
A tableau method for public announcement
logics

Philippe Balbiani1, Hans van Ditmarsch2,
Andreas Herzig1, and Tiago de Lima1

1 Institut de Recherche en Informatique de Toulouse, France
2 Computer Science, University of Otago, New Zealand

Abstract. Public announcement logic is an extension of multi-agent
epistemic logic with dynamic operators to model the informational con-
sequences of announcements to the entire group of agents. We propose a
labelled tableau-calculus for this logic. We also present an extension of
the calculus for a logic of arbitrary announcements.

1 Introduction

Public announcement logic (PAL) was originally proposed in [1]. This is one from
a series of logics developed with the aim of modelling dynamics of knowledge and
belief in multi-agent settings. These logics, sometimes called dynamic epistemic
logics (DELs), deal with a number of epistemic scenarios and puzzles (see [2–
5] for some examples). PAL is the simplest of them. It extends epistemic logic
(EL) with dynamic operators [ϕ]. The formula [ϕ]ψ stands for ‘ψ is true after the
public announcement of ϕ’. Being the simplest form of agent communication,
public announcements are present in all DELs. Some recent works, such as [6–
8], show that they suffice to model dynamics of knowledge and belief in several
cases.

Traditionally, axiomatisations for DELs are obtained by means of reduction
axioms. In the particular case of PAL, they permit the translation of each PAL-
formula into an equivalent EL-formula. The well-known axiomatisation for PAL
is therefore obtained by just extending that of EL by the former reduction axioms
and by a necessitation inference rule for announcements operators.

It follows that both logics have the same expressivity. Nevertheless the trans-
lated formula is exponentially larger than the original one. That is, PAL is strictly
more succinct. This is the reason why PAL is considered to be more convenient
for reasoning about knowledge [5]. Curiously however, satisfiability check in PAL
is also PSPACE-complete [9].

In this paper, we present a tableau-calculus for PAL. The method decides
satisfiability without reducing PAL-formulas to another language. We also ex-
tended the calculus to deal with arbitrary public announcement logic (APAL). It
extends PAL by a modal operator ♦. The formula ♦ϕ stands for ‘there is a public
announcement after which ϕ is true’. Note that while all other DELs deal with
the question ‘what becomes true after the execution of a given action?’, APAL

2 Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima

deals with the question ‘is there an action whose execution makes a given for-
mula true?’. This was originally proposed in our technical report [10], including
the tableau calculi presented in this paper.

The organisation of the paper is as follows. In Section 2 we define syntax and
semantics of PAL. The tableau-calculus for this logic in presented in Section 3.
In Section 4 we transform it into a decision procedure. In Section 5 we expand
it to a tableau-calculus for APAL. Section 6 is dedicated to some related works
and discussion.

2 Syntax and semantics of public announcement logic

Assume a finite set of agents A and a countably infinite set of atoms P .

Definition 1 (Language). The language LPAL is inductively defined by the
following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ

where a ranges over A and p ranges over P .

For Kaϕ, read ‘agent a knows that ϕ’. For [ϕ]ψ, read ‘after public announce-
ment of ϕ, ψ is true’. Other propositional and epistemic connectives are defined
by usual abbreviations. The dual of Ka is K̂a and the dual of [ϕ] is 〈ϕ〉. For K̂aϕ
read ‘agent a considers it possible that ϕ’, for 〈ϕ〉ψ read ‘the announcement ϕ
can be made and after that ψ is true’.

Definition 2 (Structures). An epistemic model M = 〈W,R, V 〉 consists of
a non-empty set W of (factual) states (or ‘worlds’), accessibility R : A →
℘(W ×W), and a valuation V : P → ℘(W). For w ∈W , (M,w) is an epistemic
state (also known as a pointed Kripke model).

For R(a) we write Ra and for V (p) we write Vp. Given two states w,w′ in W ,
the intuitive meaning of wRaw′ is that at w, the agent a considers it possible
that the real world is w′.

If no restriction is imposed over the accessibility relations in R, then we call
the resultant logic K-PAL. If each Ra is reflexive, then the resultant logic is
called KT-PAL. If each Ra is reflexive and transitive, then we call the resultant
logic S4-PAL. And finally, if each Ra is reflexive, transitive and symmetric, then
we call the resultant logic S5-PAL. We continue with the semantics.

Definition 3. Assume an epistemic model M = 〈W,R, V 〉. The interpretation
of an arbitrary ϕ ∈ LPAL is defined by induction as follows:

M,w |= p iff w ∈ Vp
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= Kaϕ iff for all v ∈W, wRav implies M,v |= ϕ
M,w |= [ϕ]ψ iff M,w |= ϕ implies M |ϕ,w |= ψ

A tableau method for public announcement logics 3

In the last clause, the epistemic model M |ϕ = 〈Wϕ, Rϕ, V ϕ〉 is defined as follows:

Wϕ = {w′ ∈W |M,w′ |= ϕ}
Rϕa = Ra ∩ (Wϕ ×Wϕ)
V ϕp = Vp ∩Wϕ

Formula ϕ is valid in model M , notation M |= ϕ, if and only if for all w ∈ W ,
M,w |= ϕ. Let C be a class of models in {K,KT,S4,S5}. Formula ϕ is valid
in C-PAL, notation |=C-PAL ϕ, if and only if for all epistemic models M ∈ C,
M |= ϕ.

The dynamic modal operator [ϕ] is interpreted as an epistemic state transformer.
Announcements are assumed to be truthful, and this is commonly known by all
agents. Therefore, the model M |ϕ is the model M restricted to all the states
where ϕ is true, including access between states. For the semantics of the dual
operators, we have that M,w |= 〈ϕ〉ψ if and only if M,w |= ϕ and M |ϕ,w |= ψ.

3 A tableau method for public announcement logic

We present in this section a proof method for public announcement logic that
uses tableaux. Exactly in the same way as all other tableau methods, given a
formula ϕ, it systematically tries to construct a model for it. When it fails, ϕ is
inconsistent and thus its negation is valid.

In our representation formulas are prefixed by a number that represents pos-
sible worlds in the model (similar to [11, Chapter 8]). Formulas are also prefixed
by finite sequences of announcements corresponding to successive model restric-
tions. Given a finite sequence of formulas ψk = (ψ1 . . . ψk), for each 1 ≤ i ≤ k,
the sequence (ψ1 . . . ψi) is noted ψi whereas ψ0 = ε denotes the empty sequence.
In addition, we write M |ψk for M |ψ1| . . . |ψk.

Definition 4. A labelled formula is a triple λ = (ψk, x, ϕ) where

– ψk is a finite sequence (ψ1 . . . ψk) of formulas in LPAL;
– x ∈ N; and
– ϕ ∈ LPAL.

The part ψk, x is the label of the formula ϕ. It represents a possible world x in
the epistemic model that is successively restricted by the formulas in ψk.

Definition 5. A skeleton is a ternary relation Σ ⊆ (A×N×N) that represents
the accessibility relations. A branch is a pair b = (Λ,Σ) where Λ is a set of
labelled formulas and Σ is a skeleton.

Definition 6 (Tableau). A tableau is a set T i = {bi1, bi2, . . . } of branches. A
tableau T i+1 is obtained from a tableau T i if and only if T i+1 := (T i \ {bij})∪B
for some bij = (Λ,Σ) ∈ T i and some finite set B of branches generated from bij
by the application of one of the tableau rules defined below.

4 Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima

¬: if (ψk, x,¬¬ϕ) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ)}, Σ)}.
∧: if (ψk, x, ϕ1 ∧ ϕ2) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ1), (ψk, x, ϕ2)}, Σ)}.
∨: if (ψk, x,¬(ϕ1 ∧ ϕ2)) ∈ Λ, then B = {(Λ ∪ {(ψk, x,¬ϕ1)}, Σ), (Λ ∪ {(ψk, x,

¬ϕ2)}, Σ)}.
K: if (ψk, x,Kaϕ) ∈ Λ and (a, x, x′) ∈ Σ, then B = {(Λ0, Σ), . . . (Λk, Σ)},

where
Λ0 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ1 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′,¬ψ2)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′, ψ2), (ψ2, x′,¬ψ3)}

...
Λk−1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−2, x′, ψk−1), (ψk−1, x′,¬ψk)}
Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−1, x′, ψk), (ψk, x′, ϕ)}.

T: if (ψk, x,Kaϕ) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ)}, Σ)}.
4: if (ψk, x,Kaϕ) ∈ Λ and (a, x, x′) ∈ Σ, then B = {(Λ1, Σ), . . . (Λk+1, Σ)},

where
Λ0 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ1 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′,¬ψ2)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′, ψ2), (ψ2, x′,¬ψ3)}

...
Λk−1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−2, x′, ψk−1), (ψk−1, x′,¬ψk)}
Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−1, x′, ψk), (ψk, x′,Kaϕ)}.

5: if (ψk, x,Kaϕ) ∈ Λ and (a, x′, x) ∈ Σ, then B = {(Λ1, Σ), . . . (Λk+1, Σ)},
where
Λ0 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ1 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′,¬ψ2)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′, ψ2), (ψ2, x′,¬ψ3)}

...
Λk−1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−2, x′, ψk−1), (ψk−1, x′,¬ψk)}
Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−1, x′, ψk), (ψk, x′,Kaϕ)}.

K̂: if (ψk, x,¬Kaϕ) ∈ Λ, then B = {(Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−1, x′, ψk),
(ψk, x′,¬ϕ)}, Σ ∪ {(a, x, x′)})} for some x′ that does not appear in Λ.

[·]: if (ψk, x, [ϕ1]ϕ2) ∈ Λ, then B = {(Λ ∪ {(ψk, x,¬ϕ1)}, Σ), (Λ ∪ {(ψk, x, ϕ1),
(ψkϕ1, x, ϕ2)}, Σ)}.

〈·〉: if (ψk, x,¬[ϕ1]ϕ2) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ1), (ψkϕ1, x,¬ϕ2)}, Σ)}.

Given a formula ϕ ∈ LPAL, the tableau T 0 := {b01} := {({(ε, 0, ϕ)}, ∅)} is the
initial tableau for ϕ. A tableau for ϕ is a tableau that can be obtained from the
initial tableau for ϕ by successive applications of tableau rules.

The rules ¬, ∧ and ∨ are standard. The intuition behind rules [·] and 〈·〉 re-
flects the semantics of public announcements. The model (M,w) satisfies [ψ]ϕ if
and only if (M,w) satisfies ¬ψ or it satisfies ψ and the restricted model satisfies
ϕ. The rule 〈·〉 is the dual of rule [·]. However, rules for the knowledge operators
are quite different from their correspondent in EL. When we create a new world
x in M |ψ0|ψ1| . . . |ψk by the rule K̂, we must be sure that this world can con-
sistently belong to M and that it is not deleted by one of the announcements of

A tableau method for public announcement logics 5

the sequence. In the case of rules K, 4 and 5, the world x′ was already created,
but possibly in a model restricted by a different sequence of announcements. We
therefore must be sure that x′ would also be present in a model generated by
the sequence of announcements we have in hand.

The tableau method for K-PAL consists on rules ¬, ∧, ∨, K, K̂, [·] and 〈·〉.
For KT-PAL, we also have rule T. For S4-PAL, we have all rules for KT-PAL
plus rule 4. And for S5-PAL, we have all rules for S4-PAL plus rule 5.

Definition 7. Let b = (Λ,Σ) be a branch. The set Λ is blatantly inconsistent
if and only if {(ψk, x, ϕ), (ψk, x,¬ϕ)} ⊆ Λ or {(ψk, x, p), (χ`, x,¬p)} ⊆ Λ. The
branch b is closed if and only if Λ is blatantly inconsistent. The branch b is open
if and only if it is not closed. A tableau is closed if and only if all its branches
are closed. A tableau is open if and only if it has at least one open branch.

Note that (ψk, x, p) and (χ`, x,¬p) are inconsistent because boolean formulas
are preserved through announcements.

Example 1. Consider the formula [p∧¬Kap]¬(p∧¬Kap). In Figure 1 the tableau
method is used to show its validity in K-PAL. Note that in this formula the
announcement corresponds to the so-called Moore sentence [6]: “p is true and
agent a does not know it”. When it is true and publicly announced, all the
agents, in particular agent a, become aware of it. Then the sentence becomes
false just after being announced.

1. ε, 0,¬[p ∧ ¬Kap]¬(p ∧ ¬Kap)
2. ε, 0, p ∧ ¬Kap (〈·〉 : 1)
3. p ∧ ¬Kap, 0,¬¬(p ∧ ¬Kap) (〈·〉 : 1)
4. p ∧ ¬Kap, 0, p ∧ ¬Kap (¬ : 3)
5. p ∧ ¬Kap, 0, p (∧ : 4)
6. p ∧ ¬Kap, 0,¬Kap (∧ : 4)

7. ε, 1, p ∧ ¬Kap (a, 0, 1) ∈ Σ (bK : 6)

8. p ∧ ¬Kap, 1,¬p (bK : 6)
9. ε, 1, p (∧ : 7)
10. ε, 1,¬Kap (∧ : 7)

closed (8, 9)

Fig. 1. Closed tableau for the formula [p ∧ ¬Kap]¬(p ∧ ¬Kap).

Theorem 1 (Soundness and completeness). For C ∈ {K,KT,S4,S5}, there
is a closed C-PAL-tableau for ¬ϕ if and only if ϕ is C-PAL-valid.

Proof (Sketch:). From the left to the right. We prove that if ϕ is satisfiable, then
there is no closed tableau for ϕ. We do this by showing that all tableau rules
preserve satisfiability. In other words, let T i be a tableau for a given formula

6 Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima

that contains a branch b = (Λ,Σ), we show that if b is satisfiable, then the set of
branches B generated by any tableau rule has also at least one satisfiable branch
(details are omitted).

From the right to the left. We show that if a saturated tableau for a given
formula ϕ is open, then ϕ is satisfiable. Suppose that T∞ is an open saturated
tableau for a S5-PAL-formula ϕ. Then, it contains at least one open branch b =
〈Λ,Σ〉. We use this branch to construct an epistemic structure M = 〈W,R, V 〉
that satisfies ϕ as follows:

– W = {x ∈ N | x occurs in Λ};
– Ra = reflexive, transitive and symmetric closure of {(x, x′) | (a, x, x′) ∈ Σ};

and
– Vp = {x | (ψk, x, p) ∈ Λ for some ψk}.

And we also define a function f(x) = x for all x occurring in Λ.
Clearly, W is a non-empty set, Ra is an equivalence relation, Vp assigns a

subset of W to each proposition that appears on the tableau and if (a, x, x′) ∈
Σ, then f(x′)Raf(x). Thus, we now show that for all labelled formulas λ =
(ψk, x, ϕ) ∈ Λ, we have P(λ) defined as follows:

P(λ) =


M |ψ0, f(x) |= ψ1 and

...
M |ψk−1, f(x) |= ψk and
M |ψk, f(x) |= ϕ.

We do this by induction on the structure of λ (details are omitted).

4 Decision procedures for public announcement logics

In the way the method is defined, redundant applications of tableau rules are
allowed. In particular, they can be applied indefinitely often. Therefore it may
never stop. In this section we define strategies for the application of the tableau
rules. They are inspired by the “tableau construction” defined in [12].

When a set of labelled formulas Λ is not saturated under one or more tableau
rules, we say that λ ∈ Λ is a witness to this fact if the given rule, or rules, were
still not applied to λ. For convenience, we further use notation Λ(x) for the set
of labelled formulas of x, defined by {(ψk, ϕ) | (ψk, x, ϕ) ∈ Λ}. And we also
use notation Λ(x, a) for the set of labelled formulas of agent a in x, defined by
{(ψk,Kaϕ) | (ψk, x,Kaϕ) ∈ Λ} ∪ {(ψk,¬Kaϕ) | (ψk, x,¬Kaϕ) ∈ Λ}.

The strategy defined below is for S5-PAL. It constructs a tree of nodes s
whose labels are tableau branches L(s) = (Λs, Σs) generated by the application
of tableau rules to their antecedents.

Strategy 1 Let ϕ0 ∈ LPAL be given. Construct a tree as follows.

1. Start with a single node s0 (the root of the tree) whose label is the initial
branch for ϕ0, i.e., the pair L(s0) = (Λs0 , Σs0), where Λs0 = {(ε, 0, ϕ0)} and
Σs0 = ∅.

A tableau method for public announcement logics 7

2. Repeat until neither step 2(a) nor step 2(b) below applies.

(a) World saturation: if s is a leaf with label L(s) such that L(s) is open and
not saturated under rules ¬, ∧, rt, 〈·〉, ∨, [·], K, 4 and 5, and λ ∈ Λs
is a witness to this fact, then do:
i. if λ = (ψk, x,¬¬ϕ) then create a successor s′ such that Λs′ = Λs ∪
{(ψk, x, ϕ)} and Σs′ = Σs. And then go to step 2.

ii. if λ = (ψk, x, ϕ1 ∧ ϕ2) then create a successor s′ such that Λs′ =
Λs ∪ {(ψk, x, ϕ1), (ψk, x, ϕ2)} and Σs′ = Σs. And then go to step 2.

iii. if λ = (ψk, x,Kaϕ) then create a successor s′ such that Λs′ = Λs ∪
{(ψk, x, ϕ)} and Σs′ = Σs. And then go to step 2.

iv. if λ = (ψk, x,¬[ϕ1]ϕ2) then create a successor s′ such that Λs′ =
Λs ∪ {(ψk, x, ϕ1), (ψkϕ1, x, ϕ2)} and Σs′ = Σs. And then go to step
2.

v. if λ = (ψk, x,¬(ϕ1 ∧ ϕ2)) then create two successors s1 and s2 such
that Λs1 = Λs ∪ {(ψk, x,¬ϕ1)} and Σs1 = Σs, and Λs2 = Λs ∪
{(ψk, x,¬ϕ2)} and Σs2 = Σs. And then go to step 2.

vi. if λ = (ψk, x, [ϕ1]ϕ2) then create two successors s1 and s2 such
that Λs1 = Λs ∪ {(ψk, x,¬ϕ1)} and Σs1 = Σs, and Λs2 = Λs ∪
{(ψk, x, ϕ1), (ψkϕ1, x, ϕ2)} and Σs2 = Σs. And then go to step 2.

vii. if λ = (ψk, x,Kaϕ) and (a, x, x′) ∈ Σ, then for each i ∈ {0, 1, . . . , k−
1}, create a successor si such that Λsi = Λs∪{(ψj , x′, ψj+1) | 0 ≤ j <
i}∪{(ψi, x′,¬ψi+1)} and Σsi = Σs, and also create a successor node
sk such that Λsk

= Λs ∪ {(ψj , x′, ψj+1) | 0 ≤ j < k} ∪ {(ψk, x′, ϕ)}
and Σsk

= Σs. And then go to step 2.
viii. if λ = (ψk, x,Kaϕ) and (a, x, x′) ∈ Σ, then for each i ∈ {0, 1, . . . , k−

1}, create a successor si such that Λsi = Λs∪{(ψj , x′, ψj+1) | 0 ≤ j <
i}∪{(ψi, x′,¬ψi+1)} and Σsi = Σs, and also create a successor node
sk such that Λsk

= Λs∪{(ψj , x′, ψj+1) | 0 ≤ j < k}∪{(ψk, x′,Kaϕ)}
and Σsk

= Σs. And then go to step 2.
ix. if λ = (ψk, x,Kaϕ) and (a, x′, x) ∈ Σ, then for each i ∈ {0, 1, . . . , k−

1}, create a successor si such that Λsi = Λs∪{(ψj , x′, ψj+1) | 0 ≤ j <
i}∪{(ψi, x′,¬ψi+1)} and Σsi = Σs, and also create a successor node
sk such that Λsk

= Λs∪{(ψj , x′, ψj+1) | 0 ≤ j < k}∪{(ψk, x′,Kaϕ)}
and Σsk

= Σs. And then go to step 2.
(b) Create a new world: if s is a leaf with label L(s) such that L(s) is open,

world-saturated and not saturated under rule K̂ and λ = (ψk, x,¬Kaϕ)
is a witness to this fact, then do steps i, ii and iii below. And then go to
step 2.
i. generate a new natural number x′ that does not appear in Σs and

create a label L′ = (Λ′, Σ′), where Λ′ = {(ψj , x′, ψj+1) | 0 ≤ j <
k} ∪ {(ψk, x′,¬ϕ)} and Σ′ = {(a, x, x′)}.

ii. if there is a sequence of natural numbers y0, y1, . . . , yn such that yn =
x and for all 0 ≤ i < n, (a, yi, yi+1) ∈ Σs and Λs(x, a) = Λs(y0, a)
and Λ′ ⊆ Λs(y1), then create a successor s′ such that Λs′ = Λs and
Σs′ = Σs ∪ {(a, x, y1)}.

8 Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima

iii. if step 2(b)ii does not apply, then create a successor s′ such that
Λs′ = Λs ∪ Λ′ and Σs′ = Σs ∪Σ′.

3. If s is a leaf and its label L(s) is open, then return true, else return false.

Simple modifications of Strategy 1 above give us strategies for the other logics
we consider here. A strategy for S4-PAL can be obtained by removing step 2(a)ix.
By removing steps 2(a)viii and 2(a)ix, we obtain a strategy for KT-PAL. And
by removing steps 2(a)iii, 2(a)viii and 2(a)ix we obtain a strategy for K-PAL.

Note that step 2(b)ii has a loop test. This is crucial to guarantee that the
process halts for S4-PAL and S5-PAL. Before applying rule K̂, which means that
a new “world” x′ will be created, it verifies if there is no loop.

We continue by proving termination. After that we prove soundness and
completeness for S5-PAL only. Proofs for the other logics are similar and left to
the reader. We first need a definition and a lemma.

Definition 8. The set of labelled sub-formulas of ϕ, Sub(ϕ), and the set of
labelled sub-formulas of ϕ and its negations, Sub+(ϕ), are recursively defined as
follows:

Sub(p) := {(ε, p)}
Sub(¬ϕ) := Sub(ϕ) ∪ {(ε,¬ϕ)}

Sub(ϕ ∧ ψ) := Sub(ϕ) ∪ Sub(ψ) ∪ {(ε, ϕ ∧ ψ)}
Sub(Kaϕ) := Sub(ϕ) ∪ {(ε,Kaϕ)}
Sub([ψ]ϕ) := Sub(ψ) ∪ {(ψχk, ϕ′) | (χk, ϕ′) ∈ Sub(ϕ)} ∪ {(ε, [ψ]ϕ)}

Sub+(ϕ) := Sub(ϕ) ∪ {(ψk,¬ϕ′) | (ψk, ϕ′) ∈ Sub(ϕ)}

Lemma 1.

1. |Sub(ϕ0)| ≤ len(ϕ0).
2. For all (ψk, ϕ) ∈ Sub(ε, ϕ0), k ≤ len(ϕ0).
3. |Sub+(ϕ)| ≤ 2× len(ϕ).

Items 1 and 2 are proved in [9] and 3 is an obvious consequence of them.

Theorem 2. For all ϕ ∈ LPAL, Strategy 1 creates a finite tree for ϕ.

Proof. Let a LPAL-formula ϕ be given. Because Sub+(ϕ) is finite, each step
generates a finite number of immediate successors. Then, by the fact that the
initial tree for ϕ is a single node (and, in particular, it is finite), each step of the
strategy generates a finite tree.

We now show that each step is applied finitely often. Let len(ϕ) = n. By
Lemma 1, the number of labelled sub-formulas of ϕ and its negations is bounded
by 2n. Then after 2n applications of step 2(a) all the leafs of the tree are world-
saturated. This means that there can be at most 2n applications of step 2(a)
between two subsequent applications of step 2(b).

A tableau method for public announcement logics 9

Now, note that there exists at most 22n different subsets of Sub+(ϕ). This
means that the loop tests can fail at most 22n times. It immediately follows
that step 2(b) can be applied at most O(2n) times. Therefore, Strategy 1 always
creates a finite tree and thus always halts.

Theorem 3. For all ϕ ∈ LPAL, ϕ is S5-PAL-satisfiable if and only if Strategy
1 for ϕ returns true.

Proof. From the left to the right. We show that if ϕ is S5-PAL-satisfiable, then
the tree for ϕ generated by Strategy 1 will have at least one leaf whose label is an
open tableau branch. We do this by showing that all steps preserve satisfiability.
This proof is along the lines of the first part of the proof of Theorem 1. The
only remarkable difference is the step 2(b)ii: suppose that (ψk, x,¬Kaϕ) ∈ Λs
and that the loop test succeeds. This means that there is a sequence y0,y1,. . . ,yn
such that yn = x and for all 0 ≤ i < n, (a, yi, yi+1) ∈ Σs, and s has a successor
s′ such that Λs′ = Λs and Σs′ = Σs∪{(a, x, y1)}. We then consider the unfolded
tableau branch L′ = (Λ′, Σ′) such that Λ′ = Λs′∪{(χ`, x′, ϕ′) | (χ`, y1, ϕ′) ∈ Λs′}
and Σ′ = (Σs \ {(a, x, y1)}) ∪ {(a, x, x′), (a, x′, y2)}. Clearly, L′ is satisfiable if
and only if L(s′) is satisfiable. By hypothesis, there is an epistemic structure
M = 〈W,R, V 〉 and a function f : N → W that satisfy L(s). Then there exists
w ∈Wψk

such that f(x)Rψ
k

a w. We thus consider the function f ′ : N →W such
that for all integer x that occur in Λ′, f ′(x) := f(x) and f ′(x′) := w. Therefore
L(s′) is satisfiable.

From the right to the left. If Strategy 1 for ϕ returns true, then the tree
for ϕ has a leaf s such that L(s) is open and saturated. Then we use this node
to construct a model M = 〈W,R, V 〉 that satisfies ϕ as follows. W contains all
x that appear in Σs; R is the reflexive, transitive and symmetric closure of all
triples (a, x, x′) ∈ Σs; and each Vp contains all x such that (ψk, x, p) ∈ Λs for
some ψk. We then proceed by induction on the length of labelled formulas where
the induction hypothesis is: if L(s) is an open saturated branch that contains
(ψk, x, ϕ′) and len(ψk, x, ϕ′) < n, then M |ψ0, x |= ψ1, . . . , M |ψk−1, x |= ψk, and
M |ψk, x |= ϕ′. This is done along the lines of the second part of the proof of
Theorem 1. The details are left to the reader.

The depth of the tree created in Strategy 1 is exponential on the size of
the input formula. Therefore, this algorithm is not optimal. Below, we present
optimal strategies for logics K-PAL and KT-PAL.

Similarly to the “tableau construction” defined in [12], instead of labelling
the nodes of the tree with entire tableau branches, in our next strategy, node
labels contain formulas of only one world x. Hence, we now use pairs of the
form λ = (ψk, ϕ) that, for convenience, are called labelled formulas as well (note
that x is no longer necessary). But our algorithm differs from that of [12] in
a crucial point: suppose that L(s) contains the formula (ψk,Kaϕ). When an
a-successor node s′ of s is created, one cannot immediately add the labelled
formula (ψk, ϕ) to L(s′). The reason is that the world s′ can have being deleted
by some announcement in the sequence ψk (Cf. tableau rules K, 4 and 5). Then,

10 Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima

in step 2(b), before adding this labelled formula to L(s′), the algorithm “verifies”
that each ψi is true in s′. This is implemented with an auxiliary set Γs′ .

Strategy 2 Let ϕ0 ∈ LPAL be given. Construct a tree as follows.

1. Start with a single node s0 (the root of the tree) whose label is the pair
L(s0) = (Λs0 , Γs0), where Λs0 = {(ε, ϕ0)} and Γs0 = ∅.

2. Repeat until neither (a) nor (b) below applies:
(a) Local saturation: if s is a leaf with label L(s) such that L(s) is open and

not saturated under rules ¬, ∧, ∨, K and rt, and λ ∈ Λs is a witness
to this fact, then do:
i. if λ = (ψk,¬¬ϕ) ∈ Λs then create a successor s′ such that Λs′ =
Λs ∪ {(ψk, ϕ)} and Γs′ = Γs. And then go to step 2.

ii. if λ = (ψk, ϕ1 ∧ ϕ2) ∈ Λs then create successor s′ such that Λs′ =
Λs ∪ {(ψk, ϕ1), (ψk, ϕ2)} and Γs′ = Γs. And then go to step 2.

iii. if λ = (ψk,Kaϕ) ∈ Λs then create successor s′ such that Λs′ =
Λs ∪ {(ψk, ϕ)} and Γs′ = Γs. And then go to step 2.

iv. if λ = (ψk,¬[ϕ1]ϕ2) ∈ Λs then create a successor s′ such that Λs′ =
Λs ∪ {(ψk, ϕ1), (ψkϕ1, ϕ2)} and Γs′ = Γs. And then go to step 2.

v. if λ = (ψk,¬(ϕ1∧ϕ2)) ∈ Λs then create two successors s1 and s2 such
that Λs1 = Λs ∪{(ψk, ϕ1)} and Γs1 = Γs, and Λs2 = Λs ∪{(ψk, ϕ2)}
and Γs2 = Γs. And then go to step 2.

vi. if λ = (ψk, [ϕ1]ϕ2) ∈ Λs then create two successors s1 and s2 such
that Λs1 = Λs∪{(ψk,¬ϕ1)} and Γs1 = Γs, and Λs2 = Λs∪{(ψk, ϕ1),
(ψkϕ1, ϕ2)} and Γs2 = Γs. And then go to step 2.

vii. if λ = (ψk, ϕ) ∈ Γs then for each i ∈ {0, 1, . . . , k−1}, create a succes-
sor si such that Λsi = Λs ∪ {(ψj , ψj+1) | 0 ≤ j < i} ∪ {(ψi,¬ψi+1)}
and Γsi

= Γs \ {λ}, and also create a successor sk such that Λsk
=

Λs ∪ {(ψj , ψj+1) | 0 ≤ j < k} ∪ {(ψk, ϕ)} and Γsk
= Γs \ {λ}. And

then go to step 2.
(b) Create new worlds: if s is a leaf with label L(s) which is local saturated

and not saturated under rule K̂, then for each labelled formula of the
form λ = (ψk,¬Kaϕ) ∈ Λs that is witness to this, create an a-successor
s′ such that Λs′ = {(ψj , ψj+1) | 0 ≤ j < k} ∪ {(ψk,¬ϕ)} and Γs′ =
{(χk′

, ϕ′) | {(χk′
,Kaϕ

′)} ∈ Λs}). And then go to step 2.
(c) Mark nodes: if the node s with label L(s) is not marked sat, then mark

it sat if either:
– Λs is not local saturated and one of its successor is marked sat;
– Λs is local saturated, it is not blatantly inconsistent and Λs does not

contain labelled formulas of the form (ψk,¬Kaϕ); or
– Λs is local saturated and s has successors and all of them are marked

sat.
3. If the root of the tree is marked sat, then return true, else return false.

The strategy above can be modified for deal with other two logics we consider
here. For K-PAL we remove step 2(a)iii, and for S4-PAL, we replace step 2(b)
by the following:

A tableau method for public announcement logics 11

2(b’) Create new worlds: if s is a leaf with label L(s) which is local saturated
and not saturated under rule K̂, then for each labelled formula of the
form λ = (ψk,¬Kaϕ) ∈ Λs that is a witness to this, then do steps i, ii
and iii below. And then go to step 2.
i. create a label L′ = (Λ′, Γ ′), where Λ′ = {(ψj , ψj+1) | 0 ≤ j <

k}∪{(ψk,¬ϕ)} and Γ ′ = {(χk′
, ϕ′), (χk

′
,Kaϕ

′) | (χk′
,Kaϕ

′) ∈ Λs}).
ii. if there is no node s′′ in the path from the root to s such that Ls′′ =

L′, then create an a-successor node s′ with label L(s′) = L′.
iii. if step 2(b)ii does not apply, then create an a-arrow to the node s′′

such that L(s′′) = L′.

Note that we also have a loop test in step 2(b’)ii. The idea is the same as
in Strategy 1, but here, we also compare the sets Γ . We also remark that it is
not possible to use the same idea to define a strategy for S5-PAL. We address
this question in Section 6. In the sequel, we prove termination, soundness and
completeness for S4-PAL only. We leave other cases to the reader.

Theorem 4. For all ϕ ∈ LPAL, Strategy 2 creates a finite tree for ϕ.

Proof. The proof is essentially the same as for Theorem 2.

Theorem 5. For all ϕ ∈ LPAL, ϕ is S4-PAL-satisfiable if and only if Strategy
2 for ϕ returns true.

Proof. From the left to the right. We show that if ϕ is S4-PAL-satisfiable, then
the tree for ϕ generated by Strategy 2 has its root marked sat. We do this by
showing that all steps preserve satisfiability. This proof is along the lines of the
first part of proof of Theorem 1. The differences are steps 2(a)vii and 2(b’). Note
that step 2(a)vii performs essentially the same task as steps 2(a)vii and 2(a)viii
of Strategy 1. So their proof of soundness is very similar. For step 2(b’), note
that it is similar to step 2(b) of Strategy 1. So its proof of soundness is also
similar. We omit details here.

From the right to the left. If Strategy 2 for ϕ returns true, then the root
s0 is marked sat. Then, there is a sub-tree such that all its nodes are marked
sat. We use this tree to construct a model M = 〈W,R, V 〉 that satisfies ϕ in
the following way. W contains all s in the sub-tree such that s is local saturated;
each Ra is the reflexive and transitive closure of pairs (s, s′) of nodes in W such
that s′ is a descendent of an a-successor of s; and each Vp contains all s ∈ W
such that (ψk, p) ∈ Λs for some ψk. The proof continues along the lines of the
second part of the proof of Theorem 1. We omit details here.

We continue by showing computational complexity of Strategy 2 for K-PAL
and KT-PAL. Remark that no optimal procedure is achieved for S4-PAL. We
discuss this in Section 6.

Theorem 6 (Complexity). The tableau system for K-PAL and KT-PAL can
be implemented in polynomial space.

12 Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima

Proof. We first show that the height of the trees, generated by Strategy 2, are
polynomial in len(ϕ). The tree construction starts with the root node s0 whose
label is L(s0) = ({λ0}, ∅). Suppose that len(λ0) = n. Note that by Lemma 1 step
2(a) can be applied at most 2n times before reach a node s such that Λs is either
closed or saturated. Also note that at this stage Γs is empty. Now, suppose that
Λs is local saturated. Also suppose that s′ is a local saturated descendent of an
a-successor of s. Note that the K-modal depth of Λs′ is less than that of Λs.
Because the number of Ka operators in ϕ is at most n, the root of the tree can
have at most n a-descendents in the same branch of the tree. From this fact and
the observation made before, it follows that the tree has height at most O(n2).

We now prove that a depth first exploration of the trees can be made using a
polynomial amount of memory. To see this, remember that by Lemma 1 we have
that for all nodes s in the tree, |L(s)| ≤ 4n. Then we can use a vector of 4n bits
to encode the label of each node in the tree. We do this by setting to 1 the bit
that corresponds to the formulas that are present in L(s). Each step of Strategy
2 can produce at most 2n different immediate successors. Then, for each node,
we can use a vector of 4n2 bits to memorise all the choices to be explored after
the backtrack. It follows that we need at most O(n5) bits of memory to explore
the entire tree.

5 A tableau method for arbitrary announcement logic

Consider the extension of public announcement logic proposed in [10] wherein we
can express what becomes true, whether known or not, without explicit reference
to announcements realising that. For example, when p is true, it becomes known
by announcing it:

〈p〉Kap

We can also describe ‘there is an announcement after which the agent knows p’
straightforwardly as

♦Kap

In case p is false, we can achieve ♦Ka¬p instead. The formula ♦(Kap ∨Ka¬p)
is valid. We call the logic arbitrary public announcement logic. For more infor-
mation, see [10, 13].

Definition 9 (Language and semantics). The language LAPAL of arbitrary
public announcement logic is inductively defined as

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [ϕ]ϕ | �ϕ

where a ∈ A and p ∈ P . The extra clause needed for the semantics is as follows
(note the restriction to the language of PAL):

M,w |= �ϕ iff for all ψ ∈ LPAL, M,w |= [ψ]ϕ

A tableau method for public announcement logics 13

For �ϕ, read ‘after every public announcement, ϕ is true’. The dual of � is ♦.
For ♦ϕ, read ‘there is an announcement after which ϕ’. For the semantics of
the dual operator, we have that: M,w |= ♦ϕ iff there is a ψ ∈ LPAL such that
M,w |= 〈ψ〉ϕ.

Similarly as done in Section 2, we define K-APAL, KT-APAL, S4-APAL and
S5-APAL.

Example 2. A valid formula of the logic is ♦(Kap ∨ Ka¬p). To prove this, let
(M,w) be arbitrary. Either M,w |= p or M,w |= ¬p. In the first case, M,w |=
♦(Kap ∨Ka¬p) because M,w |= 〈p〉(Kap ∨Ka¬p) – the latter is true because
M,w |= p and M |p, w |= Kap; in the second case, we analogously derive M,w |=
♦(Kap ∨Ka¬p) because M,w |= 〈¬p〉(Kap ∨Ka¬p).

We now provide an extension of the tableau method for public announcement
logic to a tableau method for arbitrary public announcement logic. We reuse
labelled formulas, skeleton and branch as introduced in Definitions 4 and 5, as
well as the notions of closed and open branch as in Definition 7.

Definition 10 (Tableau (continuation)). A tableau for the formula ϕ ∈
LAPAL is defined as in Definition 6. The tableau rules are the same, plus the
following ones.

�: If (ψk, n,�ϕ) ∈ Λ, then B = {〈Λ∪ {(ψk : n : [χ]ϕ)}, Σ〉} for any χ ∈ LPAL.
♦: If (ψk, n,¬�ϕ) ∈ Λ, then B = {〈Λ ∪ {(ψk : n : ¬[p]ϕ)}, Σ〉} for some p ∈ P

that does not occur in Λ.

These rules are similar to Smullyan’s tableau rules for closed first-order for-
mulas [14, 15]. They reflect that the operator � quantifies over announcements.
In tableau rule �, this operator is eliminated by replacing it by an arbitrary
LPAL-formula. Tableau rule ♦ is more curious though: instead of replacing the
operator by an announcement of a LPAL-formula ψ, we replace it by an an-
nouncement of a new propositional letter. The intuitive argument here is the
following. Since this new propositional letter does not occur in the branch, we
are free to give it an arbitrary interpretation to represent a specific restriction in
the model. In this way, we make the calculus simpler because it is not necessary
to make a ‘good choice’ at the moment of the application of rule ♦.

Example 3. Consider the formula [♦Kap]Kap. Note that it is valid in S5-APAL
since its announcement corresponds to the sentence: ‘there is an announcement
after which agent a knows that p’. That is, it is publicly announced that p can
be known. This means that p is true and thus now agent a knows it. In Figure
2 we use the tableau method to show that this formula is S5-APAL-valid.

Theorem 7 (Soundness and completeness (continuation)). For all ϕ ∈
LAPAL, there is a closed tableau for ¬ϕ if and only if ϕ is S5-APAL-valid.

Proof. This is an easy extention to proof of theorem 1 (details are omitted).

14 Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima

1. ε, 0,¬[¬�¬Kap]Kap
2. ε, 0,¬�¬Kap (〈·〉 : 1)
3. ¬�¬Kap, 0,¬Kap (〈·〉 : 1)
4. ε, 0,¬[p]¬Kap (♦ : 2)
5. ε, 0, p (〈·〉 : 4)
6. p, 0,¬¬Kap (〈·〉 : 4)
7. p, 0, Kap (¬ : 6)

8. ε, 1,¬�¬Kap (a, 0, 1) ∈ Σ (bK : 3)

9. ¬�¬Kap, 1,¬p (bK : 3)
10. p, 1, p (K : 7)

closed (9, 10)

Fig. 2. Closed tableau for the formula [♦Kap]Kap.

This tableau method can be used for giving us a proof of semi-decidability
of this logic.

Theorem 8. The set of S5-APAL-valid formulas of LAPAL is recursively enu-
merable.

Proof. First note that the same argument used in the proof of Theorem 2 can
be used to show that each tableau rule generates a finite tableau. Then, by
completeness, we have that for all formulas ϕ, all closed tableaux for ϕ are
finite. Then, consider a procedure that enumerates all pairs (ϕ, T) such that T
is a closed tableau. For each pair, the procedure verifies if T is a tableau for ¬ϕ.
When the checking is finished, it generates another pair and performs another
round of checking, and so on ad infinitum.

6 Related work and discussion

We considered versions of PAL where the underlying epistemic logic obeys com-
bination of principles T, 4 and 5. We did not consider the axiom D (Kaϕ →
¬Ka¬ϕ) alone, i.e., epistemic logics such as KD and KD45. The reason is that
in both systems the axiom T (Kaϕ → ϕ) is derivable for any boolean formula
ϕ. To see this, note that if we have axiom D, then (Kaϕ∧¬ϕ) → 〈¬ϕ〉⊥ is valid
for any boolean formula ϕ.

Recently, another tableau method for S5-PAL was proposed by [16]. Apart
from some aesthetical differences, this method is very similar to ours. However,
no proof of decidability is provided.

Our Strategy 2 is based in the optimal strategy for EL presented in [12].
Note however that instead of our rule 5, Halpern and Moses use a rule that
propagates all formulas prefixed by Ka and K̂a operators to the a-successors.
As this rule alone is not complete for S5, they also need to saturate the nodes
under sub-formulas (which is called full propositional tableau). But note that
such a rule would not be sound in our setting. For example, suppose that in
node s with label L(s) we have that (ψ,¬Kaϕ) ∈ Λs. Because it may be the

A tableau method for public announcement logics 15

case that Λs also contains (ε,¬ψ), we cannot add neither (ψ,ϕ) nor (ψ,¬ϕ) to
Λs under the risk of making it blatantly inconsistent. Then, we cannot have our
set of formulas saturated under sub-formulas in this way. An optimal strategy
for S4-PAL seems to be impossible too. An example is the formula ¬Kap0 ∧
Ka[q1]Kap1 ∧Ka[q2]Kap2 ∧ · · · ∧Ka[qi]Kapi, for which Strategy 2 generates a
tree containing a branch with 2i different a-successors.

7 Conclusion

We provided a proof system for PAL with and without positive introspection
that avoids translation to other languages as done by [9]. It also extends to
APAL.

As mentioned before, proof systems for DELs are usually built from reduction
axioms. In all cases, the dynamic operators can be eliminated and the formula
is translated into a simpler language. However, the price is an exponentially
larger formula to be evaluated. As proved here and also in [9], there are cases
where this price is not mandatory. Therefore, one of the raised questions is
whether direct methods, like the method presented here, can be also applied to
the other languages. In this direction, we envisage some “natural” extensions to
our approach. For instance, PAL with common knowledge.

Acknowledgements

Hans van Ditmarsch appreciate support from the NIAS (Netherlands Institute
for Advanced Study in the Humanities and Social Sciences) project ‘Games, Ac-
tion, and Social Software’ and the NWO (Netherlands Organisation for Scientific
Research) Cognition Program for the Advanced Studies grant NWO 051-04-120.

Tiago de Lima is supported by the Programme Alßan, the European Union
Programme of High Level Scholarships for Latin America, scholarship number
E04D041703BR.

All the authors thank the anonymous reviewers for their useful comments.

References

1. Plaza, J.: Logics of public communications. In Emrich, M.L., et al., eds.: Proceed-
ings of ISMIS. (1989) 201–216

2. Baltag, A., Moss, L. Solecki, S.: The logic of public announcements, common
knowledge, and private suspicious. Technical Report SEN-R9922, Centrum voor
Wiskunde en Informatica, Amsterdam, Netherlands (1999)

3. Gerbrandy, J.: Bisimulations on Planet Kripke. PhD thesis, University of Amster-
dam, Amsterdam, Netherlands (1999)

4. Kooi, B.: Expressivity and completeness for public update logic via reduction
axioms. Journal of Applied Non-Classical Logics (2007) To appear.

5. van Benthem, J., van Eijck, J., Kooi, B.: Logics for communication and change.
Manuscript (2005)

16 Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima

6. van Ditmarsch, H., Kooi, B.: The secret of my success. Synthese (151) (2006)
201–232

7. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Playing cards with Hintikka.
Australasian Journal of Logic (3) (2005) 108–134

8. Herzig, A., De Lima, T.: Epistemic actions and ontic actions: A unified logical
framework. In Sichman, J., et al., eds.: IBERAMIA-SBIA. Volume 4140 of Lecture
Notes in Artificial Intelligence., Spriniger-Verlag (2006) 409–418

9. Lutz, C.: Complexity and succintness of public announcement logic. In Stone, P.,
Weiss, G., eds.: Proceedings of AAMAS. (2006) 137–144

10. Balbiani, P., van Ditmarsch, H., Herzig, A., De Lima, T.: What becomes true
after arbitrary announcements. Technical Report OUCS-2006-06, Department of
Computer Science, University of Otago, Dunedin, New Zealand (2006)

11. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Reidel Publishing
Company (1983)

12. Halpern, J., Moses, Y.: A guide to compleness and complexity for modal logics of
knowledge and belief. Artificial Intelligence 54 (1992) 311–379

13. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.:
What can we achieve by arbitrary announcements? A dynamic take on Fitch’s
knowability. (2007) submitted.

14. Smullyan, R.M.: First-Order Logic. Springer-Verlag (1968)
15. Letz, R.: Tableau methods for modal and temporal logics. In D’Agostino, M.,

et al., eds.: Handbook of Tableau Methods. Kluwer Academic Publishers (1999)
16. de Boer, M.: Praktische bewijzen in public announcement logica (Practical proofs

in public announcement logic). Master’s thesis, Department of Artificial Intelli-
gence, University of Groningen (2006) in Dutch.

