
Sum and Product in Dynamic Epistemic Logic∗

H.P. van Ditmarsch†, J. Ruan‡, and R. Verbrugge§

Abstract

The Sum-and-Product riddle was first published in [Fre69]. We provide
an overview on the history of the dissemination of this riddle through the
academic and puzzle-math community. This includes some references to
precursors of the riddle, that were previously (as far as we know) unknown.

We then model the Sum-and-Product riddle in a modal logic called
public announcement logic. This logic contains operators for knowledge,
but also operators for the informational consequences of public announce-
ments. The logic is interpreted on multi-agent Kripke models. The infor-
mation in the riddle can be represented in the traditional way by number
pairs, so that Sum knows their sum and Product their product, but also
as an interpreted system, so that Sum and Product at least know their
local state. We show that the different representations are isomorphic.
We also provide characteristic formulas of the initial epistemic state of
the riddle. We analyze one of the announcements towards the solution
of the riddle as a so-called unsuccessful update: a formula that becomes
false because it is announced.

The riddle is then implemented and its solution verified in the epis-
temic model checker DEMO. This can be done, we think, surprisingly
elegantly. The results are compared with other work in epistemic model
checking and the complexity is experimentally investigated for several rep-
resentations and parameter settings.

Keywords: modal logic, puzzle math, dynamic epistemic logic,
characteristic formula, model checking

∗Contact author is Hans van Ditmarsch. Hans and Ji appreciate support from AOARD
research grant AOARD-05-4017. Hans and Rineke appreciate support from the Netherlands
Organization for Scientific Research (NWO). Rineke also thanks the Netherlands Institute
for Advanced Study in the Humanities and Social Sciences (NIAS) for support. A short-
ened version of Sections 7 and 8, including Figure 2, have previously appeared in conference
proceedings [vDRV05]. We thank three anonymous referees of the Journal for Logic and
Computation for their valuable comments. For their helpfulness in our attempts to uncover
the history of the riddle or other helpful comments we thank Henk Barendregt, Johan van
Benthem, J. Boersma, N.G. de Bruin, John Conway, Dirk van Dalen, Paul Drijvers, Jan
van Eijck, Peter van Emde Boas, Solomon Feferman, Martin Gardner, Mimi Gardner, Joe
Halpern, Marty Isaacs, Dick de Jongh, J.H. van Lint, John McCarthy, Alice ter Meulen, Ron
van der Meyden, Rohit Parikh, Mike Paterson, Albert de Rijk, Lee Sallows, Larry Tesler,
Frank Thuijsman, Jaap Top, Fer-Jan de Vries, and Rob van der Waall.
†Computer Science, University of Otago, New Zealand, hans@cs.otago.ac.nz
‡Computer Science, University of Liverpool, United Kingdom, jruan@csc.liv.ac.uk
§Artificial Intelligence, University of Groningen, the Netherlands, rineke@ai.rug.nl

1



Figure 1: The original publication

1 Introduction

The following problem, or riddle, was first stated in the Dutch-language math-
ematics journal Nieuw Archief voor Wiskunde in 1969 [Fre69] and subsequently
solved in [Fre70]. A translation of the original formulation is:

A says to S and P : I have chosen two integers x, y such that 1 < x <
y and x+ y ≤ 100. In a moment, I will inform S only of s = x+ y,
and P only of p = xy. These announcements remain private. You
are required to determine the pair (x, y).

He acts as said. The following conversation now takes place:

i. P says: “I do not know it.”

ii. S says: “I knew you didn’t.”

iii. P says: “I now know it.”

iv. S says: “I now also know it.”

Determine the pair (x, y).

The announcements by the agents appear to be about ignorance and knowledge
only. But actually the agents learn numerical facts from each other’s announce-
ments. For example, the numbers cannot be 2 and 3, or any other pair of prime
numbers, nor for example 2 and 4, because in all those cases Product would
immediately have deduced the pair from their product. As a somewhat more
complicated example, the numbers cannot be 14 and 16: if they were, their sum
would be 30. This is also the sum of the prime numbers 7 and 23. But then,
as in the previous example, Product (P ) would have known the numbers, and
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therefore Sum (S)—if the sum had been 30—would have considered it possible
that Product knew the numbers. But Sum said that he knew that Product
didn’t know the numbers. So the numbers cannot be 14 and 16. Sum and
Product learn enough, by eliminations of which we gave some examples, to be
able to determine the pair of numbers: the unique solution of the problem is
the pair (4, 13).

The knowledge that agents have about mental states of other agents and,
in particular, about the effect of communications, is vital for solving impor-
tant problems in multi-agent systems, both for cooperative and for competitive
groups. Dynamic epistemic logic was developed to study the changes brought
about by communication in such higher-order knowledge of other agent’s and
of group knowledge [BMS98, Ger99]. The Sum-and-Product puzzle presents a
complex illustrative case of the strength of specifications in dynamic epistemic
logic and of the possibilities of automated model checking, and both can also be
used in real multi-agent system applications. As far as we know, we are the first
to use an automated model checker to tackle the Sum-and-Product problem.

Overview of content Section 2 gives an overview of the dissemination of
the riddle through the academic community, and suggests some precursors. In
Section 3 we introduce public announcement logic. In Section 4 we model the
Sum-and-Product problem in public announcement logic. Section 5 provides
the general setting of unsuccessful updates of which some announcements in
the riddle provide examples. Section 6 models the Sum-and-Product problem,
alternatively, as an interpreted system. In Section 7 we introduce the epistemic
model checker DEMO. In Section 8 we implement the Sum-and-Product specifi-
cation of Section 4 in DEMO, and we verify its epistemic features. In particular,
we compare the model checking results in DEMO to our experiences with other
epistemic model checkers. In Section 9, we investigate the complexity of model
checking for the Sum-and-Product problem in DEMO both theoretically and
experimentally.

2 History

John McCarthy wrote the earliest full-length treatment of the Sum-and-Product
riddle in the years 1978–1981 [McC90]. McCarthy formulates the problem as
follows:

Two numbers m and n are chosen such that 2 ≤ m ≤ n ≤ 99. Mr.
S is told their sum and Mr. P is told their product. The following
dialogue ensues:

i. Mr. P : I don’t know the numbers.

ii. Mr. S: I knew you didn’t know. I don’t know either.

iii. Mr. P : Now I know the numbers.

iv. Mr. S: Now I know them too.
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In view of the above dialogue, what are the numbers?

In [McC90] the problem is elegantly modelled in modal logic in such a way that
it can be processed in the (first-order) logic theorem prover FOL. This includes
an—almost off-hand—introduction of what corresponds to the essential concept
of ‘common knowledge’: what Sum and Product commonly know is crucial to
a clear understanding of the problem. Common knowledge had received a very
interesting treatment already in Lewis’ 1969 book Convention [Lew69] (and also
appears in other philosophical literature from that period, e.g. in Schiffer’s work
[Sch72]), but McCarthy seems to have re-invented it in his 1981 article, thereby
inspiring research on common knowledge in Artificial Intelligence.

There are several differences between the McCarthy and the Freudenthal
version. In the McCarthy version the upper bound for both numbers is 99 (a),
in the Freudenthal version the upper bound for their sum is 100. Also, unlike
Freudenthal, McCarthy allows the two numbers to be the same (b). Many more
number pairs are therefore allowed in the McCarthy version, e.g., (99, 99) with
sum 198. Also, in the second announcement, Sum gives some additional infor-
mation that does not appear in the Freudenthal-version of the dialogue, namely
“I don’t know either” (c). It can be shown that none of these three changes
((a), (b), (c)), or their interaction, affects the solution. In particular, the addi-
tion “I don’t know either” is superfluous. After Product’s first announcement
it is already common knowledge among Sum and Product (and to the reader)
that ‘Sum doesn’t know either’, because Sum only knows the two numbers from
the start when they are 2 and 3 (i.e., in the Freudenthal version; in the Mc-
Carthy version: when they are 2 and 2, or 2 and 3; see also [Pan91], below), and
these numbers being prime, Product would have derived them immediately, as
already mentioned. One can also show (rather more technically) that the truth
of ‘Sum doesn’t know either’ persists after the “I knew you didn’t know” part
of Sum’s announcement.

Many different versions of the puzzle elicited much discussion from the late
seventies onwards. The variations are caused by different announcements, dif-
ferent ranges for the numbers, and different choices for what is considered to
be common knowledge at the starting-point. For yet another example, for a
certain larger range of possible numbers than 2 . . . 99 one finds one or more
solutions different from (4, 13) where those solutions may after all be in the
2 . . . 99 range. Discussions of several variants of the problem can be found in
the literature on recreational mathematics, see e.g. [Gar79, Sal95, Isa95], and
on a website www.mathematik.uni-bielefeld.de/~sillke/PUZZLES/logic_
sum_product that contains many other references. For a superbly elegant math-
ematical analysis we recommend Isaacs [Isa95].

More geared towards an epistemic logical audience are [Pla89, Pan91, vdM94,
vdHV02]. Plaza [Pla89] and Panti [Pan91] were students of Rohit Parikh and
have both made interesting contributions to epistemic logic. Parikh discussed
issues related to the conversational setting of ‘Sum and Product’ in [Par92]. He
is the motivating source for much work in early and current research in dynamic
epistemic logic. In [Pla89] the Sum-and-Product problem is modelled in a dy-
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namic epistemic logic that is the precursor of the public announcement logic
presented here, namely without an operator for common knowledge. We owe to
Plaza a description of the initial model for solving the Sum-and-Product puzzle
and the formalization of the announcements in epistemic logic, to be presented
in Section 4. Plaza does not assume that an upper bound for the numbers,
or their sum, is (commonly) known to Sum and Product; instead, he asks the
problem solver for solutions with numbers smaller than 100, to which the answer
is: the four pairs (4, 13), (4, 61), (16, 73), (64, 73).1 These are the first four of
the much longer list provided by Isaacs in the above-mentioned [Isa95]. For
example, (64, 73) is clearly not a solution if Sum and Product had been aware
of the upper bound, as it is the unique number pair with product (64 · 73) and
factors below 100—73 is a prime number—so that Product would then imme-
diately have known the numbers. In [Pan91] the common knowledge involved
in the Sum-and-Product puzzle is investigated in detail, with an emphasis on
the arithmetic involved. For example, for the formulation of the problem where
the range of numbers (up to 100) is not considered to be common knowledge
at the start, Panti proves that if the sum of the numbers is greater or equal
than 7, then this (and its logical consequences) is the only fact that is common
knowledge among Sum and Product. Finally, Van der Meyden [vdM94] suggests
a solution in temporal epistemic logic.

2.1 Looking for the origin of Sum and Product

In both of the two first full-length publications on the Sum-and -Product riddle
[McC90, Gar79], the authors explicitly wondered about but could not give its
exact origins. John McCarthy explains in a footnote in his paper [McC90]:

I have not been able to trace Mr. S and Mr. P back beyond its alleged
appearance on a bulletin board at Xerox PARC.

Martin Gardner, in his 1979 “Mathematical Games” column [Gar79], writes:

This beautiful problem, which I call “impossible” because it seems to
lack sufficient information for a solution, began making the rounds
of mathematics meetings a year or so ago. I do not know its origin.

After the appearance of [Gar79], the fact that the puzzle had been published al-
ready in 1969 by Dutch topologist and specialist on mathematics education Hans
Freudenthal, was brought to Gardner’s attention by Dutch algebraist Robert van
der Waall. Van der Waall was one of those who had sent in a correct solution
after the puzzle’s first appearance in 1969 [Fre69].

We have tried to fill in two missing pieces in the history of the Sum-and-
Product riddle:

1Plaza also mentions the McCarthy version with publicly known upper bound of 100 [Pla89,
p.14], but incorrectly suggests that these four pairs then still constitute the answer: only (4, 13)
remains in that case.
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i. If [Fre69] is indeed the first published appearance of the problem, then
how did the problem migrate from the Dutch mathematics community of
the late 1960s and early 1970s to “a bulletin board at Xerox Parc” and
“the rounds of mathematics meetings” in the United States in the late
1970s?

ii. Did Freudenthal invent the problem? And if so, has he possibly been
inspired by (less complex) precursors?

Despite several requests on international e-mail lists, we have not been able to
answer the first question. As to the second question, we did not find positive
confirmation about the puzzle in Freudenthal’s educational and autobiographic
writings, nor from our contacts with the Freudenthal Institute. A subscriber
to Nieuw Archief wrote to us that he remembered having seen the Sum-and-
Product riddle in the puzzle column “Breinbrouwsels” (brain brews) in the now
defunct Dutch-language weekly De Katholieke Illustratie (‘Illustrated Catholic
Magazine’) in the 1950s. This memory proved to be incorrect. We consulted,
directly or indirectly (by their answers), all of the 626 “Breinbrouwsels” that
G. van Tilburg published from 1954 until 1965, and did not find the Sum-and-
Product riddle. Instead, we found several precursors to the Sum-and-Product
riddle on which we intend to report separately in Nieuw Archief and that are
similar to the riddles of British origin to be discussed next. Interestingly, we
also found a slightly older (1956) version [vT56] of another epistemic riddle, the
‘Muddy Children’ problem, than the Gamow & Stern (1958) reference [GS58]
commonly given in the literature.

It turned out, however, that the answer to the second question is highly
likely to be: “yes, he did invent the problem.” Professor N.G. de Bruin ob-
served (personal communication) that if no other source was mentioned in the
problem section of Nieuw Archief at the time, the contributor of a problem
was always its originator. Possibly, Freudenthal was inspired by Van Tilburg’s
“Breinbrouwsels” or by some even earlier riddles of British origin, to which we
turn our attention now.

2.2 Precursors of Sum and Product

David Singmaster’s bibliographies on recreational mathematics (see www.g4g4.
com/MyCD5/SOURCES/singmaterial.htm) point to some candidate epistemic
puzzles that appeared even earlier than Van Tilburg’s. The earliest precursor
of the Sum-and-Product riddle that we have been able to trace is the following
one, probably invented by Williams and Savage and first published in book-form
in 1940 in The Penguin Problems Book [WS40, p.53]:

The church afloat
“I’m taking three females on the river to-morrow,” said the vicar to
his curate; “would you care to join our party?”

“What are their ages?” asked the curate, cautiously. “Far be it from
me to disclose a lady’s age!” said the vicar, “but I can tell you this—
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the product of their ages is 840, and the sum is twice the number
of years in your own age. You, a mathematician, should be able to
find their ages for yourself.”

“Sounds like casuistry, Vicar,” said the curate; “but, as a matter of
fact, I can’t find their ages from your data. By the way, is the eldest
older than you?”

“No, younger.” “Ah, now I know their ages!” said the curate. “Thanks,
I will come with pleasure.”

What was the curate’s age? How old were the ladies? And what can
be deduced about the vicar’s age?

Here follows Williams’ and Savage’s answer [WS40, p.135]:

Sum of ages must be even.

Uncertainty, resolved by the vicar’s final statement, must be due to
the fact of there being more than one such sum which was twice the
curate’s age.

Of the possible sets of 3 factors of 840, there are only two cases of
the same even sum occurring more than once. The sums in these
cases are 46 and 30. Now the curate’s age could not be 15; therefore
he was 23.

The sets of female ages giving a sum of 46 are 35, 8, 3 and 30, 14,
2. Since the vicar’s answer excluded one of these, that one must be
the former. Therefore the ladies’ ages were 30, 14, 2, and the vicar’s
age must lie between 30 and 35.

Note that some world knowledge is used implicitly here, namely the fact that
mathematicians (and curates) are always older than 15 years, and the fact that
the curate, being a mathematician, reasons correctly.

Another problem, that was published in 1944 in The Second Penguin Prob-
lems Book [WS44, p.27], also hinges on the fact that only for some number
combinations there is more than one way to make the same sum. In a way, the
next problem is less attractive than the previous one, because the uncertainty
is not completely dissolved at the end: readers are asked to derive the sum of
the ages only.

Domiciliary
“I have told you my age,” said Mr. Ptolemy to the inspector who had
just knocked on his door. “Besides myself, there are three persons
living in this house; the product of their ages is one thousand two
hundred ninety-six, and the sum of their ages is the number of the
house.”

“But it is impossible for me to be sure of their ages without further
information,” said the inspector. “Is any one of them the same age
as yourself?”
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“No,” said Mr. Ptolemy.

“Thanks; now I know their ages,” said the inspector.

What was the number of Mr. Ptolemy’s house?

This time, the explanation is as follows [WS44, p.116]; again, the authors im-
plicitly use some world knowledge:

There are many ways of splitting 1296 into three factors, but only
possible ones need be considered. Two of these sets of factors have
the same sum, namely 1, 18, 72 and 2, 8, 81, adding up to 91. The
other sums are all different. As the inspector could not be sure of the
ages from the fact that they added up to the number of the house
(which he, of course, knew), this number must have been 91. [Mr.
Ptolemy’s age - also known to the inspector - must have been 72 or
81 (unless it was 18 or 8 - both unlikely), but we have no means of
deciding this point.]

The above two puzzles are roughly of the same kind as Van Tilburg’s, but still
different. In fact, Van Tilburg may have been inspired to create his puzzles after
reading the British gentlemen. Essentially the same problem as “Domiciliary”,
but in a somewhat different guise, was printed in Greenblatt’s Mathematical
Entertainments [Gre68], first published in the United States in 1965. Greenblatt
starts with some historical speculation:

One of the few amusing things to come out of World War II was a
new type of brain twister - the “census-taker” problem. (The time
and place of origin of a problem are difficult to specify. To the best
of the author’s knowledge, this problem was born on the M.I.T.
campus in one of the war projects.)

As we now know, the type of problem probably stems from at least somewhat
before the start of World War II, and from Great Britain instead of the United
States. After all, The Penguin Problems Book, although published during the
war in 1940, was mostly based on earlier puzzles from Williams’ and Savage’s
column “Perplexities” that used to appear in The Strand Magazine.

After this detailed overview of the dissemination of the Sum-and-Product riddle,
which we hope may prevent some of this information from gradually disappear-
ing into the fog of war on academic battlegrounds, we continue with the more
technical core of this paper, that consists of an introduction into public an-
nouncement logic, modelling the riddle in this logic, and verifying its properties
in a model checker.

3 Public Announcement Logic

Public announcement logic is an extension of standard multi-agent epistemic
logic with dynamic modal operators to model the effects of announcements. It

8



was originally proposed by Plaza [Pla89]. Plaza used a different notation, with-
out dynamic modal operators, and did not incorporate common knowledge.
Later milestones, with common knowledge and also involving further general-
izations, are [GG97] (who did unfortunately not know about [Pla89] at that
time), and [BMS98]. Intuitive explanations of the non-dynamic part of the se-
mantics can be found in [FHMV95, vdHV02, vDvdHK06]. We give a concise
overview of the language, the structures on which the language is interpreted,
and the semantics.

Given are a finite set of agents A and a finite or countably infinite set of
atoms Q. The language of public announcement logic is inductively defined as

ϕ ::= q | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | CBϕ | [ϕ]ψ

where q ∈ Q, a ∈ A, and B ⊆ A are arbitrary. For Kaϕ, read ‘agent a knows
formula ϕ’. For CBϕ, read ‘group of agents B commonly know formula ϕ’. For
[ϕ]ψ, read ‘after public announcement of ϕ, formula ψ (is true)’.

Next, we introduce the (Kripke) structures. An epistemic model M = 〈W,∼
, V 〉 consists of a domain W of (factual) states (or ‘worlds’), accessibility ∼ :
A → P(W ×W ), where each ∼ (a) is an equivalence relation, and a valuation
V : Q → P(W ). For w ∈ W , (M,w) is an epistemic state (also known as a
pointed Kripke model, or possible-worlds model).2 For ∼ (a) we write ∼a, and
for V (q) we write Vq. So, the accessibility function ∼ can be seen as a set of
equivalence relations ∼a, and V as a set of valuations Vq. Given two states w,w′

in the domain, w ∼a w′ means that w is indistinguishable from w′ for agent
a on the basis of its information. For example, at the beginning of the riddle,
pairs (14, 16) and (7, 23) are indistinguishable for Sum but not for Product.
Therefore, assuming a domain of number pairs, we have that (14, 16) ∼S (7, 23)
but that (14, 16) 6∼P (7, 23). The group accessibility relation ∼B is the transitive
and reflexive closure of the union of all accessibility relations for the individuals
in B: ∼B ≡ (

⋃
a∈B ∼a)∗. This relation is used to interpret common knowledge

for group B.
Finally, we give the semantics. Assume an epistemic model M = 〈W,∼, V 〉.

M,w |= q iff w ∈ Vq
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= Kaϕ iff for all v ∈W : w ∼a v implies M,v |= ϕ
M,w |= CBϕ iff for all v ∈W : w ∼B v implies M,v |= ϕ
M,w |= [ϕ]ψ iff M,w |= ϕ implies M |ϕ,w |= ψ

Here, epistemic model M |ϕ = 〈W ′,∼′, V ′〉 is defined as

W ′ = {w′ ∈W | M,w′ |= ϕ}
∼′a = ∼a ∩ (W ′ ×W ′)
V ′q = Vq ∩W ′

2‘Epistemic state’ in our sense is not to be confused with the set of worlds/states indis-
tinguishable for a given agent from a given state, i.e., the set {v | w ∼a v}, which is also
commonly called an epistemic state. We call that an epistemic class.
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The dynamic modal operator [ϕ] is interpreted as an epistemic state transformer.
Announcements are assumed to be truthful, and this is commonly known by
all agents. Therefore, the model M |ϕ is the model M restricted to all the
states where ϕ is true, including access between states. The dual of [ϕ] is 〈ϕ〉:
M,w |= 〈ϕ〉ψ iff M,w |= ϕ and M |ϕ,w |= ψ.

Formula ϕ is valid on model M , notation M |= ϕ, if and only if for all states
w in the domain of M : M,w |= ϕ. Formula ϕ is valid, notation |= ϕ, if and
only if for all models M : M |= ϕ. Logical consequence Ψ |= ϕ is defined as “for
all (M,w), if M,w |= ψ for all ψ ∈ Ψ, then M,w |= ϕ.” For {ψ} |= ϕ, write
ψ |= ϕ. A proof system for this logic is presented, and shown to be complete,
in [BMS98], with precursors—namely for public announcement logic without
common knowledge—in [Pla89, GG97]. For a concise completeness proof, see
[vDvdHK06]. Some relevant principles of public announcement logic are

i. [ϕ]ψ ↔ (ϕ→ [ϕ]ψ)

ii. [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ

iii. [ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ)

iv. [CAϕ]CAϕ

Item i expresses that the interpretation of the dynamic operator [ϕ] is a par-
tial function. Item ii expresses that a sequence of two announcements ϕ and
ψ can be replaced by the single announcement ‘ϕ, and after ϕ, ψ’. Item iii
expresses the preconditions and postconditions of announcements with respect
to individual knowledge (for common knowledge, this relation is more complex).
Item iv expresses that public knowledge (i.e., common knowledge for the entire
group of agents) remains true after announcement. Not all formulas remain true
after their announcement, in other words, [ϕ]ϕ is not a principle of this logic.
This matter will be addressed in Section 5. One of the announcements in the
Sum-and-Product problem provides a concrete counterexample.

4 Sum and Product in Public Announcement
Logic

We give a specification of the Sum-and-Product problem in public announce-
ment logic. Modulo inessential differences, explicitly mentioned below, this
specification was first suggested by Plaza in [Pla89], and in this section we
merely elaborate on his results, that are unfortunately not as well-known as
they deserve to be.

First we need to determine the set of atomic propositions and the set of
agents. In the formulation of the problem, x, y are two integers such that 1 <
x < y and x+ y ≤ 100. Define I ≡ {(x, y) ∈ N2 | 1 < x < y and x+ y ≤ 100}.
Consider the variable x. If its value is 3, we can represent this information as
the (truth of) the atomic proposition ‘x = 3’. Slightly more formally we can
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think of ‘x = 3’ as a propositional letter x3. Thus we create a (finite) set of
atoms {xi | (i, j) ∈ I} ∪ {yj | (i, j) ∈ I}.

Concerning the agents, the role of the announcer A is to guarantee that the
background knowledge for solving the problem is commonly known among Sum
and Product. The announcer need not be introduced as an agent in the logical
modelling of the system. That leaves {S, P} as the set of agents. Agents S and
P will also be referred to as Sum and Product, respectively.

The proposition ‘Sum knows that the numbers are 4 and 13’ is represented
as KS(x4∧y13). The proposition ‘Sum knows the (pair of) numbers’ is described
as KS(x, y) ≡

∨
(i,j)∈I KS(xi ∧ yj). Similarly, ‘Product knows the numbers’ is

represented by KP (x, y) ≡
∨

(i,j)∈I KP (xi ∧ yj). Furthermore, note that the
‘knew’ in announcement ii, by Sum, refers to the truth of KS¬KP (x, y) in the
initial epistemic state, not in the epistemic state resulting from announcement
i, by Product.

Because of the property that all known propositions are true (‘Kaϕ → ϕ’
is valid), announcement i is entailed by announcement ii. Because of that,
and as Product’s announcement iii is a response to Sum’s ii, and Sum’s iv
to Product’s iii, the initial announcement i by Product is superfluous in the
subsequent analysis. 3 This is sufficient to formalize the announcements made
towards a solution of the problem:

i. P says: “I do not know it”: ¬KP (x, y)

ii. S says: “I knew you didn’t”: KS¬KP (x, y)

iii. P says: “I now know it”: KP (x, y)

iv. S says: “I now also know it”: KS(x, y)

We can interpret these statements on an epistemic model SP(x,y) ≡ 〈I,∼, V 〉
consisting of a domain of all pairs (x, y) ∈ I (as above), with accessibility
relations ∼S and ∼P such that for Sum: (x, y) ∼S (x′, y′) iff x + y = x′ + y′,
and for Product: (x, y) ∼P (x′, y′) iff xy = x′y′; and with valuation V such that
Vxi = {(x, y) ∈ I | x = i} and Vyj = {(x, y) ∈ I | y = j}.4

3Additional to this justification that announcement i is superfluous, we cannot formalize
that announcement ii follows announcement i in our logical language, as we cannot refer to
the past. In dynamic epistemic logic with assignment one can indirectly model such past tense
epistemic statements [Koo06]; see also [Yap06].

4Plaza does not assume that an upper bound for the numbers is given to the agents (as
mentioned in the historical Section 2). The model in [Pla89] corresponding to SP(x,y) is
therefore infinite. He also specifies a finite model, for the McCarthy version of the riddle.
Now given an infinite model, the corresponding announcements would be infinitary formulas,
i.e., not well-formed formulas in our definition of the logical language. Indeed, Plaza does not
model the announcements based on disjunctions of individual epistemic knowledge statements,
but with ‘know-value’ individual knowledge operators binding non-rigid designators such that,
e.g., KvProductnumbers stands for ‘Product knows the value of the non-rigid designator /
number variable numbers’ [Pla89, p.13–14]. The corresponding logic has a semantics, but is
not known to be complete [Pla89, p.13].
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We can describe the solution of the problem as the truth of the statement

SP(x,y), (4, 13) |= 〈KS¬KP (x, y)〉〈KP (x, y)〉〈KS(x, y)〉>

This expresses that, if (4, 13) is the initial state, then it is possible to publicly
announce ii, iii, and iv, in that order. This statement does not express that
(4, 13) is the only solution. We can express more properly that (4, 13) is the
only solution (and from here on our observations go beyond [Pla89] again) as
the model validity

SP(x,y) |= [KS¬KP (x, y)][KP (x, y)][KS(x, y)](x4 ∧ y13)

This expresses that in all other points of the model than (4, 13) the sequence
of three announcements cannot be truthfully made. Technically this relates
to the well-known modal property that formulas of form �ϕ are true for all
ϕ in all worlds where there are no accessible worlds. If all announcements are
true, three consecutive epistemic state transformations result in a final epistemic
state (M,w) (namely (SP(x,y)|ii|iii|iv, w)) wherein x4∧y13 should hold. Clearly,
this is only the case when w = (4, 13). In all other states of the domain I of
model SP(x,y), at least one announcement cannot be truthfully made; but that
means that any postcondition of the dynamic ‘necessity-type’ modal operator
corresponding to that announcement, even ‘false’, is true in that state.

For example, we observed that in state (7, 23) Product would know the num-
bers (as they are both prime). Therefore, ¬KP (x, y) is false in (SP(x,y), (7, 23)),
and therefore KS¬KP (x, y) (announcement ii) is also false in (SP(x,y), (7, 23)).
The semantics gives us SP(x,y), (7, 23) |= [KS¬KP (x, y)]( [KP (x, y)][KS(x, y)](x4∧
y13) ), and even SP(x,y), (7, 23) |= [KS¬KP (x, y)]⊥.

An issue of general logical interest is that some announcements in Sum and
Product are examples of formulas that become false when announced. This will
now first be addressed, in the next Section 5. In Section 6 after that, we will
model Sum and Product as an interpreted system. This will be followed by
several sections on model checking.

5 Unsuccessful updates

Not all formulas remain true after their announcement, in other words, [ϕ]ϕ is
not a principle of public announcement logic. A poignant example is the an-
nouncement of q ∧ ¬Kaq, for ‘q is true and you don’t know that’.5 After the
announcement, you know that the fact in question is true—Kaq—and therefore
the formula of the announcement has become false: Kaq entails ¬q∨Kaq, which
is equivalent to ¬(q∧¬Kaq), the negation of the announcement. In a somewhat

5This commonly occurs in conversational settings such as “You don’t know that the High-
landers just beat the Lions!”. Unlike in epistemic logic, the standard conversational setting
presumes, by the Gricean assumption of cooperation, that the factual information of which you
are said to be ignorant is actually the case, i.e., the above normally means “The Highlanders
just beat the Lions and you don’t know that the Highlanders just beat the Lions.”
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different setting that the formula q ∧ ¬Kaq cannot be consistently known, this
phenomenon has been known in philosophical circles for a long time, namely
as the Moore-paradox [Moo42, Hin62]. In the underlying dynamic setting it
has been described as an unsuccessful update in [Ger99, Ger06]. General ter-
minology is proposed in [vDK06]. Let ϕ be a formula in the language of public
announcement logic:

• Successful formula
ϕ is successful iff [ϕ]ϕ is valid.

• Unsuccessful formula
ϕ is unsuccessful iff it is not successful.

• Successful update
ϕ is successful in epistemic state (M,w) iff M,w |= 〈ϕ〉ϕ

• Unsuccessful update
ϕ is unsuccessful in (M,w) iff M,w |= 〈ϕ〉¬ϕ.

Note that an unsuccessful formula may be a successful update in one epistemic
state and an unsuccessful update in another epistemic state. It can be shown
that [ϕ]ϕ is valid iff [ϕ]CBϕ is valid iff ϕ→ [ϕ]CBϕ is valid. (See [vDK06], the
second equivalence follows directly from the principle [ϕ]ψ ↔ (ϕ→ [ϕ]ψ), listed
as item i on page 10 in Section 3.) Therefore, the successful formulas capture
the notion ‘formulas that remain true after their announcement’.

Clearly, also in the course of solving the Sum-and-Product problem the
agents appear to learn things that they did not know before. So some re-
versal of ignorance into knowledge seems to take place: i.e., an unsuccessful
update with something of the form ¬Kϕ, or similar. We investigate which of
the announcements made towards the solution of the problem are unsuccessful
updates. In this section we refer to those four successive announcements as (how
they have been enumerated before, e.g. on page 11, namely as) (i) ¬KP (x, y),
(ii) KS¬KP (x, y), (iii) KP (x, y), and (iv) KS(x, y).

The case i Formula i is successful. It equals ¬KP (x, y), where KP (x, y) is
defined as

∨
(i,j)∈I KP (xi∧yj). Therefore, it has form ¬Kaϕ∧¬Kaψ∧ . . . , with

ϕ,ψ, . . . booleans. We show that this formula is successful for two conjuncts,
i.e., formula [¬Kaϕ ∧ ¬Kaψ](¬Kaϕ ∧ ¬Kaψ) is valid for booleans ϕ and ψ;
the case for the longer finite conjunction follows by induction on the number of
conjuncts.

Let M,w be arbitrary. Assume M,w |= ¬Kaϕ ∧ ¬Kaψ. We have to prove
that M |(¬Kaϕ ∧ ¬Kaψ), w |= ¬Kaϕ ∧ ¬Kaψ. From M,w |= ¬Kaϕ ∧ ¬Kaψ
follows that there are v and v′ in the domain D(M) of M such that v ∼a w
and M,v |= ¬ϕ, and v′ ∼a w and M,v′ |= ¬ψ, respectively. As ∼a is an
equivalence relation, we also have that v ∼a v and v ∼a v′, we have as well
M,v |= ¬Kaϕ∧¬Kaψ; similarly, M,v′ |= ¬Kaϕ∧¬Kaψ. In other words, both
v and v′ are in the domain of M |(¬Kaϕ ∧ ¬Kaψ). As the value of boolean
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propositions only depends on the current factual state, from M,v |= ¬ϕ and
v ∈ D(M |(¬Kaϕ ∧ ¬Kaψ)) follows M |(¬Kaϕ ∧ ¬Kaψ), v |= ¬ϕ; and from the
last follows M |(¬Kaϕ∧¬Kaψ), w |= ¬Kaϕ. Similarly, M |(¬Kaϕ∧¬Kaψ), v′ |=
¬ψ; from which follows M |(¬Kaϕ∧¬Kaψ), w |= ¬Kaψ. Therefore M |(¬Kaϕ∧
¬Kaψ), w |= ¬Kaϕ ∧ ¬Kaψ, as required.

The case ii Announcement ii becomes false when it is announced in the initial
epistemic state for the problem. This can be easily observed: after ii, Product
knows the numbers (formula iii), so it can no longer be true that Sum knows
that Product does not know the numbers: in other words, formula ii is now
false. Ergo, ii is an unsuccessful update in the initial epistemic state.

The cases iii and iv The last two announcements iii and iv are successful
formulas: this is because they are preserved formulas: they are truth preserv-
ing under submodel restrictions, an inductively defined fragment with—among
other clauses—inductive clauses that atomic propositions are always preserved,
and that if ϕ and ψ are preserved, then also ϕ∧ψ, ϕ∨ψ, and Kaϕ [vB02]. The
announcements iii and iv are disjunctions of formulas of the form Ka(xi ∧ yj),
and are therefore preserved. All preserved formulas are successful [vDK06]. And
all successful formulas induce successful updates in all epistemic states.

No inductive definition of the successful formulas is known—in particular, if
ϕ and ψ are both successful, [ϕ]ψ may be unsuccessful. Having said that, it
is remarkable that the sequence of the three announcements ii ; iii ; iv is
an unsuccessful update. This sequence of three announcements is equivalent
to the single formula: ii ∧ [ii]iii ∧ [ii ∧ [ii]iii]iv (using the validity [ϕ][ψ]χ ↔
[ϕ∧ [ϕ]ψ]χ stated on page 10) that is unsuccessful in the initial epistemic state.
This formula becomes false after its announcement: after that, just like after
ii, Sum knows that Product knows the numbers, so it is now false that Sum
knows that Product does not know the numbers: ii has become false, and
therefore the entire conjunction corresponding to the sequence ii ; iii ; iv. The
first announcement i can also be added to the conjunction (although somewhat
improperly joining two different timelines), so that i ∧ ii ∧ [ii]iii ∧ [ii ∧ [ii]iii]iv
is also unsuccessful in the initial epistemic state.

This last observation captures, we think, more than anything else our intu-
ition that the Sum-and-Product problem is puzzling.

6 Sum and Product as an interpreted system

Interpreted systems were introduced in theoretical computer science as an ab-
stract architecture for distributed systems [FHMV95]. In an interpreted system
agents at least know their local state. We can model the epistemic states in
the Sum-and-Product riddle as (static) interpreted systems when we consider
the sum of the two numbers as Sum’s local state, and the product of the two
numbers as Product’s local state. A global state for the problem is a tuple of
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local states, in our case a pair: one for Sum and one for Product. The set
of global states is a subset of the full cartesian product of local state values:
the dependencies between local states enable Sum and Product to communicate
their local state to each other without explicitly referring to it. A standard
way to represent a static interpreted system as an epistemic model (S5 Kripke
model) is given in [Lom99]. Each local state value for agent or processor then
corresponds to an atomic proposition.

Therefore, when modelling the Sum-and-Product puzzle as an interpreted
system, we introduce a different language in that a new set of atomic propo-
sitions is differently interpreted than in the model of Section 4. Specifically,
atomic propositions represent the sum and product of the different numbers,
instead of representing these numbers themselves. For example, the atomic
proposition s7 represents that the sum of the two numbers is 7. We allow
a slight abuse of the language: if i + j = k then we also write si+j for sk.
Similarly, we write pij for pl when ij = l. Thus we create a set of atoms
{sx+y | (x, y) ∈ I} ∪ {pxy | (x, y) ∈ I}.

The obvious way to interpret such atoms is on an epistemic model SP(s,p) ≡
〈W ′,∼′, V ′〉 with a domain W ′ consisting of all pairs (s, p) such that s = x+ y
and p = xy (as in the formulation of the problem in Section 4) for all (x, y) ∈ I,
i.e., with 1 < x < y and x + y ≤ 100; with accessibility relations ∼′S and ∼′P
such that for Sum: (s, p) ∼′S (s′, p′) iff s = s′, and for Product: (s, p) ∼′P (s′, p′)
iff p = p′; and with valuation such that V ′sx+y

= {(s, p) ∈ W ′ | s = x + y} and
V ′pxy = {(s, p) ∈W ′ | p = xy}.

‘Sum knows the (pair of) numbers’ can be represented by ‘Sum knows the
global state of the system’, i.e., as KS(s, p) ≡

∨
(x,y)∈I KS(sx+y ∧ pxy), and,

similarly, ‘Product knows the numbers’ by KP (s, p) ≡
∨

(x,y)∈I KP (sx+y ∧ pxy).
The formalization of the announcements made towards a solution of the problem
is then:

SP(s,p) |= [KS¬KP (s, p)][KP (s, p)][KS(s, p)](s4+13 ∧ p4·13)

This is of course fairly similar to the formalization

SP(x,y) |= [KS¬KP (x, y)][KP (x, y)][KS(x, y)](x4 ∧ y13)

on page 12— the precise relation requires a detour on characteristic formulas for
interpreted systems. This will reveal the advantage of the interpreted system
representation.

6.1 Characteristic formulas

In interpreted systems agents at least know their local state. That agent S knows
its local state, means that S knows the sum of the two numbers, whatever they
are: SP(s,p) |= sx+y → KSsx+y. From this it follows that in the models for our
problem a requirement KS(sx+y ∧ pxy), that is equivalent to KSsx+y ∧KSpxy,
is equivalent to KSpxy. Similarly, pxy → KP pxy, and therefore, in the models,
KP (sx+y ∧ pxy) is equivalent to KP sx+y.
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Such local state knowledge and its interaction with global states is incor-
porated in the characteristic formula of a finite interpreted system. Character-
istic formulas for modal structures are found in [BM96, vB98]. We introduce
them in the setting given in [vDvdHK03]. A characteristic formula, or descrip-
tion, of a pointed model (M,w) is a formula δ(M,w) such that M,w |= ψ iff
δ(M,w) |= ψ, in other words, any ψ true in (M,w) is entailed by δ(M,w).
A similar notion equates model validity with entailment by way of M |= ψ iff
δ(M) |= ψ. These descriptions always exist for finite models, such as finite
epistemic models, in which case formula δ(M,w) essentially requires common
knowledge operators, in particular, they cannot be expressed in Plaza’s dynamic
epistemic language [Pla89]. We then also have that δ(M,w)↔ (δ(w)∧CAδ(M)),
where δ(w) is the description of state w, for example summing up its valuation,
or some other formula only true in w. In other words, we can separate a com-
monly known part (‘background knowledge’) from a part specific to the actual
state.

In general these characteristic formulas are rather unwieldy and do not pro-
vide very concrete information. For example, it would be unclear what they are
for the epistemic model for Sum and Product in Section 4. But for the specific
case of an interpreted system, such as the interpreted system model SP(s,p) for
Sum and Product, we can apply results similar to those in [vDvdHK03]. The
characteristic formula δ(SP(s,p)) is defined as

δ(SP(s,p)) ≡
∨

(x,y)∈I δ(x+ y, xy) ∧∧
(x,y)∈I(KSsx+y ↔ ¬KS¬(sx+y ∧ pxy)) ∧∧
(x,y)∈I(KP pxy ↔ ¬KP¬(sx+y ∧ pxy))

The first conjunct of δ(SP(s,p)) sums up the valuations of the different states
in the domain: δ(x+ y, xy) is defined as the conjunction of: sx+y, and pxy, and
for all other sums k and products l the negated atoms ¬sk and ¬pl. This is
also known as the characteristic function of the valuation of the state (x+y, xy)
of the model. The second line of the formula says that S knows its local state
if and only if it considers possible any global state with that local state. For
example, one of its conjuncts is KSs17 ↔ ¬KS¬(s17 ∧ p52); another conjunct is
KSs17 ↔ ¬KS¬(s17 ∧ p60). From this follows that KSs17 implies ¬KS¬p52 ∧
¬KS¬p60∧ . . . : if the sum of the two numbers is 17, S considers it possible that
their product is 52, or 60, etc. The last line of the characteristic formula has a
meaning similar to its second line: it says that P knows its local state if and
only if it considers possible any global state with that local state.

6.2 Comparing the two models of Sum and Product

We now compare the modelling of Sum and Product with ‘smaller and larger
number pairs’ in Section 4 to the interpreted system modelling in this section.

A relevant observation is that a pair of numbers (x, y) with x < y corresponds
to exactly one sum-product pair (s, p). In one direction this is trivial. For the
other direction: assume that (x+y, xy) = (x′+y′, x′y′), with x < y and x′ < y′.
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Let without loss of generality x be the smaller of x and x′, so that x′ = x + v
and therefore y′ = y − v. Then from xy = x′y′ = (x+ v)(y − v) it follows that
yv−xv−v2 = 0, so that v = 0 or v = y−x. If v = 0 then we are done, since this
implies x = x′. If v = y − x then x′ = x+ (y − x) = y and y′ = y − (y − x) = x
which contradicts that x′ < y′.

We can now make technically precise how the different modellings compare.
Expand the language to one containing atoms for all numbers x, y and atoms
for all sums and products s, p of those numbers. Extend the models SP(x,y) and
SP(s,p) to SP+

(x,y) and SP+
(s,p), respectively, by adding valuations for all sum

and product atoms in the former, and for all smaller and larger number atoms
in the latter. For example, to define SP+

(x,y) we have to add valuations for all
atoms s and p such that (x, y) ∈ V +

sx+y
iff s = x+ y and (x, y) ∈ V +

pxy iff p = xy.
We now have that SP+

(x,y) and SP+
(s,p) are isomorphic. From this it follows that

the models are also bisimilar [BdRV01]; as a reminder, bisimilarity is a slightly
weaker notion of ‘sameness of models’ than isomorphism, that still guarantees
that the theories describing the models are logically equivalent.

Without going into great detail, it suffices to define the isomorphism as
R : I →W ′ such that R : (x, y) 7→ (x+ y, xy), to observe that this relation is a
bijection, that (x, y) ∼S (x′, y′) iff R(x, y) ∼S R(x′, y′) iff (x+ y, xy) ∼S (x′ +
y′, x′y′), and similarly for Product, and that the valuation of all facts remains
the same for any states (x, y) and (x + y, xy). The characteristic formula for
the interpreted system SP+

(s,p) in the expanded logical language is the previous
one, δ(SP(s,p)), in conjunction with∧

(i,j)∈I

((xi ∧ yj)↔ (si+j ∧ pij))

This propositional equivalence relates a number pair to its unique corresponding
sum and product pair. To conclude, using the interpreted system representation,
we can describe the initial situation for the Sum-and-Product puzzle in a very
precise way by a characteristic formula. Moreover, the traditional representation
and the interpreted system one are in a sense interchangeable: they have the
same logical theory.

Towards computational aspects Combining the different strands of the
story, the epistemic state (SP(x,y), (4, 13)) of Section 4 can alternatively be rep-
resented as an epistemic state (SP(s,p), (17, 52)) that corresponds to an inter-
preted system, and there is a corresponding simple relation between different log-
ical languages such that the formula 〈KS¬KP (x, y)〉〈KP (x, y)〉〈KS(x, y)〉> from
Section 4 corresponds to 〈KS¬KP (s, p)〉〈KP (s, p)〉〈KS(s, p)〉> (similar to the
formula on page 15, above). Schematically, starting out with some SP, w |= ϕ,
we first have an interpreted system version SP ′, w′ |= ϕ′ of that, which then
corresponds to δ(SP ′, w′) |= ϕ′ given the availability of ‘readable’ characteristic
formulas for interpreted systems. Given the complete proof system for the logic
of public announcements, this corresponds as well to δ(SP ′, w′) ` ϕ′: one should
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be able to derive the required postcondition from a logical theory representing
the initial model for Sum and Product.

This also suggests that proof tools may play a role in checking the solution
of the Sum-and-Product riddle. In principle, one can show that δ(SP ′, w′) ` ϕ′
in the proof system for the logic. This is not an illuminating exercise, as it
requires a very lengthy derivation with explicit reference to all (more than 100)
points of the model to their counterparts in the logical language, and properly
handling their (non-uniform) interaction with epistemic and dynamic operators.
The derivation involves eliminating the dynamic operators from ϕ′, and the
interaction between those operators and the description δ(SP ′, w′) makes the
result very inelegant. Also, there are no automated proof checkers for epistemic
logics with common knowledge operators.

There are, however, proof tools for model checking. In contrast to the situ-
ation in epistemic theorem proving, recent developments in dynamic epistemic
model checking allow for a remodelling of the Sum-and-Product riddle in such
a model checker. In dynamic epistemic model checking one can stick to the
initial model SP and the succinct list of four announcements, and thus bypass
any need to be explicit about the number theory involved: one avoids the ‘real
thinking’ and cumbersome computation involved in solving the problem for a
human problem solver, or when using a non-dedicated programming language.

‘Non-dedicated’ includes non-dynamic epistemic (or temporal modal) model
checkers, that would again require us to eliminate the dynamic operators, thus
introducing the inelegance already mentioned for theorem proving. We now
turn towards implementation of our models using the epistemic model checker
DEMO.

7 The Epistemic Model Checker DEMO

Recently, epistemic model checkers with dynamic facilities have been developed
to verify properties of interpreted systems, knowledge-based protocols, and vari-
ous other multi-agent systems. Examples are MCK [GvdM04], MCMAS [RL04],
and recent work by Su [Su04]. All those model checkers use the interpreted sys-
tems architecture, and exploration of the search space is based on ordered binary
decision diagrams. Their dynamics are expressed in temporal or temporal epis-
temic (linear and/or branching time) logics.

A different model checker, not based on a temporal epistemic architecture, is
DEMO. It has been developed by Van Eijck [vE04]. DEMO is short for Dynamic
Epistemic MOdelling. It allows modelling epistemic updates, graphical display
of Kripke structures involved, and formula evaluation in epistemic states. This
general purpose model checker has also many other facilities. DEMO is written
in the functional programming language Haskell.

The model checker DEMO implements the dynamic epistemic logic of [BM04].
In this ‘action model logic’ the global state of a multi-agent system is represented
by an epistemic model as in Section 3. But more epistemic actions are allowed
than just public announcements, and each epistemic action is represented by an
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action model. Just like an epistemic model, an action model is also based on a
multi-agent Kripke frame, but instead of carrying a valuation it has a precondi-
tion function that assigns a precondition to each point in the action model. A
point in the action model domain stands for an atomic action.

The epistemic state change in the system is via a general operation called the
update product: this is a way to produce a single structure (the next epistemic
model) from two given structures (the current epistemic model and the current
action model). We do not give details, as we restrict our attention to very simple
action models, namely those corresponding to public announcements. Such
action models have a singleton domain, and the precondition of that point is the
announced formula. Now the way to produce the next epistemic model from the
current epistemic model and the singleton action model for the announcement,
is the familiar model restriction introduced in Section 3. We proceed with a
relevant part of the recursive definition of formulas in DEMO, omitting the
recursive clauses describing the effect of updates.

Form = Top | Prop Prop | Neg Form | Conj [Form] | Disj [Form]
| K Agent Form | CK [Agent] Form

Formula Top stands for >, Prop Prop for atomic propositional letters (the first
occurrence of Prop means that the datatype is ‘propositional atom’, whereas
the second occurrence of Prop is the placeholder for an actual proposition let-
ter, such as P 3), Neg for negation, Conj [Form] stands for the conjunction of
a list of formulas of type Form, similarly for Disj, K Agent stands for the in-
dividual knowledge operator for agent Agent, and CK [Agent] for the common
knowledge operator for the group of agents listed in [Agent].

The pointed and singleton action model for a public announcement is created
by a function public with a precondition (the announced formula) as argument.
The update operation is specified as

upd :: EpistM -> PoAM -> EpistM

Here, EpistM is an epistemic state and PoAM is a pointed action model, and the
update generates a new epistemic state. If the input epistemic state EpistM
corresponds to some (M,w), then in case of the truthful public announcement
of ϕ the resulting EpistM has the form (M |ϕ,w). We can also update with a
list of pointed action models:

upds :: EpistM -> [PoAM] -> EpistM

An example is the sequence of three announcements in the Sum-and-Product
problem.

8 Sum and Product in DEMO

We implement the Sum-and-Product riddle in DEMO and show how the imple-
mentation finds the unique solution (4, 13). Figure 2 contains the implementa-
tion.
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module SNP

where

import DEMO

upb = 100

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<y, x+y<=upb]

numpairs = llength(pairs)

llength [] =0

llength (x:xs) = 1+ llength xs

ipairs = zip [0..numpairs-1] pairs

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2 ]++

[(b,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2 ]

fmrs1e = K a (Conj [Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

Neg (K b (Conj [Prop (P x),Prop (Q y)]))]| (x,y)<-pairs])

amrs1e = public (fmrs1e)

fmrp2e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K b (Conj [Prop (P x),Prop (Q y)]) ] )|(x,y)<-pairs]

amrp2e = public (fmrp2e)

fmrs3e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K a (Conj [Prop (P x),Prop (Q y)]) ] )|(x,y)<-pairs]

amrs3e = public (fmrs3e)

solutione = showM (upds msnp [amrs1e, amrp2e, amrs3e])

fmrs1 = K a (Neg (Disj [ (K b (Conj [Prop (P x),Prop (Q y)]))| (x,y)<-pairs]))

amrs1 = public (fmrs1)

fmrp2 = Disj [K b (Conj [Prop (P x),Prop (Q y)])|(x,y)<-pairs]

amrp2 = public (fmrp2)

fmrs3 = Disj [K a (Conj [Prop (P x),Prop (Q y)])|(x,y)<-pairs]

amrs3 = public (fmrs3)

solution = showM (upds msnp [amrs1, amrp2, amrs3])

Figure 2: The DEMO program SNP.hs. The last part, starting from fmrs1,
implements a less efficient variant.

8.1 Representing the epistemic models

The set I ≡ {(x, y) ∈ N2 | 1 < x < y and x+ y ≤ 100} is realized in DEMO as

upb = 100
pairs = [(x,y)| x<-[2..100], y<-[2..100], x<y, x+y<=upb]

upb is the maximal sum considered, in this case upb=100; pairs is a list of pairs:
a list is a standard data structure in Haskell, unlike a set. Thus, { and } are
replaced by [ and ], ∈ is replaced by <-, and instead of I we name it pairs.
A pair such as (4,18) is not a proper name for a domain element. In DEMO,
natural numbers are such proper names. Therefore, we associate each element
in pairs with a natural number and make a new list.
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ipairs = zip [0..numpairs-1] pairs

Here, numpairs is the number of elements in pairs, and the function zip pairs
the i-th element in [0..numpairs-1] with the i-th element in pairs, and makes
that the i-th element of ipairs. For example, the first element in ipairs is
(0,(2,3)). The initial model of the Sum-and-Product riddle is represented as

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)|(w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2 ]++

[(b,w,v)|(w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2 ]

Here, msnp is a multi-pointed epistemic model, that consists of a domain
[0..numpairs-1], a valuation function val, an accessibility relation function
acc, and [0..numpairs-1] points. As the points of the model are the entire do-
main, we may think of this initial epistemic state as the (not-pointed) epistemic
model underlying it.

The valuation function val maps each state in the domain to the subset of
atoms that are true in that state. This is different from Section 3, where the
valuation V was defined as a function mapping each atom to the set of states
where it is true. The correspondence q ∈ val(w) iff w ∈ V (q) is elementary. An
element (w,[P x, Q y]) in val means that in state w, atoms P x and Q y are
true. For example, given that (0,(2,3)) is in ipairs, P 2 and Q 3 are true
in state 0, where P 2 stands for ‘the smaller number is 2’ and Q 3 stands for
‘the larger number is 3’. These same facts were described in Section 4 by x2

and y3, respectively, as that gave the closest match with the original problem
formulation. In DEMO, names of atoms must start with capital P,Q,R, but
the correspondence between names will be obvious.

The function acc specifies the accessibility relations. Agent a represents Sum
and agent b represents Product. For (w,(x1,y1)) and (v,(x2,y2)) in ipairs,
if their sum is the same: x1+y1==x2+y2, then they cannot be distinguished by
Sum: (a,w,v) in acc; and if their product is the same: x1*y1==x2*y2, then
they cannot be distinguished by Product: (b,w,v) in acc. Function ++ is an
operation merging two lists.

8.2 Representing the announcements

Sum and Product’s announcements are modelled as singleton action models,
generated by the announced formula (precondition) ϕ and the operation public.
Consider KS¬

∨
(i,j)∈I KP (xi ∧ yj), expressing that Sum says: “I knew you

didn’t.” This is equivalent to KS

∧
(i,j)∈I ¬KP (xi ∧ yj). A conjunct ¬KP (xi ∧

yj) in that expression, for ‘Product does not know that the pair is (i, j)’, is
equivalent to (xi ∧ yj)→ ¬KP (xi ∧ yj).6 The latter is computationally cheaper

6We use the T -validity ¬Kϕ ↔ (ϕ → ¬Kϕ), that can be shown as follows: ¬Kϕ iff
(ϕ ∨ ¬ϕ) → ¬Kϕ iff (ϕ → ¬Kϕ) ∧ (¬ϕ → ¬Kϕ) iff (ϕ → ¬Kϕ) ∧ (Kϕ → ϕ) iff (in T !)
(ϕ→ ¬Kϕ).
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to check in the model, than the former: in all states but (i, j) of the model, the
latter requires a check on two booleans only, whereas the former requires a check
in each of those states of Product’s ignorance, that relates to his equivalence
class for that state, and that typically consists of several states.

This explains that the check on KS¬
∨

(i,j)∈I KP (xi ∧ yj) can be replaced
by one on KS

∧
(i,j)∈I((xi ∧ yj) → ¬KP (xi ∧ yj)). Similary, using a model

validity, the check on
∨

(i,j)∈I KP (xi ∧ yj) (Product knows the numbers) can
also be replaced, namely by a check

∧
(i,j)∈I((xi ∧ yj) → KP (xi ∧ yj)).7 Using

these observations, and writing an implication ϕ → ψ as ¬ϕ ∨ ψ (because
DEMO does not support implication directly), we represent the three problem
announcements ii, iii, and iv listed on page 2 as fmrs1e, fmrp2e, and fmrs3e,
respectively, as listed in Figure 2. The corresponding singleton action models are
obtained by applying the function public, e.g. amrs1e = public (fmrs1e).
This is also shown in the figure. The line with solutione abbreviates the
computation of the successive model restrictions. In other words, (upds msnp
[amrs1e, amrp2e, amrs3e]) stands for epistemic model SP|ii|iii|iv. The final
part of Figure 2 encodes the less efficient version of the public announcements
discussed above, e.g., fmrs1 stands for KS¬

∨
(i,j)∈I KP (xi ∧ yj). In Section 9

we will discuss the precise computational properties of the different versions.

8.3 DEMO’s interaction with the implemented model

We continue by showing a relevant part of DEMO interaction with this imple-
mentation. The full (three-page) output of this interaction can be found on
www.cs.otago.ac.nz/staffpriv/hans/sumpro/.

The riddle is solved by updating the initial model msnp with the action
models corresponding to the three successive announcements. Below, showM
(upds msnp [amrs1e, amrp2e, amrs3e]) is user input and the lines from ==>
[0] is the system response to that input.

*SNP> showM (upds msnp [amrs1e, amrp2e, amrs3e])
==> [0]
[0]
(0,[p4,q13])
(a,[[0]])
(b,[[0]])

The function showM displays a pointed epistemic model as:

==> [<points>]
[<domain>]
[<valuation>]
[<accessibility relations represented as equivalence classes>]

7We now use that ϕ∨ψ—where ∨ is exclusive disjunction—entails that ( Kϕ ∨ Kψ iff
(ϕ→ Kϕ) ∧ (ψ → Kψ) ).
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The list [p4,q13] represents the facts P 4 and Q 13, i.e., the solution pair
(4, 13). Sum and Product have full knowledge (their access is the identity) on
this singleton domain consisting of state 0. That this state is named 0 is not a
coincidence: after each update, states are renumbered starting from 0.

For another example, (upds msnp [amrs1e,amrp2e]) represents the model
that results from Product’s announcement (iii) “Now I know it.” Part of the
showM results for that model are

*SNP> showM (upds msnp [amrs1e,amrp2e])

==> [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24

(...)

(0,[p2,q9])(1,[p2,q25])(2,[p2,q27])(3,[p3,q8])(4,[p3,q32])

(5,[p3,q38])(6,[p4,q7])(7,[p4,q13])(8,[p4,q19])(9,[p4,q23])

(...)

(a,[[0,3,6],[1,9,14,23,27,32,37,44,50],[2,10,17,24,28,38,45,46,51],[4

,11,18,29,33,39,47,55,60,65],[5,12,25,35,41,48,52,56,57,62,67,70,73],

[7],[8,22,36],[13,20,26,42,53,58,63,68,71,74,76,79,81],[15,19,30,34,4

0,61,66],[16,21,31,43,49,54,59,64,69,72,75,77,78,80,82,83,84,85]])

(b,[[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],

(...)

After two announcements, 86 pairs (x, y) remain possible. All remaining states
are renumbered, from 0 to 85, of which part is shown. Product’s (b) access
consists of singleton sets only, of which part is shown. That should be obvious,
as he just announced that he knew the number pair. Sum’s (b) equivalence
class [0,3,6] is that for sum 11: note that (0,[p2,q9]), (3,[p3,q8]), and
(6,[p4,q7]) occur in the shown part of the valuation. Sum’s access has one
singleton equivalence class, namely [7]. That corresponds to the state for pair
(4, 13): see (7,[p4,q13]) in the valuation. Therefore, Sum can now truthfully
announce to know the pair of numbers, after which the singleton final epistemic
state (that was already displayed) results.

8.4 Versions of the riddle in DEMO

How versatile the model checker DEMO is, may become clear by showing how
easily the program SNP.hs in Figure 2 can be adapted to accommodate differ-
ent versions of the riddle, as discussed in the historical Section 2. The least
upper bound for the Freudenthal version is 65. This we can check by replac-
ing upb = 100 in the program SNP.hs by upb = 65. More precisely we then
also have to run the program for upb = 64 after which it will appear that
the model computed in solutione = showM (upds msnp [amrs1e, amrp2e,
amrs3e]) is now empty. The McCarthy version of the riddle can be checked by
replacing

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<y, x+y<=upb]

by

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<=y, x<=upb, y<=upb]
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Of course, the additions x<=upb, y<=upb are now superfluous, but, for another
example, it is also easy to check that the least upper bound for which the
McCarthy version has a solution (and now we can not remove x<=upb, y<=upb)
is upb = 62. This we find when also changing the upper bound from 100 into
62 (and checking that upb = 61 gives an empty model).

The interpreted system version of the model can be implemented by con-
structing the domain differently, namely as

pairs = [(v,w)|x<-[2..100],y<-[2..100],x<y,x+y<=upb,v=x+y,w=x*y]

and now, accessibility, later on, is simply defined as correspondence in the first
argument for Sum and in the second argument for Product:

acc = [(a,w,v)| (w,(x1,y1))<-ipairs,(v,(x2,y2))<-ipairs,x1==x2]++
[(b,w,v)| (w,(x1,y1))<-ipairs,(v,(x2,y2))<-ipairs,y1==y2]

In principle, one can also check that, when increasing the upper bound,
more solutions or different solutions from (4, 13) may emerge. One is then likely
to run quickly into complexity problems; for that see the next section. The
Plaza version with an unlimited model cannot be checked, as DEMO requires
models to be finite. Also, as already mentioned, the epistemic formulas would
be infinitary, which is not allowed either.8

Other epistemic riddles consisting of public announcements being made in
some initial epistemic state, such as the Muddy Children problem, are simi-
larly implemented by adapting the domain construction and the announcement
formulas. For many examples, see [vE04].

8.5 Other model checkers

As mentioned in the introduction of Section 7, other epistemic model checkers
with dynamic features include MCK [GvdM04] and MCMAS [RL04]. The ques-
tion is whether we could also implement this problem in those model checkers.
For the latest versions of these model checkers in both case the answer appears
to be ‘no’.

The current version of MCK is 0.2.0. In MCK, a state of the environ-
ment is an assignment to a set of variables declared in the environment section.
These variables are usually assumed to be partially accessible to the individual
agents, and agents could share some variables. The change of the state of the
multi-agent system is either made by agents or the environment, in the form
of changing these variables. There are two ways to make such changes. One
is to send signals to the environment using the action construct by agents in
conjunction with the transitions construct by the environment, which provides
a way to describe how the environment variables are updated. The other is
a specialized form for actions from the perspective that environment variables

8Obviously, Plaza used some finite approximation of the problem, but although [Pla89]
mentions ‘a program’, it gives no details.
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are shared variables, by providing read and write operations on those shared
variables. In both cases, we need guarded statements to make the change. For
example, a simple deterministic statement has the form:

if cond → C [otherwise → Co ] fi

where command C is eligible for execution only if the corresponding condition
cond evaluates to true in the current state. Otherwise, the command Co will
be executed. If we would like to model the Sum-and-Product problem in MCK,
the effect of a public announcement should be recorded in a variable which is
accessible to all agents. Suppose the effect of P ’s public announcement : “I
now know it” (KP (x, y)) is recorded in variable v. Then in a state just after
this announcement, the variable v will be set to True if KP (x, y) holds in the
previous state, and otherwise to False. Clearly, we need that statement in the
above epistemic form, with cond involving knowledge checking. Unfortunately,
even though in MCK we can check epistemic postconditions, the current version
of MCK does not support checking epistemic formulas as preconditions, as in
cond. This might possibly be related to inherent difficulties to incorporate
knowledge in cond, but an extension seems called for.

The latest MCMAS is version 0.7. The underlying theory has been developed
by Lomuscio. It can be seen as a continuation of his PhD work on hypercube
systems, which are a special class of interpreted systems [Lom99]. Similarly to
MCK, MCMAS also does not support actions with knowledge-based precon-
ditions to transit from one global state to another global state. Other recent
work, by Su [Su04], was not included in our comparisons. However, his model
checking results use an architecture similar to MCK and MCMAS.

9 Complexity

In this section, we analyze the complexity of finding solutions using our DEMO
implementation. The theoretical boundaries are covered in Subsection 9.1. We
also include some experimental results, in Subsection 9.2. Computational com-
plexity of epistemic model checking is currently a focus of the research commu-
nity; for temporal epistemic model checking we refer to [vdHW02b, vdHW02a,
LR06, vdHLW06]. These results are as such inapplicable to our setting, be-
cause even apart from the different logical (namely temporal) setting, they also
focus on other modelling aspects, e.g. [LR06] is not based on actual epistemic
models but on succinct descriptions of such models in concurrent programs, and
[vdHW02b] is more concerned with the complexities involved when reformulat-
ing planning problems in a model checking context.

9.1 Theoretical analysis

The Sum-and-Product problem is solved by updating the initial model with a
sequence of three public announcements, i.e. by upds msnp [amrs1e, amrp2e,
amrs3e]. Each such model restriction M |ϕ requires determining the set {w ∈
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D(M) | M,w |= ϕ}. Given a model M , a state w, and a formula ϕ, checking
whether M,w |= ϕ can be solved in time O(|M | × |ϕ|), where |M | is the size of
the model as measured in the size of its domain plus the number of pairs in its
accessibility relations, and where |ϕ| is the length of the formula ϕ. This result
has been established by the well-known labelling method [HV91, FHMV95].
This method is based on dividing ϕ into subformulas. One then orders all
these subformulas, of which there are at most |ϕ|, by increasing length. For
each subformula, all states are labelled with either the formula or its negation,
according to the valuation of the model and based on the results of previous
steps. This is a bottom-up approach, in the sense that the labelling starts from
the smallest subformulas. So it ensures that each subformula is checked only
once in each state.

In DEMO v1.02, the algorithm for checking whether M,w |= ϕ does not
employ the bottom-up approach described above. Instead, it uses a top-down
approach, starting with the formula ϕ and recursively checking its largest sub-
formulas. For example, to check whether M,w |= Kaψ, the algorithm checks
whether M,w′ |= ψ for all w′ such that w ∼a w′, and then recursively checks
the subformulas of ψ. This algorithm is O(|M ||ϕ|), since each subformula may
need to be checked |M | times, and there are at most |ϕ| subformulas of ϕ. So,
theoretically, DEMO’s algorithm is quite expensive.

In practice it is less expensive, because the Haskell language and its compiler
and interpreter support a cache mechanism: after evaluating a function, it caches
some results in memory, for reuse. For a study on the cache mechanism in
Haskell programs we refer to [NM03]. Since it is hard to predict what results
will be cached and for how long, we cannot give an estimate how much the
cache mechanism influences our experimental results. But we can still show
some interesting experimental results on the DEMO algorithm.

9.2 Experimental results

Our experimental results were based on a PC configured as Windows XP, AMD
CPU 3000+ (1.8Ghz), 1G RAM. We used DEMO v1.02, and the Glasgow
Haskell Compiler Interactive (GHCi) version 6.4.1, enabling the option “:set +s”
to display information after evaluating each expression, including the elapsed
time and number of bytes allocated.9 We have run Windows XP in ‘safe mode’
to minimize the disturbance from other irrelevant processes when measuring
computation.

More or less efficient formulas In Section 8 we observed that checking a
formula such as KS

∧
(i,j)∈I((xi ∧ yj) → ¬KP (xi ∧ yj)), fmrs1e in Figure 2,

is computationally cheaper than checking its (in T) logically equivalent form
9The allocation figure is only accurate to the size of the storage manager’s allocation area,

because it is calculated at every garbage collection. The RAM occupation is normally 60
Mbytes for GHCi when loading the SNP.hs and DEMO modules. For evaluating a particular
expression, the figure might be quite large, for example in table 1, in the case of upb=80 and
fmrs1e, the result is around 3219 Mb, due to the repeated garbage collection.
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fmrs1e fmrs1
upb time(secs) space(bytes) time(secs) space(bytes)
20 0.66 13,597,832 3.13 14,430,216
40 75.30 141,967,304 954.41 172,666,424
60 714.80 858,501,572 21,389.60 1,074,424,452
80 7,232.69 3,374,852,696 not available not available

Table 1: Experimental results on formula checking

upb | msnp | time(secs) space(bytes)
65 23,367 1,609.03 1,325,890,048
80 43,674 7,288.08 3,150,903,744
86 54,298 10,636.03 3,905,964,300
94 70,936 20,123.02 6,048,639,068
100 85,406 34,962.38 9,047,930,216

Table 2: Experimental results on the trend of time-space consumption

KS¬
∨

(i,j)∈I KP (xi ∧ yj), fmrs1 in Figure 2. Our experiments confirm this
result. In Table 1 we show the results for time and space consumption of function
upds msnp [public(fmrs1e)] and upds msnp [public(fmrs1)] for different
upper bounds upb in the initial model msnp: namely for upb 20, 40, 60 and
80. It is easy to see that checking with fmrs1e is substantially less costly than
checking with fmrs1 in terms of time, and slightly less costly in terms of space.
We estimate that it may take more than a week to run the case fmrs1 with
upb=80. Cases 80 and 100 are only feasible for the more efficient form fmrs1e.
Our next experiment is based on the more efficient fmrs1e,fmrp2e,fmrs3e only.

Trends for time and space consumption The smallest upb for which the
Freudenthal version of the problem has a solution is 65. We investigated the
trend of time-space consumption between upb=65 and upb=100, as this relates
to the size of the initial model msnp. The results for running solutione (see Fig-
ure 2) are shown in Table 2. In the figure, | msnp | is the size of the model msnp,
measured as the number of states in the domain plus the number of pairs in the
accessibility relations (for Sum and for Product). The proportional increase of
the figures in Table 2 is clearer in Table 3, wherein they are normalized to the
case upb=65. Note that time consumption increases faster than space consump-
tion when the size of the model increases. Our sample is too small to consider
other, more general, conclusions.

Finally, we also investigated the computational differences between the stan-
dard ‘smaller/larger number’ modelling of the puzzle (Section 4) and the ‘inter-
preted system’ modelling of the puzzle (Section 6). In that case we did not find
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upb | msnp |/N time/N space/N
65 1 1 1
80 1.87 4.53 2.38
86 2.32 6.61 2.95
94 3.04 12.51 4.56
100 3.65 21.73 6.82

Table 3: Normalization of the experimental results in Table 2.

significant results.

10 Conclusions

We have modelled the Sum-and-Product problem in public announcement logic
and verified its properties in the epistemic model checker DEMO. The problem
can be represented in the traditional way by number pairs, so that Sum knows
their sum and Product their product, but also as an interpreted system with
(sum, product) pairs. Subject to the union of languages, the representations
are bisimilar, and even isomorphic. We also analyzed which announcements
made towards a solution of the problem were unsuccessful updates—formulas
that become false because they are announced.

A final word on model checking such problems: originally, an analysis in-
volving elementary number theory and combinatorics was necessary to solve the
problem. Indeed, that was the whole fun of the problem. Solving it in a model
checker instead, wherein one can, in a way, simply state the problem in its orig-
inal epistemic formulation, hides all that combinatorial structure and makes it
appear almost trivial. Far from trying to show that the problem is therefore
actually trivial or uninteresting, this rather shows how powerful model check-
ing tools may be, when knowledge specifications are clear and simple but their
structural ramifications are complex.
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