
Homeless and Home-based Lazy Release Consistency Protocols on
Distributed Shared Memory

Byung-Hyun Yu and Zhiyi Huang Stephen Cranefield and Martin Purvis

Department of Computer Science Department of Information Science
University of Otago, New Zealand University of Otago, New Zealand
Email: byu,hzy@cs.otago.ac.nz scranefield,mpurvis@infoscience.otago.ac.nz

Abstract

This paper describes the comparison between homeless and
home-based Lazy Release Consistency (LRC) protocols which
are used to implement Distributed Shared Memory (DSM)
in cluster computing. We present a performance evaluation

of parallel applications running on homeless and home-based
LRC protocols. We compared the performance between Tread-

Marks, which uses homeless LRC protocol, and our home-based
DSM system. We found that the home-based DSM system has
shown better scalability than TreadMarks in parallel applica-
tions we tested. This poor scalability in the homeless protocol
is caused by a hot spot and garbage collection, but we have

shown that these factors do not affect the scalability of the

home-based protocol.

Keywords: Distributed Shared Memory, Lazy Re-
lease Consistency, Home-based Protocol, Perfor-
mance Evaluation.

1 Introduction

Distributed shared memory (DSM) has been consid-
ered as an alternative to message passing for paral-
lel programming. By using shared data structures,
programmers can design parallel algorithms easily
compared with programming with message passing.
DSM also can provide easy scalability through net-
worked computers compared to standalone multipro-
cessor computers such as cc-NUMA (cache coherent -
Non-Uniform Memory Architecture). In spite of these
advantages, performance over DSM is limited by the
additional communication traffic required in order to
provide memory consistency over physically separated
workstations. To overcome this problem, many mem-
ory consistency models and techniques have been pro-
posed. One of them is the Lazy Release Consistency
(LRC) model (Keleher, Cox & Zwaenepoel 1992), and
TreadMarks (Amza, Cox, Dwarkadas, Keleher, Lu,
Rajamony, Yu & Zwaenepoel 1996) has been consid-
ered as the state of the art implementation of LRC.

More recently, the home-based protocol has
been proposed and performance comparison between

Copyright c©2004, Australian Computer Society, Inc. This pa-
per appeared at the 27th Australasian Computer Science Con-
ference, The University of Otago, Dunedin, New Zealand. Con-
ferences in Research and Practice in Information Technology,
Vol. 26. V. Estivill-Castro, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

This research was supported by Foundation for Research, Sci-
ence and Technology in New Zealand under Grants UOOX0208.

homeless and home-based protocols have been pub-
lished (Zhou, Iftode & Li 1996, Cox, de Lara, Hu
& Zwaenepoel 1999). The conclusions from those
two papers showed different performance results: one
found no significant difference between the two pro-
tocols (Cox et al. 1999) and the other found the
home-based one significantly outperformed the home-
less one (Zhou et al. 1996).

Lately, we implemented a home-based DSM sys-
tem based on TreadMarks. We tested our home-
based DSM system by running 7 parallel applica-
tions over 32 nodes. Our preliminary performance
results showed that our home-based system outper-
forms the homeless one significantly in the Barnes-
Hut and parallel neural network applications. How-
ever, in SOR and Gauss, the home-based one showed
that proper home assignment to shared pages is crit-
ical to the performance as indicated by others (Zhou
et al. 1996, Keleher 1999). Discussions of the perfor-
mance evaluation are presented in Section 3.

This paper is organized as follows: Section 2 ex-
plains homeless and home-based protocols and com-
pares the two protocols. Section 3 presents perfor-
mance results and discuss strengths and weaknesses
of the two protocols based on our performance re-
sults. Finally, Section 4 describes future research and
conclusions.

2 Protocol Comparison

2.1 Background

When a parallel application is running over many
nodes by means of DSM, each process running the
application shares logically the same memory space
with other processes even though each process has a
physically different memory space from others. Be-
cause of this physically different location of memory,
a communication protocol is needed to provide coher-
ent and consistent memory with all the processes.

A memory consistency model plays an important
role in the communication protocol. Since Lam-
port proposed Sequential Consistency (SC) (Lamport
1979) for multiprocessor computers, many memory
consistency models such as Release Consistency (RC)
(Carter, Bennett & Zwaenepoel 1991) and Lazy Re-
lease Consistency (LRC) (Keleher et al. 1992) have
been proposed to improve performance of applications
running on shared memory by removing unnecessary
communication between processes in exchange for a
more complicated programming style using synchro-
nization variables. Even though more relaxed mem-
ory consistency models than RC and LRC, such as
Entry Consistency (EC) (Bershad & Zekauskas 1991)
and Scope Consistency (ScC) (Iftode, Singh & Li

117



1996), have been proposed to improve the perfor-
mance further, some applications have incorrect pro-
gram results under those memory models unless pro-
grammers modify the source code of the applications
to guarantee correct program results.

In this paper, evaluations of two implementations
of the LRC protocol, TreadMarks and a Home-based
DSM system, are presented. To compare them, we
briefly explain page-based DSM systems since the two
implementations are page-based DSM systems. In
page-based DSM systems, a page is the smallest unit
of memory consistency. This means that even though
part of a page is modified, the whole page is consid-
ered as modified.

Whenever a node writes something on pages of
DSM, it must record information about the write.
The interval data structure is used to contain all the
information about the writes between two synchro-
nizations, which is the vector time of its creation, a
list of dirty pages and diffs1 in order to update other
nodes. According to the LRC model, this update does
not need to be propagated to all the other nodes. Also
the time of propagation can be delayed until the next
synchronization time. At the synchronization time,
each node gets updated by the other nodes.

In order for the other nodes to find out whether
or not the memory accessed is the most up-to-date,
page-based DSM systems make use of the page fault
mechanism from the virtual memory system. If a
node accesses a stale copy of the page, a page fault
happens. The faulting node must get the most up-
to-date copy of the page from another node or nodes
which have the most up-to-date one. At the time
of the page fault, the homeless and home-based pro-
tocols behave differently. In the homeless protocol,
the faulting node requests timely ordered diffs of the
page from the last writer or writers. The most up-to-
date page is represented as timely ordered diffs of the
page which may be distributed over the nodes. In the
home-based protocol, the faulting node requests the
page from the home of the page which always has the
most up-to-date copy.

2.2 Homeless Protocol

Since the most up-to-date page is maintained by the
timely ordered diffs and the diffs are distributed over
many nodes, it is complicated and time-consuming to
get the page updated in the homeless protocol. To
make it worse, as the number of the nodes increases,
it is common that the size of the diffs of the page can
exceed the size of the page due to diff accumulation.

Since the same diffs can be stored at multiple
nodes and can’t remove them until all nodes have
them, not only is the memory requirement for stor-
ing diffs costly but also a garbage collection process is
necessary during program execution, which is another
complicated and time-consuming process.

It is also likely to happen that one last writer can
have all the diff requests from all the other nodes
at the same time, which is called a hot spot (Zhou
et al. 1996). A hot spot can be produced when only
one node writes to the shared memory before the last
barrier synchronization in the main loop. A node suf-
fering from a hot spot delays the diff request service
from all the other nodes and it can significantly de-
grade performance of DSM applications as presented
in Section 3.3.

1A diff is created by word-by-word comparison of a dirty page
with a twin which is copied from the initial state of the page before
it became dirty.

2.3 Home-based Protocol

In the home-based protocol, a home node is assigned
to a page to maintain the most up-to-date page. To
get the most up-to-date page, a faulting node requests
it from the home of the page. When a node writes on a
page which is not owned by itself, it should update the
home of the page at synchronization time by sending
diffs according to LRC.

Compared to the homeless protocol, the process of
getting the most up-to-date page by a faulting node
is much simpler and shorter since the home-based
protocol asks for the most-up-date copy of the fault
page, not the timely ordered diffs of the page, and the
amount of data traffic is not more than the page size.
It is also easy to find out where the most up-to-date
page is.

In terms of the memory requirements, the home-
based protocol is a clear winner. Since non-home
nodes eagerly update home nodes by sending diffs
at synchronization time and discard the diffs, no
memory is required to retain the diffs. Furthermore,
garbage collection is not needed to remove the diff
memory space, which would have involved barrier-
like communication traffic (Keleher, Dwarkadas, Cox
& Zwaenepoel 1994).

Another advantage of the home-based protocol is
that there is no diff accumulation and no multiple
packet transfer for the same diff. In the homeless
protocol the same diff can be transferred to the next
lock owner as many as N-1 times (where N is the num-
ber of nodes) in the worst case. In the home-based
protocol, however, only one diff transfer to the home
of the page is required at the end of synchronization.

Finally, a hot spot is avoided in the home-based
protocol because page update requests are distributed
over the nodes. In Section 3.3, we will show the hot
spot effect in the parallel neural network application.

Despite all the advantages, if the home assignment
to the shared pages is not well matched with an ap-
plication’s memory access pattern, the home-based
protocol will suffer (Keleher 1999). At the current
stage, our implementation of the home-based DSM
system uses a fixed manner of home assignment. We
will present the home assignment effect in Section 3.5
with performance results of SOR and Gauss applica-
tions.

3 Performance Evaluation

To make a comparison between the homeless and
home-based protocols, we chose 7 DSM applications
which are typically used to evaluate DSM systems.
The problem sizes and sequential execution times for
them are presented in Table 1. The sequential ex-
ecution times are measured using TreadMarks. We
found that the sequential execution times for the
home-based implementation are slightly longer than
for those using TreadMarks because of the different
initial page state of node 0. The initial state of pages
in node 0 is Read-Write in TreadMarks and Read-
Only in the home-based system. We ran those ap-
plications over our network which has 32 nodes and
is connected by 100 Mbit switched Ethernet. Each
node has a 350 MHz Pentium II CPU and 192 MB
of memory. All nodes are running Red Hat Linux 7.2
(gcc 2.96).

118



Sequential
Application Problem Size, Execution Time

Iterations (secs)
NN 44,000,235 710.07
Barnes-Hut 64k Bodies,3 85.74
IS 224x215,20 72.07
3D FFT 64x64x64,50 44.44
TSP 19 cities 33.07
SOR 2000x1000,50 6.21
Gauss 1024x1024,1023 15.15

Table 1: Problem Sizes and Sequential Execution
Times

3.1 Applications

3.1.1 Parallel Neural Network

We implemented a parallel version of a neural net-
work application which is trained by a two pass al-
gorithm: forward propagation and backward propa-
gation (Werstein, Pethick & Huang 2003). We used
the shuttle data set obtained from the University of
California, Irvine machine learning repository (Blake
& Merz 1998). Each item contains nine numerical at-
tributes, with 44,000 items in the set. To train the
network for the data set, 235 epochs were taken. In
the main loop for training the network, two barriers
and two lock synchronizations were used.

3.1.2 Barnes-Hut

This application is a simulation of gravitational
forces using the Barnes-Hut N-Body algorithm (Woo,
Ohara, Torrie, Singh & Gupta 1995). In the main
loop, three barriers are used to synchronize program
execution between nodes.

3.1.3 IS

Integer Sort (IS) ranks numbers represented as an ar-
ray of keys by using a counting or bucket sort (Bailey,
Barszcz, Barton, Browning, Carter, Dagum, Fatoohi,
Frederickson, Lasinski, Schreiber, Simon, Venkatakr-
ishnan & Weeratunga 1991). Each key[i] is ranked by
its size and sorted into rank[i]. rank[i] means the rank
of key[i]. In the parallel version of DSM, three barri-
ers are used to synchronize the program execution.

3.1.4 3-D FFT

The 3-D Fast Fourier Transform (FFT) benchmark is
included in the TreadMarks application suite. This
solves a partial differential equation using forward
and inverse FFTs. In the main loop only one bar-
rier synchronization happens at the end of each loop.
The memory access pattern of each loop is regular.

3.1.5 TSP

The Travelling Salesman Problem (TSP) application
finds the cheapest way of visiting a sequence of cities
and returning to the starting point, given a finite
number of cities along with the cost of travel be-
tween each pair of them. We used the implementa-
tion in the TreadMarks application suite, which uses
a branch-and-bound algorithm. It uses only lock syn-
chronization to protect the shared data to find out
the minimum tour length and path.

3.1.6 SOR

We ran the Successive Over-Relaxation (SOR) pro-
gram included in the TreadMarks application suite.
The shared matrix is divided into N blocks of rows
on which N nodes work. To minimize false sharing it
allocates two matrices named ‘red’ and ‘black’. The
main loop has two barrier synchronizations, one for
the black matrix and the other for the red matrix.
Each node always accesses the same pages in the main
loop.

3.1.7 Gaussian Elimination

Gaussian Elimination is a method for solving matrix
equations of the form Ax = b. The application is
included in the TreadMarks application suite. In the
main loop, only one node finds a pivot element. After
finding the pivot element all the nodes run Gaussian
elimination. Each loop has one barrier synchroniza-
tion before finding the pivot element.

3.2 Performance Results

Overall speed-up of the applications are presented in
Table 2. Neural Network, Barnes-Hut and IS showed
much better performance over the home-based proto-
col especially over more than 16 nodes. On the other
hand, SOR and Gauss have a better speed-up over the
homeless protocol. The other two applications, 3D-
FFT and TSP have a slightly better speed-up over the
homeless protocol. The analysis of the performance
results will be discussed in Sections 3.3, 3.4 and 3.5.

3.3 Hot Spot

The hot spot phenomenon in DSM applications can
severely degrade performance. The homeless proto-
col is likely to have a hot spot more frequently than
the home-based protocol, as can be seen in our neu-
ral network application. To know why the hot spot
occurs in the neural network application, we should
understand the parallel algorithm to train the neural
network. The algorithm is:

1. Check if the job flag is not ‘done’.

2. Each node trains the network on its part of the
training set.

3. The changes obtained from nodes are combined.

4. Barrier synchronization.

5. Node 0 applies the changes and calculates a final
error. If the error is smaller than the specified
error value, set the job flag to ‘done’.

6. Barrier synchronization

7. Go to Step 1.

During the parallel computation in Step 2, each node
get access to the pages of the shared global weights
which were invalidated in the prior Step 6. Then all
the nodes except node 0 will have a page fault. In
response to the page fault, the two protocols behave
differently.

In the homeless protocol, all the nodes except node
0 will request node 0 to send diffs since node 0 is
the last writer because of the prior Step 5. These
simultaneous multiple diff requests from all the other
nodes except one node can be a significant bottleneck
as the number of the nodes increases. Even worse, if

119



Application 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
LRC HLRC LRC HLRC LRC HLRC LRC HLRC LRC HLRC

NN 2.0 2.0 3.9 4.1 6.5 7.4 2.2 10.3 0.4 8.3
Barnes-Hut 1.6 1.5 2.0 2.0 2.0 2.4 1.4 2.8 0.2 3.4
IS 1.9 1.9 3.3 3.6 3.8 5.9 0.9 8.0 0.4 4.5
3D FFT 0.9 0.7 1.2 0.9 1.76 1.3 2.3 1.8 1.1 1.5
TSP 1.9 2.0 3.8 3.6 6.5 4.1 5.7 3.1 2.9 2.3
SOR 2.02 0.9 3.7 1.2 5.9 1.8 6.5 2.3 2.9 1.1
Gauss 1.6 0.2 1.8 0.3 1.4 0.3 0.8 0.35 0.4 0.2

Table 2: Comparison of Overall Speed-ups between Homeless and Home-based DSM Implementations

diffs from the same page are accumulated and become
larger, this diff request handling time will take more
time. We confirmed this hot spot phenomenon by
measuring the time breakdown of the main loop. We
measured the time duration between:

• Step 1 and Step 3 which is where the main com-
putation occurs in all the nodes.

• Step 4 which is the first barrier.

• Step 5 which is the computation only in node 0.

• Step 6 which is the last barrier.

Figure 1 presents the data obtained from node 0,
which shows an abnormal barrier time increase start-
ing from 16 nodes over TreadMarks but a minor bar-
rier time increase over the home-based system. We
also measured per-node time breakdown on 32 nodes
over TreadMarks and the home-based system. As
shown in Figure 2, the first barrier time in node 0
took more than 98% of the total execution time due
to a hot spot. This data means that even though node
0 gets into the first barrier first, it can not get out of
the barrier until all the faulting nodes are satisfied
with diffs sent from node 0.

In the home-based protocol, in response to the
page fault, each node requests the pages from the
homes of the pages. The page requests are likely to
be distributed over multiple nodes. Compared to the
homeless protocol in which one node takes all the re-
sponsibility for diff request handling, the page request
handling is distributed over multiple nodes. Figure 3
shows that node 0 does not suffer from a hot spot.
This resulted in good performance. In the neural
network application, the page request handling is dis-
tributed over the first 5 nodes. Also page request
handling time is much shorter because sending a page
can use a much smaller message than sending accu-
mulated diffs in the homeless protocol.

Another proof that the hot spot affects the per-
formance can be found by comparing the number of
resent request packets. In the implementation of the
two protocols, if a request is not satisfied in one sec-
ond, the request is resent. As shown in Figure 4,
the number of resent request packets steeply increases
with the number of nodes after 16 nodes in the neural
network application over the homeless protocol, but
there are none in the home-based protocol.

3.4 Garbage Collection Effect

Another negative effect that the homeless protocol
can have is the need for continuous garbage collec-
tion. In the Barnes-Hut application, we found that
the garbage collection affected the entire performance
significantly, in particular, over more than 16 nodes.

Figure 1: Time Breakdown for Neural Network in
Node 0

To see how the garbage collection affects the per-
formance negatively we measured garbage collection
time over 8, 16 and 32 nodes.

In the implementation of TreadMarks, the process
of garbage collection happens inside the barrier syn-
chronization implementation if memory space for diffs
and intervals exceeds some limitation. There are 9
barrier synchronizations during the main computa-
tion in Barnes-Hut. Out of the 9 barriers, garbage col-
lection was run for 8, 16 and 32 nodes 3, 3 and 5 times
respectively over TreadMarks. Because garbage col-
lection requires barrier-like communication, it would
be very costly as the number of nodes increase as
shown in Table 3. For 32 nodes, the barrier time
took more than 377 seconds out of the total exe-
cution time (411 seconds) over LRC. Out of 377.6
seconds, garbage collection time took 274.38 seconds,
which was almost 70% of the execution time. On the
other hand, Barnes-Hut over the home-based protocol
showed no garbage collection and much better perfor-
mance.

3.5 Home Assignment Effect

One of the weaknesses of the home-based protocol can
be unnecessary data communication if the home as-
signment to the pages is not matched well with the
memory access pattern of applications. Our perfor-
mance results for SOR and Gauss showed poor per-
formance over the home-based protocol because our
fixed home assignment was not well matched with the
memory access patterns. The fixed home assignment
means the home assignments to the pages were page’s
home = page number % number of node where “%”
is the modulus operator.

SOR and Gauss are typical matrix problems that

120



8 nodes 16 nodes 32 nodes
LRC HLRC LRC HLRC LRC HLRC

Execution Time (secs) 43.13 36.18 63.13 31.62 411.08 22.17
Barrier Time (secs) 18.55 13.91 36.36 14.58 377.6 8.45
Number of Garbage Collection 3 0 3 0 5 0
Garbage Collection Time (secs) 7.74 0 14.6 0 274.38 0

Table 3: Garbage Collection Effect

Figure 2: Time Breakdown for Neural Network in 32
nodes over TreadMarks

Figure 3: Time Breakdown for Neural Network in 32
nodes over the Home-based System

can be parallelized by dividing the matrix. Each di-
vided sub-matrix is processed on each node and the
sub-results are collected at the barrier time. The
two applications show a regular memory access pat-
tern meaning that each node always works on the
same sub-matrix. This kind of memory access pattern
should not generate much data traffic between nodes
other than the synchronization for the boundary of
each sub-matrix. However this is not the case for the
fixed manner of home assignment. According to the
home-based protocol, each node still needs to update
the homes of the pages that have been changed. This
will generate unnecessary data traffic which could be
avoided if the pages were assigned to the home nodes
that exclusively access the pages.

We measured this home effect by manually assign-
ing the right home nodes to the pages. As expected

Figure 4: Comparison of the Number of Resent Re-
quest Packets in the Neural Network Application

and shown in Figures 5 and 6, the performances of
SOR and Gauss with the manipulated home assign-
ment improved significantly.

3.6 Data Communication Traffic

In Table 4, the number of messages and the amount
of data traffic can be compared between the two pro-
tocols. In Barnes-Hut we see that even though the
amount of data transferred over the home-based pro-
tocol is more than for the homeless protocol, the
performance over the home-based protocol is better
than over the homeless protocol, in particular, over 32
nodes. Similarily, though the number of messages and
the amount of data traffic in Neural Network are not
much different, the performance over the home-based
protocol is much better than over the homeless pro-
tocol. From the speed-up and data traffic of Neural
Network and Barnes-Hut, we can conclude that burst
data traffic over a short time, for example at the bar-
rier synchronization time, and burst request service
to one node can be more critical to overall perfor-
mance than the amount of the overall data traffic as
explained in Section 3.3.

Nevertheless, in general, the greater the amount
of data and the number of messages, the worse the
performance as clearly shown in SOR and Gauss over
the fixed home assignment. When the home nodes
were properly assigned by us according to the mem-
ory access pattern of the applications, the number of
messages and the amount of data traffic were signifi-
cantly reduced as shown in Table 5.

121



8 nodes 16 nodes 32 nodes
Application Number of Amount of Number of Amount of Number of Amount of

Messages Traffic(MB) Messages Traffic(MB) Messages Traffic(MB)
LRC HLRC LRC HLRC LRC HLRC LRC HLRC LRC HLRC LRC HLRC

NN 57993 61848 78.8 88.8 121208 127294 177.9 180 272508 259956 403.0 378.3
Barnes-Hut 889912 218745 330.7 498.8 2803645 410022 621.8 891.8 8696047 435632 1212.3 924.8
IS 21390 22746 141.9 51.2 62730 55960 604.4 119.7 197502 139179 2326.9 285.2
3D FFT 107079 99463 205.6 545.3 134505 127483 223.1 612.3 320947 307382 453.9 837.1
TSP 18134 17533 6.0 27.9 25622 23791 13.4 393.3 34315 28938 28.5 493.3
SOR 7135 12630 8.0 63.8 11537 37000 10.3 77.5 20129 123208 17.2 99.0
Gauss 55545 95676 56.4 1322.7 120705 205016 124.4 1501.1 250454 569828 259.2 1749.7

Table 4: Comparison of Data Communication Traffic between Homeless and Home-based Protocols

8 nodes 16 nodes 32 nodes
Number of Amount of Number of Amount of Number of Amount of
Messages Traffic(MB) Messages Traffic(MB) Messages Traffic(MB)

SOR 4316 6.3 9244 14.4 19100 33.2
Gauss 42155 66.9 91171 155 188915 356.2

Table 5: Data Communication Traffic over the Manipulated Home Assignment

Figure 5: Home Effect in SOR

4 Conclusions and Future Research

In this paper we presented a performance evaluation
of homeless and home-based LRC protocols. For this,
we compared the performance of 7 applications over
TreadMarks, which is the state of the art of homeless
LRC protocol implementation, and our home-based
DSM system.

The performance results showed that the homeless
protocol is less scalable compared to the home-based
protocol. The neural network and Barnes-Hut ap-
plications showed abnormal super degradation of the
performance over the homeless protocol for 16 nodes
and more. This super degradation is caused by a hot
spot and garbage collection.

We have concluded that the homeless protocol is
likely to get a hot spot more frequently than the
home-based protocol. Also, garbage collection which
is necessary in the homeless protocol can reduce per-
formance of DSM applications. On the other hand,
the home-based protocol is not affected by these fac-
tors.

Figure 6: Home Effect in Gauss

However, performance over the home-based pro-
tocol is very sensitive to the home assignment to the
pages as shown in SOR and Gauss. If the home is
assigned to the pages that are exclusively accessed, it
will significantly reduce data traffic and the number
of page faults.

In conclusion, if the homes of the pages are well
assigned according to the memory access pattern of
DSM applications, the home-based protocol will be
likely to be superior to the homeless protocol. In
particular, since the number of nodes over DSM are
likely to become larger in the future, the home-based
protocol will be the best answer for scalable DSM.

Our future research will be concentrated on find-
ing a better memory consistency model for the home-
based protocol. Though the LRC model used in
TreadMarks and our home-based DSM system pro-
vides correct and efficient memory consistency for
DSM, Scope Consistency and our View-based Consis-
tency (VC) (Huang, Sun, Cranefield & Purvis 2001)
models can improve DSM performance by more selec-
tively and accurately invalidating or updating pages.

122



Acknowledgment

The authors would like to thank Mark Pethick who
implements the parallel neural network application.

References

Amza, C., Cox, A., Dwarkadas, S., Keleher, P., Lu,
H., Rajamony, R., Yu, W. & Zwaenepoel, W.
(1996), ‘Treadmarks: Shared memory comput-
ing on networks of workstations’, IEEE Com-
puter 29(2), 18–28.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning,
D. S., Carter, R. L., Dagum, D., Fatoohi, R. A.,
Frederickson, P. O., Lasinski, T. A., Schreiber,
R. S., Simon, H. D., Venkatakrishnan, V. &
Weeratunga, S. K. (1991), ‘The NAS Parallel
Benchmarks’, The International Journal of Su-
percomputer Applications 5(3), 63–73.

Bershad, B. N. & Zekauskas, M. J. (1991), Mid-
way: Shared memory parallel programming
with entry consistency for distributed memory
multiprocessors, Technical Report CMU-CS-91-
170, Carnegie Mellon University, Pittsburgh, PA
(USA).

Blake, C. & Merz, C. (1998), ‘UCI repos-
itory of machine learning databases’.
http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

Carter, J. B., Bennett, J. K. & Zwaenepoel, W.
(1991), Implementation and performance of
Munin, in ‘Proc. of the 13th ACM Symp. on Op-
erating Systems Principles (SOSP-13)’, pp. 152–
164.

Cox, A. L., de Lara, E., Hu, C. Y. C. & Zwaenepoel,
W. (1999), A performance comparison of home-
less and home-based lazy release consistency pro-
tocols for software shared memory, in ‘Proc. of
the 5th IEEE Symp. on High-Performance Com-
puter Architecture (HPCA-5)’.

Huang, Z., Sun, C., Cranefield, S. & Purvis,
M. (2001), View-based consistency and its
implementation, in ‘Proceedings of the 1st
IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGrid 2001)’,
pp. 74–81.

Iftode, L., Singh, J. P. & Li, K. (1996), Scope con-
sistency: A bridge between release consistency
and entry consistency, in ‘Proc. of the 8th ACM
Annual Symp. on Parallel Algorithms and Ar-
chitectures (SPAA’96)’, pp. 277–287.

Keleher, P., Cox, A. L. & Zwaenepoel, W. (1992),
Lazy release consistency for software distributed
shared memory, in ‘Proc. of the 19th Annual Int’l
Symp. on Computer Architecture (ISCA’92)’,
pp. 13–21.

Keleher, P., Dwarkadas, S., Cox, A. L. & Zwaenepoel,
W. (1994), Treadmarks: Distributed shared
memory on standard workstations and operating
systems, in ‘Proc. of the Winter 1994 USENIX
Conference’, pp. 115–131.

Keleher, P. J. (1999), Symmetry and performance in
consistency protocols, in ‘International Confer-
ence on Supercomputing’, pp. 43–50.

Lamport, L. (1979), ‘How to make a multiproces-
sor computer that correctly execute multiprocess
programs’, IEEE Transactions on Computers C-
28(9), 690–691.

Werstein, P., Pethick, M. & Huang, Z. (2003), A per-
formance comparison of dsm, pvm, and mpi, in
‘Proceedings of the 4th International Conference
on Parallel and Distributed Computing, Applica-
tions and Technologies’, SW Jiaotong University,
Chengdu, China, pp. 476–482.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P. &
Gupta, A. (1995), The SPLASH-2 programs:
Characterization and methodological considera-
tions, in ‘Proceedings of the 22th International
Symposium on Computer Architecture’, Santa
Margherita Ligure, Italy, pp. 24–36.

Zhou, Y., Iftode, L. & Li, K. (1996), Performance
evaluation of two home-based lazy release consis-
tency protocols for shared memory virtual mem-
ory systems, in ‘Proc. of the 2nd Symp. on
Operating Systems Design and Implementation
(OSDI’96)’, pp. 75–88.

123


	Performance Evaluation
	Applications
	Parallel Neural Network
	Barnes-Hut
	IS
	3-D FFT
	TSP
	SOR
	Gaussian Elimination

	Performance Results
	Hot Spot
	Garbage Collection Effect
	Home Assignment Effect
	Data Communication Traffic

	Conclusions and Future Research

