thematic
role (such as lover or lovee). When prompted with a new

sequence or query in working memory, the system uses

Bayesian inference to retrieve the most similar sentences
from the long-term memory together with probabilities for

role bindings/substitutions based on paradigmatic relations.

The model of episode representation that comes closest
to ours is perhaps that of Reynolds et al. [61]. This model is

also founded on the assumption that experiencing an epi-

sode is a process with a well-defined sequential structure.
However, in their model, this sequential structure is mod-

elled as a continuous trajectory in a high-dimensional space

of relatively low-level perceptual features; by contrast, our
model envisages a sequence of more discrete, high-level

operations. We do not see these models as inconsistent;

however, they can be thought of as describing processing at
two different levels of representation. It is an interesting

question whether they can be combined in some way.

Conclusion

In this paper, we presented a model of the storage of epi-

sode representations in working memory. The main theo-

retical novelty is a proposal that episodes are stored as
prepared sensorimotor routines. Our proposed model also

implements a novel method for representing multiple

competing sequences in the same medium at the same time.
Naturally, the current implementation must be refined in

many ways before it can serve as a proper model of neural

mechanisms; for instance, it should use distributed repre-
sentations, and it should be adapted to work with spiking

neurons. And while the model is already aligned with data

about sequence preparation in monkeys, its predictions
about equivalent data in humans should also clearly be

examined. These are interesting avenues for further

research.
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