
MoChArt 2005 Preliminary Version

0.5 setgray0 0.5 setgray1

Model Checking Russian Cards

H.P. van Ditmarsch 1,2

Computer Science, University of Otago, Dunedin, New Zealand

W. van der Hoek 3

Computer Science, University of Liverpool, United Kingdom

R. van der Meyden 4

School of Computer Science and Engineering, University of New South Wales &
National ICT Australia, Sydney, Australia

J. Ruan 5

Computer Science, University of Otago, Dunedin, New Zealand

Abstract

We implement a specific protocol for bit exchange among card-playing agents in
three different state-of-the-art epistemic model checkers and compare the results.

Key words: Cryptography, unconditional security, model
checking, information-based protocols, epistemic logic.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

van Ditmarsch et al.

1 Introduction

The security of cryptographic protocols generally depends upon the truth of
several assumptions: that the agents are computationally limited and that cer-
tain computational problems are intractable given these computational lim-
its. In protocols based on public key encryption schemes such as RSA, for
example, decryption of messages is tractable for the intended recipient but
assumed to be impossible for an eavesdropper, because it requires factoring a
large product of primes, a problem assumed to be intractable. There do exist,
however, unconditionally secure protocols, whose security does not rely upon
such assumptions. These protocols can be shown to be secure even against
adversaries with unlimited computational powers, because they ensure that
the adversary cannot learn secrets for information theoretic rather than com-
putational reasons.

A popular approach to the verification of cryptographic protocols has been
to analyse them in terms of information flow as expressed using logics of
knowledge and belief [3,12]. In general, the semantics of these logics do not
capture the dimension of computational complexity upon which the security of
the protocols rest: instead, they treat agents as purely information theoretic
reasoners, having computational powers extending even beyond the recursive
enumerable. However, this very feature makes these logics a highly appropriate
tool for the analysis of unconditionally secure protocols.

In this paper, we consider the application of the logic of knowledge to un-
conditionally secure protocols based on the exchange of information grounded
in correlations arising from a deck of cards having been dealt to the agents. A
player can communicate secret bits such as card ownership to another player
without revealing these secrets to a third player (eavesdropper). This has
been investigated in [6,16,10,1,17]. A typical example is the ‘Russian Cards
Problem’: two players each draw three cards from a pack of seven cards, and

1 This research has been carried out with support from AOARD (Asian Organization for
Airforce Research and Development) research grant AOARD-05-4017. National ICT Aus-
tralia is funded through the Australian Government’s Backing Australia’s Ability initiative,
in part through the Australian Research Council. Hans van Ditmarsch and Ji Ruan closely
collaborated while Ji visited Hans in Otago. Hans thanks Jan van Eijck for the exciting
interaction during DEMO’s development, and for his suggestions. Wiebe van der Hoek has
been involved in ‘Russian Cards’ matters for a long time, since visiting Otago in 2002 as
a William Evans Fellow. Ron van der Meyden wrote the first version of what ultimately
became the MCK program, as well as the basis for a first attempt at the MCK program for
announcements from arbitrary intiial states, during Hans’ visit to Sydney in 2003. Hans
and Ji later completed these. Ron later developed much faster versions of both MCK pro-
grams. We kindly acknowledge Franco Raimondi’s very helpful assistance while completing
the MCMAS program. We also thank the anonymous referees supplied by the MoChArt 05
organization for their comments.
2 Email: hans@cs.otago.ac.nz
3 Email: wiebe@csc.liv.ac.uk
4 Email: meyden@cse.unsw.edu.au
5 Email: jruan@cs.otago.ac.nz

2

van Ditmarsch et al.

the remaining player (eavesdropper) gets the last card. The ‘problem’ is to
find protocols that allow the sender and receiver to learn each other’s hand of
cards, without revealing this information to the eavesdropper. In [16], proto-
cols of length two are presented that solve this problem. Protocols of length
greater than two are investigated in [17].

In such card protocols, the required postconditions are not always clear or
not easy to verify, publicly known protocol features may involve fairly complex
nested dynamic epistemic formulas, and enumeration of all possible protocols
is an issue as well. Model checkers are promising tools with which to address
these complexities. A model checking analysis has been partially carried out
for the Russian Cards problem in [20]: epistemic properties of the scenario are
translated into (linear time) LTL, and then verified using the model checker
SPIN. A deal of cards together with a number of announcements corresponds
to a time line. Uncertainty of the agents is represented by exploiting local
propositions proposed in [4], see also [13]. This approach to model checking
epistemic logic has a number of disadvantages: the need for translation means
that the epistemic aspects are only implicit in the analysis, it requires that
the appropriate local propositions – which may be difficult to identify – be
explicitly provided by the user, and in the case of negative occurrences of
the knowledge operator, multiple runs of the model checker are necessary to
conduct the verification.

In this contribution, we take a more direct approach, verifying protocol
properties in model checkers which work with epistemic logic explicitly. We
conduct a comparative study of a number of systems, based on a variety of
approaches to representing the evolution of knowledge: combinations of the
logic of knowledge with linear and/or branching time [5,9,14], and dynamic
epistemic logics [8,2,15]. Specifically, we consider the model checkers MCK
[7] which deals with the logic of knowledge and both linear and branching
time using BDD based algorithms, MCMAS [11] which handles knowledge
and branching time using BDD based algorithms, and DEMO [18], which is
an explicit state model checker based on a dynamic epistemic logic.

We have selected one specific Russian Cards protocol, the ‘five hands pro-
tocol’, implemented it in these quite different dedicated ‘epistemic’ model
checkers, and verified its relevant properties. This involved reinterpreting dy-
namic epistemic concepts in temporal epistemic terms; this theoretical exer-
cise was carried out successfully and increased our understanding of dynamic
epistemic features. All three implementations were carried out within a rea-
sonable development time and all were successful. Some additional Russian
Cards protocol features, in particular for protocols of length greater than two,
have been kept outside this comparison. Also, incorrect protocols (such as
for non-solutions of the Russian Cards problem) can be easily shown to be
so by establishing failure of (commonly known or other) epistemic conditions.
This only requires (almost) trivial changes in the scripts presented below for
a correct protocol.

3

van Ditmarsch et al.

In Section 2 we present the Russian Cards problem. Sections 3 to 5 are ded-
icated to the implementation of the ‘five hands’ protocol for the Russian Cards
problem in the model checkers, respectively, MCK, DEMO, and MCMAS. Sec-
tion 6 compares the results. The MCK, DEMO, and MCMAS input scripts
can be found on http://www.cs.otago.ac.nz/staffpriv/hans/aoard/.

2 Russian Cards

From a pack of seven known cards two players each draw three cards and a
third player gets the remaining card. How can the players with three cards
openly inform each other about their cards, without the third player learning
from any of their cards who holds it?

This ‘Russian Cards’ problem originated at the Moscow Math Olympiad
2000. Call the players Anne, Bill and Cath, and the cards 0, ..., 6, and suppose
Anne holds {0, 1, 2}, Bill {3, 4, 5}, and Cath card 6. For the hand of cards
{0, 1, 2}, write 012 instead, for the card deal, write 012.345.6, etc. Assume
from now on that 012.345.6 is the actual card deal. All announcements must
be public and truthful. There are not many things Anne can safely say. Ob-
viously, she cannot say “I have 0 or 6,” because then Cath learns that Anne
has 0. But Anne can also not say “I have 0 or 3,” because Anne does not
know if Cath has 3 or another card, and if Cath had card 3, she would have
learnt that Anne has card 0. But Anne can also not say “I have 0 or 1.” Even
though Anne holds both 0 and 1, so that she does not appear to risk that
Cath eliminates either card and thus gains knowledge about single card own-
ership (weaker knowledge, about alternatives, is allowed), Cath knows that
Anne will not say anything from which Cath may learn her cards. And thus
Cath can conclude that Anne will only say “I have 0 or 1” if she actually holds
both 0 and 1. And in that way Cath learns two cards at once! The appar-
ent contradiction between Cath not knowing and Cath knowing is not really
there, because these observations are about different information states: it is
merely the case that announcements may induce further updates that contain
yet other information.

Whenever after Anne’s announcement it is (at least) not common knowl-
edge to Anne, Bill, and Cath, that Cath remains ignorant of any of Anne’s
or Bill’s cards, this may be informative to Cath after all. A typical example
is when Anne says that she either holds 012 or not any of those cards, after
which Bill says that Cath holds card 6. For details, see [16]. Indeed, a solu-
tion requirement is that Cath’s ignorance remains public knowledge after any
announcement. Such announcements are called safe.

A solution to the Russian Cards problem is a sequence of safe announce-
ments after which it is commonly known to Anne and Bill (not necessarily
including Cath) that Anne knows Bill’s hand and Bill knows Anne’s hand.
This (instance of a) five hands protocol is a solution:

4

http://www.cs.otago.ac.nz/staffpriv/hans/aoard/

van Ditmarsch et al.

Anne says “My hand of cards is one of 012, 034, 056, 135, 246,” after which
Bill says “Cath has card 6.”

Note that Bill’s announcement is equivalent to “My hand of cards is one of
345, 125, 024.” After this sequence, it is even publicly known that Anne knows
Bill’s hand and Bill knows Anne’s hand. If we extend Anne’s announcement
with one more hand, namely 245, and if it is public knowledge that the pro-
tocols used by Anne and Bill are of finite length (so may consist of more than
two announcements), then it is ‘merely’ common knowledge to Anne and Bill
that they know each other’s hand, but (disregarding further analysis) Cath
considers it possible that they do not know each other’s hand of cards. This is
a useful security feature for Anne and Bill, as Cath plays the role of the eaves-
dropper. A further postcondition is that all safe announcements by Anne
ensure at least one safe response from Bill, and vice versa. This recursive
requirement results in a more complex condition. See [17].

Public announcement logic The Russian Cards problem can be modelled
in public announcement logic with common knowledge. We give a concise
overview of the language and its semantics.

Given are a set of agents N and a set of atoms P . An epistemic model M =
〈S,∼, V 〉 consists of a domain S of (factual) states (or ‘worlds’), accessibility
∼ : N → P(S × S), and a valuation V : P → P(S). For s ∈ S, (M, s) is an
epistemic state. For ∼ (n) we write ∼n, and for V (p) we write Vp. So, access
∼ can be seen as a set of equivalence relations ∼n, and V as a set of valuations
Vp. For (

⋃
n∈G ∼n)∗, write ∼G: this is access to interpret common knowledge

for group G.

The language of public announcements is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CGϕ | [ϕ]ψ

where p ∈ P , n ∈ N , and G ⊆ N are arbitrary. For Knϕ, read ‘agent n
knows formula ϕ’. For CGϕ, read ‘group of agents G commonly know formula
ϕ’. For [ϕ]ψ, read ‘after public announcement of ϕ, formula ψ (is true)’. The
effect of the public announcement of ϕ is the restriction of the epistemic state
to all worlds where ϕ holds. So, ‘announce ϕ’ can be seen as an information
state transformer, with a corresponding dynamic modal operator [ϕ].

The semantics is as follows. Given is an epistemic model M = 〈S,∼, V 〉.

M, s |= p iff s ∈ Vp
M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

5

van Ditmarsch et al.

M, s |= Knϕ iff for all t ∈ S : s ∼n t implies M, t |= ϕ

M, s |= CGϕ iff for all t ∈ S : s ∼G t implies M, t |= ϕ

M, s |= [ϕ]ψ iff M, s |= ϕ implies M |ϕ, s |= ψ

Model M |ϕ = 〈S ′,∼′, V ′〉 is defined as

S ′ ≡ {s′ ∈ S | M, s′ |= ϕ}

∼′n ≡ ∼n ∩ (S ′ × S ′)

V ′p ≡ Vp ∩ S ′

In other words: the model M |ϕ is the model M restricted to all the states
where ϕ holds, including access between states. Formula ϕ is valid on model
M , notation M |= ϕ, if and only if for all states s in the domain of M :
M, s |= ϕ. Formula ϕ is valid, notation |= ϕ, if and only if for all models M :
M |= ϕ.

We now model the Russian Cards problem in this logic. Given a stack of
known cards and some players, the players blindly draw some cards from the
stack. In a state where cards are dealt in that way, but where no game actions
of whatever kind have been done, it is commonly known what the cards are,
that they are all different, how many cards each player holds, and that players
only know their own cards. From the last it follows that two deals are the
same for an agent, if she holds the same cards in both, and if all players hold
the same number of cards in both. This induces an equivalence relation on
deals.

An epistemic model (Rus, 012.345.6) for the deal 012.345.6 that we inves-
tigate, encodes the knowledge of the players Anne, Bill and Cath (a, b, c) in
this card deal. It consists of

(
7
3

)(
4
3

)(
1
1

)
= 140 deals. For each player, access

between states is induced by the equivalence above, for example, 012.345.6 ∼a
012.346.5 says that Anne cannot tell these two card deals apart (as her hand
is 012 in both). Facts about card ownership written as qn, for ‘card q is held
by player n’. The valuation V0a of fact 0a (Anne holds card 0) consists of all
60 deals where 0 occurs in Anne’s hand, etc.

After a sequence of announcements that is a solution of the Russian Cards
problem, it should hold that Anne knows Bill’s cards, that Bill knows Anne’s
cards, and that Cath doesn’t know any of Anne’s or Bill’s cards:

a knows bs ≡
∧
q=0..6(Kaqb ∨Ka¬qb)

b knows as ≡
∧
q=0..6(Kbqa ∨Kb¬qa)

c ignorant ≡
∧
q=0..6(¬Kcqa ∧ ¬Kcqb)

We suggested in the previous section that these conditions are too weak. This

6

van Ditmarsch et al.

can be exemplified by the observation that, e.g.,

Rus, 012.345.6 |= [Ka(012a ∨ (¬0a ∧ ¬1a ∧ ¬2a))][c ignorant]¬c ignorant

After Anne says that her hand is 012 or that she does not hold any of those
cards, c ignorant is true, but a further update with that (in other words: when
Cath can assume that this is true) makes Cath learn some of Anne’s cards,
so that c ignorant is false. The actually required postconditions avoiding such
complications are: after every announcement of an executed protocol, it is
publicly known that Cath is ignorant, and after the execution of the entire
protocol it is commonly known to Anne and Bill that: Anne knows that
Bill knows her hand of cards, and Bill knows that Anne knows his hand of
cards. Also using that Cab(Kba knows bs ∧ Kab knows as) is equivalent to
Cab(a knows bs ∧ b knows as) this is formalized as

Cab(a knows bs ∧ b knows as)

Cabcc ignorant

Concerning protocols: when Anne announces ‘ϕ’, this should be interpreted as
‘Kaϕ’ given that she knows what she says, and even as ‘Kaϕ∧[Kaϕ]Kac ignorant’
given her intention, and beyond that even as ‘Kaϕ ∧ [Kaϕ]CabcKac ignorant’
given that her intention is public. One can then show that

Rus, 012.345.6 |= [Kaϕ ∧ [Kaϕ]Cabcc ignorant]Cabcc ignorant

So in this case the intention is indeed realized, unlike above: the announcement
is safe. We ignore the further complication that safe announcements require
safe responses in this submission. The solution given in Section 2 consists of
the successive announcements

a announce ≡ 012a ∨ 034a ∨ 056a ∨ 135a ∨ 246a

b announce ≡ 6c

Temporal epistemic logics Two of the model checkers that we present
require interpreted system representations and / or verification of temporal
epistemic logical formulas. Therefore, some words are in order on how these
compare to a dynamic epistemic setting.

An interpreted system I is a pair (G,R) consisting of a set of global states
G and a set of runs R relating those states. A global state g ∈ G is a tuple
consisting of local states gn for each agent and a state gε of the environment.
A run r ∈ R is a sequence of global states. The m-th global state occurring
in a run r is referred to as r(m), and the local state for agent n in a global
state r(m) is written as rn(m).

A point (r,m) is a pair consisting of a run and a point in time m – this is the
proper abstract domain object when defining epistemic models for interpreted

7

van Ditmarsch et al.

systems. In an interpreted system, agents can distinguish global states from
one another iff they have the same local state in both, which induces

(r,m) ∼n (r′,m′) iff r(m) ∼n r′(m′) iff rn(m) = r′n(m′)

With the obvious valuation for local and environmental state values, that
defines an epistemic model. For convenience we keep writing I for that. Given
an actual point (r′,m′), we thus get an epistemic state (I, (r′,m′)). Epistemic
and (LTL) temporal (next) operators have the interpretation

I, (r,m) |= Xϕ iff I, (r,m+ 1) |= ϕ

I, (r,m) |= Knϕ iff for all (r′,m′) : (r,m) ∼n (r′,m′) implies I, (r′,m′) |= ϕ

We now outline the relation between ‘next’ and announcement operators. An
announcement is seen as a completely observable clock tick, synchronizing the
system. Announcing ϕ at time m is simulated in I by changing the value of
some environmental variable p for exactly those points where ϕ is true, when
transiting from point (r,m) to point (r,m+1), and passing on that information
to the local states of the agents. The static information available at time m is
contained in the restriction I|m of the interpreted system I to all points for
time m. This determines the meaning of purely epistemic formulas. But for
formulas containing epistemic and ‘next’-temporal operators the situation is
more complex. Assume that for each time m there is a formula ϕ such that the
only transitions allowed at m are those induced by announcement of ϕ. We
can define a translation ∗ where, given an epistemic state and a formula, each
X-operator in that formula is replaced by a corresponding dynamic operator
[ϕ]. The following now are all equivalent

if I, (r,m) |= ϕ, then I, (r,m) |= Xψ

if I, (r,m) |= ϕ, then I, (r,m+ 1) |= ψ

if I|m, (r,m) |= ϕ∗, then I|m|ϕ∗, (r,m) |= ψ∗

I|m, (r,m) |= [ϕ∗]ψ∗

In case ϕ and ψ are both purely epistemic, so that ϕ∗ = ϕ, and ψ∗ = ψ, we
have that

I, (r,m+ 1) |= ψ corresponds to I|m|ϕ, (r,m) |= ψ

It is interesting to observe, that checking ψ in the former involves (given
synchronous perfect recall) the entire domain of I|(m+ 1), whereas checking
ψ in the latter only involves the ϕ-states of its predecessor I|m, corresponding
to only one value of the environmental variable that is reset in the transition
from m to m + 1. For ‘Russian Cards’, the first announcement reduces the
domain from 140 to 20 points, and the second from 20 to 3 points.

8

van Ditmarsch et al.

3 Model Checker MCK

MCK, for ‘Model Checking Knowledge’, is a prototype model checker for tem-
poral and knowledge specifications, developed by Peter Gammie and Ron van
der Meyden [7]. The overall setup supposes a number of agents acting in an
environment, by temporal development. This is modelled by an interpreted
system where agents perform actions according to a protocol. Actions and the
environment may be only partially observable at each instant in time.

Different approaches to the temporal and epistemic interaction and de-
velopment are implemented. Knowledge may be based on current obser-
vations only, on current observations and clock value, and on the history
of all observations and clock value. The last corresponds to synchronous
perfect recall. We have used that approach. In the temporal dimension,
the specification formulas may describe the evolution of the system along
a single computation, i.e., using linear time temporal logic (LTL), or they
may describe the branching structure of all possible computations, i.e, us-
ing branching time or computation tree logic (CTL). We have used LTL. See
http://www.cse.unsw.edu.au/~mck/ for more information.

Russian Cards in MCK In MCK, we have to reinterpret the dynamic
epistemics of Section 2 in temporal epistemic terms. In a program rus.mck

we successively introduce environmental variables and initialize those; we cre-
ate three agents A, B, and C with corresponding protocols "anne", "bill"

and "cath"; a main part of the program specifies the (temporal) transitions,
induced by card dealing and the announcements, that relate different infor-
mation states for these players; finally rus.mck contains a part with various
to be verified properties of the timelines created.

A hand of cards of an agent is encoded by a list of seven booleans, for
example a hand : Bool[7] specifies for all of the cards 0, ..., 6 whether
they are held by Anne or not, such that anne cards[0] is true when Anne
holds card 0, etc. Initially, such variables are set to false.

Agent A, for Anne, is created by

agent A "anne" (a_hand, a_announce, b_announce, stage)

The name of the agent is A. It uses protocol "anne". It can interact with,
and potentially observe the variables between parentheses. The first of those
is, obviously, only observable by Anne, the others will reappear in the other
agent definitions, as they are publicly observable. The variable stage is the
‘clock tick’.

The transitions part of rus.mck specify what happens in different stages
of the execution of the protocol. We distinguish stages (clock ticks) 0, 1, 2,
and 3. In stage 0 the cards are dealt to the players, in the order 0, ..., 6. We
show it up to the dealing of card 0.

stage == 0 ->

9

http://www.cse.unsw.edu.au/~mck/

van Ditmarsch et al.

begin if

na < 3 -> begin a_hand[0]:=True; na:= na+1 end []

nb < 3 -> begin b_hand[0]:=True; nb:= nb+1 end []

nc == 0 -> begin c_hand[0]:=True; nc:= 1 end

fi;

Variables na, nb, and nc are counters to record how many cards agents have,
and [] means nondeterministic choice. In this part of the transitions, 140
different deals are created, represented as 140 different timelines.

In stage 1, Anne announces that her hands is one of 012, 034, 056, 135, and
246. This is done indirectly by executing the protocol "anne", that contains a
condition corresponding to these five deals, which causes the action Announce

to be executed. This then results in the atom a announce becoming true.

stage == 1 /\ A.Announce -> a_announce := True

In stage 2, Bill announces that Cath holds card 6. Alternatively, one can
model that Bill announces Cath’s card – whatever it is. Bill’s announcement
is by way of an action B.Announce, and results in the variable b announce

to become true. This is the transition to stage 3, the final stage. We can
imagine the whole system to consist of 140 different runs. Whether variables
a announce and b announce are true in stage 2 and stage 3, respectively,
depends on the deal in that run.

The protocol for Anne is

protocol "anne" (cards: observable Bool[7],

a_announce: observable Bool, b_announce: observable Bool,

stage: observable Counter)

begin

skip; if

((cards[0] /\ cards[1] /\ cards[2]) \/

(cards[0] /\ cards[3] /\ cards[4]) \/

(cards[0] /\ cards[5] /\ cards[6]) \/

(cards[1] /\ cards[3] /\ cards[5]) \/

(cards[2] /\ cards[4] /\ cards[6]))

-> <<Announce>>

fi

end

The ‘begin-end’ part of this protocol specifies for each of the stages 0, 1, and
2 what happens in that stage. In stage 0 nothing happens: skip. In stage
1, the action Announce – that is, whatever is found between << and >> –
is executed. Actually, the value or instance of cards for Anne is a cards;
see above, where Anne is created. Alternatively to five actual hands, a much
longer protocol creates five arbitrary hands of cards based on Anne’s actual
hand. Nothing is specified for stage 2: this is therefore skip again by default.
Bill has a similar protocol but his protocol starts with skip ; skip, as his

10

van Ditmarsch et al.

announcement is in stage 2. And Cath does not act at all, which carries the
protocol skip ; skip ; skip.

The knowledge of the agents evolves with every stage, via the agents’
limited access to the environment. Initially, they only observe their own hand
of cards, and Anne’s and Bill’s public announcement is accessed by all agents.
Anne cannot distinguish two states iff her observations are the same in those
states. For example, in stage 1 Anne cannot distinguish the timelines for deals
012.345.6 and 012.346.5, because: both have the same a hand values (for all
seven variables), a announce is true in both cases, and b announce is false
is both cases. But in stage 3, Anne can distinguish these timelines, since
b announce is true for the former and false for the latter.

A final part of rus.mck lists various temporal epistemic properties to be
checked. For example, we want to verify that Rus, 012.345.6 |= [a announce]
[b announce]Caba knows bs. The current version (0.2.0) of MCK does not sup-
port common knowledge operators for specification in the perfect recall mod-
ule. Therefore we verify instead that in stage 3, a knows bs is valid in the
model. This corresponds to Rus|a announce|b announce |= a knows bs which
ensures that Rus|a announce|b announce, 012.345.6 |= Cabca knows bs. And in
this specific model Caba knows bs↔ Cabca knows bs is also valid.

spec_spr_xn = X 3 ((a_announce /\ b_announce) =>

((((Knows A b_hand[0]) \/ (Knows A neg b_hand[0]))) /\

(...)

(((Knows A b_hand[6]) \/ (Knows A neg b_hand[6])))))

The part spec spr xn means that we are using the perfect recall module of
MCK, and X 3 is the triple ‘next state’ temporal operator, counting from
stage 0. Therefore, the formula bound by the operator is checked in stage 3.
Similarly, other properties of the five hands protocol are verified.

4 Model Checker DEMO

The tool DEMO is developed by Jan van Eijck [18]. DEMO is short for Dy-
namic Epistemic MOdelling. It allows modelling epistemic updates, graphical
display of Kripke structures involved (i.e., epistemic or state models, and ac-
tion models that represent epistemic actions), formula evaluation in epistemic
states, etc. Epistemic models are minimized under bisimulation, and action
models are minimized under the (more appropriate, weaker) notion of action
emulation [19]. DEMO is written in the functional programming language
Haskell. See also http://www.cwi.nl/~jve/papers/04/demo/.

The model checker DEMO implements the dynamic epistemic logic of [2].
In this ‘action model logic’ the global state of the multi-agent system is rep-
resented by an epistemic model (multi-agent Kripke model), and the agents’
action is represented by an action model. An action model is also based on
a multi-agent Kripke frame, but instead of carrying a valuation it has a pre-

11

http://www.cwi.nl/~jve/papers/04/demo/

van Ditmarsch et al.

condition function which assigns a precondition to each point in the action
model, which stands for an atomic action. The state change in the system is
via an operation called update product. This is a restricted modal product.
In this submission we restrict our attention to action models for public an-
nouncements. Such action models have a singleton domain. We refrain from
details and proceed with the recursive definition of formulas in DEMO.

Form = Top | Prop Prop | Neg Form | Conj [Form] | Disj [Form]

| K Agent Form | CK [Agent] Form

Formula Top stands for >, Prop Prop for atomic propositional letters (the first
occurrence of Prop means that the datatype is ‘propositional atom’, whereas
the second occurrence of Prop is the placeholder for an actual proposition
letter, such as P0), Neg for negation, Conj [Form] stands for the conjunction
of a list of formulas of type Form, similarly for Disj, K Agent stands for the
individual knowledge operator for agent Agent, and CK [Agent] for common
knowledge operator for the group of agents listed in [Agent].

A pointed (and singleton) action model for a public announcement is cre-
ated by a function public with a precondition (formula) as argument. The
update operation is specified as

upd :: EpistM -> PoAM -> EpistM

Here, EpistM is an epistemic state and PoAM is a pointed action model. The
update generates a new epistemic state as specified above. Formula checking
is defined as

isTrue :: EpistM -> Form -> Bool

Its arguments are an epistemic state and a formula, and it returns a boolean
value.

Russian Cards in DEMO In DEMO, one is restricted to propositional
letters starting with lower case p, q and r, so we cannot write, for example, 0a
for the atomic proposition that Anne holds card 0, as in Section 2. Instead,
atoms {p, . . . , p6, q, . . . , q6, r, . . . , r6} represent such atomic propositions. The
name p4 – Anne holds card 4 – actually stands for Prop (P 4), etc. Instead
of p0 we write, somewhat arbritrarily, p, and similarly for q and r.

The initial epistemic state rus representing the knowledge in card deal
012.345.6 is constructed as follows. A set of integers [0..139] represents the
140 different deals. Each integer is associated with seven propositional letters
– the valuation of facts in that state. The first two deals correspond to the
valuations

(0,[P 0,P 1,P 2,Q 3,Q 4,Q 5,R 6]),

(1,[P 0,P 1,P 2,Q 3,Q 4,Q 6,R 5])

The deal numbered 0 stands for actual deal 012.345.6. A pair of two integers is
in the accessibility relation for an agent n, if that agent holds the same cards in

12

van Ditmarsch et al.

both deals. Two such pairs for Anne are (a,0,0),(a,0,1). DEMO assumes
arbitrary accessibility relations. So, unfortunately, we have to explicitly list
all pairs in the equivalence relation for each agent, as above.

Anne’s public announcement a announce corresponds to the following sin-
gleton action model named a announce, which is produced by the function
public.

public(K a (Disj[Conj[p,p1,p2],Conj[p,p3,p4],Conj[p,p5,p6],

Conj[p1,p3,p5],Conj[p2,p4,p6]]))

Similarly, we have an action model b announce for Bill’s announcement b announce.
The postcondition that Anne knows Bill’s hand of cards, a knows bs, is repre-
sented as

aknowsbs = Conj[Disj[K a q, K a (Neg q)],

Disj[K a q1, K a (Neg q1)],

Disj[K a q2, K a (Neg q2)],

Disj[K a q3, K a (Neg q3)],

Disj[K a q4, K a (Neg q4)],

Disj[K a q5, K a (Neg q5)],

Disj[K a q6, K a (Neg q6)]]

Similarly for b knows as and c ignorant. The model checker now verifies the
postconditions of the constructed models. After Bill’s announcement it is
common knowledge to Anne and Bill that Anne knows Bill’s hand of cards,
and it is also common knowledge to Anne and Bill that Bill knows Anne’s
hand of cards. It is publicly known that Cath remains ignorant:

*RUS>isTrue (upd (upd rus a_announce) b_announce) (CK [a,b] a_knows_bs)
True
*RUS>isTrue (upd (upd rus a_announce) b_announce) (CK [a,b] b_knows_as)
True
*RUS>isTrue (upd (upd rus a_announce) b_announce) (CK [a,b,c] c_ignorant)
True

Epistemic state (upd rus a announce) is the result of updating the initial
epistemic state rus with singleton pointed action model with precondition
a announce – to improve readability we have chosen to name the action model
a announce and not the precondition. The epistemic state (upd (upd rus

a announce) b announce) is the result of updating epistemic state (upd rus

a announce) with the singleton pointed action model named b announce (with
that precondition).

5 Model Checker MCMAS

MCMAS presumably stands for Model Checking Multi-Agent Systems. This
model checker has been developed by Franco Raimondi and Alessio Lomus-
cio [11]. The current version is mcmas 0.6. System descriptions and pro-

13

van Ditmarsch et al.

tocol properties are verified using ordered binary decision diagrams, compa-
rable to the approach used in MCK. It extends existing obdd-based tech-
niques for reactive systems by adding both an epistemic (ATL) and a deon-
tic dimension to the logical language, and allowing input in terms of inter-
preted systems. MCMAS is implemented in C++. For more information, see
http://www.cs.ucl.ac.uk/staff/F.Raimondi/MCMAS/.

In MCMAS, the global state is represented as a tuple of the local states of
the agents. For Russian Cards, agents Anne, Bill, and Cath represent players,
and an agent Env (the environment) represents the card deal. The local state
of agent Anne requires five components, that can be seen as variables; three
represent her hand of cards, and two the status quo and outcome of the two
announcements. Version 0.6 of MCMAS does not support variables in the
description of agents’ local states. Therefore we encode the variable parts in a
single string. For example, one local state for Anne is a012tf. This means that
Anne holds cards 0,1, and 2, that Anne’s announcement a announce has been
(truthfully) made in the global state of which this local state is a component,
and that Bill’s announcement b announce could not be made (was false) in
that global state. Similarly, we have five variables for Bill, and three variables
for Cath. The local state of the agent Env has seven variables, because it
represent a card deal. An example is e0123456. This stands for the actual
deal 012.345.6.

The information changes take the usual steps: (1) the cards are revealed to
the agents, (2) Anne announces a announce, and (3) Bill announces b announce.
All reachable global states will be included in the next stage. An example ini-
tial global state is (annnnn, bnnnnn, cnnn, e0123456); an ‘n’ essentially
means that the agent has no information on the value of corresponding vari-
able, modelled by giving the variable that value n. So, bnnnnn means that
Bill’s local state is that he does not know his cards yet (the first three n’s),
that Anne has not made her announcement yet (the fourth n) and that Bill has
not made his announcement yet. The above global state (annnnn, bnnnnn,

cnnn, e0123456) then transits to (a012nn, b345nn, c6nn, e0123456), where
each agent knows what cards it holds. Anne’s a announce is then made, causing
the transition to (a012tn, b345tn,c6tn, e0123456) and b announce finally
results in (a012tt, b345tt,c6tt, e0123456) – this time, Bill’s announce-
ment is successful. These state transitions are specified in the program. For
example, for agent Anne, the transition for step one is as follows; Lstate is
the local state of (current) agent Anne, and Env.Lstate is the local state of
Env.

a012nn if (Lstate=annnnn and

(Env.Lstate=e0123456 or Env.Lstate=e0123465 or

Env.Lstate=e0123564 or Env.Lstate=e0124563));

The environment Env does not change during transitions, but this has to be
made explicit as

14

http://www.cs.ucl.ac.uk/staff/F.Raimondi/MCMAS/

van Ditmarsch et al.

e0123456 if Lstate=e0123456;

In the ‘valuation’ part of an MCMAS program we define what can be seen as
(the denotation of) atomic propositions. For example

ab_d0123456 if (Anne.Lstate=a012tt and Bill.Lstate=b345tt and

Cath.Lstate=c6tt and Env.Lstate=e0123456);

is the atom that is (uniquely) true in the global state (a012tt, b345tt,c6tt,

e0123456). Similarly, atoms expressing card ownership such as 0a for ‘Anne
holds card 0’ are defined by enormous expressions starting as (and consisting
of 60 alternative card deals)

a0 if (Env.Lstate=e0123456 or Env.Lstate=e0123465 or ...

Groups of agents can be named too. This is useful when checking common
knowledge. For example, expression ABC={Anne, Bill, Cath}; gives the
group consisting of Anne, Bill, and Cath the label ABC. The common knowledge
formula Cabc(0a → Ka0a) is then represented as CK(ABC,a0->K(Anne,a0)).
We conclude this short exposition with the postcondition Cabcc ignorant that
verifies that Cath remains ignorant after both announcements have been made
– ‘!’ stands for negation.

ab_d0123456 -> GCK(ABC,(

(!K(Cath,a0) and !K(Cath,b0)) and

(!K(Cath,a1) and !K(Cath,b1)) and

(!K(Cath,a2) and !K(Cath,b2)) and

(!K(Cath,a3) and !K(Cath,b3)) and

(!K(Cath,a4) and !K(Cath,b4)) and

(!K(Cath,a5) and !K(Cath,b5)) and

(!K(Cath,a6) and !K(Cath,b6))));

6 Comparison

Rough performance results for the input scripts described above are based on
a PC configuration Linux 2.4.30 i686 Pentium 4, 800Mhz and 2018M RAM.
The times required, respectively, for the Russian Cards five hands protocol,
as an average over five runs, are:

• MCK – 160 seconds (Long BDD package) or 109 seconds (CUDD BDD
package)

• MCMAS – 117 seconds (CUDD BDD package)

• DEMO – 9 seconds

The time measure for MCK and MCMAS is for the whole model checking
process, i.e., both model construction and formula checking. For MCMAS it
includes the time to autogenerate the MCMAS input script from a C program.
DEMO operates on slightly different principles: First, the Haskell interpreter
compiles RUS.hs and related modules DPLL and DEMO. Only then, we check

15

van Ditmarsch et al.

individual formulas. We measured the combined autogeneration, compilation
and checking steps.

These results cannot be straightforwardly interpreted as indicative of the
relative performance of the model checkers, however, as they are based on
rather different modellings and model checking questions. One difference is
that the MCK input script explicitly represents the dealing of cards using a
transition program, whereas the input to MCMAS and DEMO already have
the results of a deal explicitly represented in the initial states. Another is that
MCK and MCMAS check a temporal property for all initial states, whereas
DEMO checks a dynamic property at a single initial state. The runtimes can
also be quite sensitive to specific choices made in the modelling. Apart from
the scripts discussed in this contribution, we later developed a much more
concise DEMO program, as well as an alternate MCK modelling in which the
dealing of cards is represented by a constraint on initial states rather than
by a program. We refrain from details and refer instead to the companion
website. The complexity results for these versions are

• DEMO-new – 4 seconds

• MCK-new – 1.1 seconds (Long BDD), 0.27 seconds (CUDD)

The modellings discussed above focus on announcements for the specific
situation of the deal 012.345.6. We have also developed an MCK script mod-
elling a protocol that provides an five hands announcement for Anne for an
arbitrary initial state. This script currently requires about 3 hours to run, and
is still a subject of our experiments.

Mostly, however, we were interested in how versatile the tools appeared to
be, to implement a problem that was originally formulated in local, and dy-
namic epistemic, terms, into temporal epistemic terms and/or as an inter-
preted system. In other words, we were more than anything else interested in
development time and supported functionality. Conclusions based on our ex-
periences are extremely tentative. Implementing the Russian Cards problem
in DEMO took about half a day, for Ji Ruan, who is an expert in DEMO.
MCK scripts developed by Ron van der Meyden, expert in MCK, also took
about half a day. Currently, MCK does not support common knowledge (in
the used module), nor epistemic preconditions, nor preconditions to temporal
formulas. The last makes it impossible to have knowledge preconditions to
players’ announcements. Such preconditions are always epistemic, as agents
only announce what they know to be true. Also, unsuccessful updates – for-
mulas that become false because they are announced – cannot be made visible
in the way they have to be checked in MCK: the analogue is a conditional for-
mula where the antecedent is also a subformula of the temporal consequent.
On the other hand, MCK allows a very natural formalization of protocols –
this is not, or less, possible in DEMO or MCMAS. The ‘fully interpreted sys-
tem’ approach of MCMAS is very transparent, but the models that need to

16

van Ditmarsch et al.

be built are ‘very’ large: (automated input of) thousands of lines of code, as
opposed to (manual input of) about a hundred lines of code in MCK. More
than anything, this case-study increased our insight into the state of the art
in epistemic model checking, and our understanding of the theoretical issues
involved in card cryptography, emerging from the need to reformulate these
issues in different logics.

7 Conclusions

We have implemented the five hands protocol to solve the Russian Cards
problem in the model checkers MCK, DEMO, and MCMAS. Dynamic epis-
temic requirements can be easily reformalized in temporal epistemic terms,
a necessary requirement for formalization in MCK and MCMAS. The model
checkers vary in how easy, or difficult, it is to build the initial epistemic state,
in how difficult it is to formalize announcements and execute them in that
initial state, and in how to verify protocol properties. We intend to pursue
this investigation by implementing more complex protocols and verifying more
complex properties for such ‘card cryptography’, and generalize it to the level
of interpreted systems with agent dependencies, where groups of agents aim
to share their local state value while keeping it a secret from the remaining
agents.

References

[1] M.H. Albert, R.E.L. Aldred, M.D. Atkinson, H.P. van Ditmarsch, and C.C.
Handley. Safe communication for card players by combinatorial designs for
two-step protocols. Australasian Journal of Combinatorics, 2005. To appear.

[2] A. Baltag and L.S. Moss. Logics for epistemic programs. Synthese, 139:165–
224, 2004. Knowledge, Rationality & Action 1–60.

[3] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8:18–36, 1990.

[4] K. Engelhardt, R. van der Meyden, and Y. Moses. Knowledge and the logic of
local propositions. In I. Gilboa, editor, Proceedings of TARK VII, pages 29–41.
Morgan Kaufmann, 1998.

[5] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge MA, 1995.

[6] M.J. Fischer and R.N. Wright. Bounds on secret key exchange using a random
deal of cards. Journal of Cryptology, 9(2):71–99, 1996.

[7] P. Gammie and R. van der Meyden. MCK: Model checking the logic
of knowledge. In R. Alur and D. Peled, editors, Proceedings of the 16th
International conference on Computer Aided Verification (CAV 2004), pages
479–483. Springer, 2004.

17

van Ditmarsch et al.

[8] J.D. Gerbrandy and W. Groeneveld. Reasoning about information change.
Journal of Logic, Language, and Information, 6:147–169, 1997.

[9] J.Y. Halpern, R. van der Meyden, and M.Y. Vardi. Complete axiomatizations
for reasoning about knowledge and time. SIAM Journal on Computing,
33(3):674–703, 2004.

[10] K. Koizumi, T. Mizuki, and T. Nishizeki. Necessary and sufficient numbers
of cards for the transformation protocol. In K.-Y. Chwa and J. Ian Munro,
editors, Computing and Combinatorics, 10th Annual International Conference
(COCOON 2004), LNCS 3106, pages 92–101. Springer, 2004.

[11] Franco Raimondi and Alessio Lomuscio. Verification of multiagent systems via
ordered binary decision diagrams: An algorithm and its implementation. In 3rd
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), pages 630–637. IEEE Computer Society, 2004.

[12] R. Ramanujam and S. P. Suresh. Information based reasoning about security
protocols. Electr. Notes Theor. Comput. Sci., 55(1), 2001.

[13] W. van der Hoek and M. Wooldridge. Model checking knowledge and time.
In D. Bos̆nac̆ki and S. Leue, editors, Model Checking Software, Proceedings of
SPIN 2002 (LNCS Volume 2318), pages 95–111. Springer, 2002.

[14] R. van der Meyden. Common knowledge and update in finite environments.
Information and Computation, 140(2):115–157, 1998.

[15] H.P. van Ditmarsch. Descriptions of game actions. Journal of Logic, Language
and Information, 11:349–365, 2002.

[16] H.P. van Ditmarsch. The russian cards problem. Studia Logica, 75:31–62, 2003.

[17] H.P. van Ditmarsch. The case of the hidden hand. In Liber Amicorum Dick de
Jongh, 2004. (electronically published) ISBN 90 5776 1289.

[18] J. van Eijck. Dynamic epistemic modelling. Technical report, Centrum voor
Wiskunde en Informatica, Amsterdam, 2004. CWI Report SEN-E0424.

[19] J. van Eijck and J. Ruan. Action emulation. manuscript, 2005.

[20] S. van Otterloo, W. van der Hoek, and M. Wooldridge. Model checking a
knowledge exchange scenario. Applied Artificial Intelligence, 18(9-10):937–952,
2004.

18

	Introduction
	Russian Cards
	Model Checker MCK
	Model Checker DEMO
	Model Checker MCMAS
	Comparison
	Conclusions
	References

