
Supporting Large Scale eResearch Infrastructures with Adapted

Live Streaming Capabilities

Syed Hasan1, Laurent Lefevre2, Zhiyi Huang1 and Paul Werstein1

1 Department of Computer Science
University of Otago,

Dunedin, New Zealand,
Email: shasan|hzy|werstein@cs.otago.ac.nz

2 INRIA RESO - LIP (UMR CNRS, INRIA, ENS, UCB) - University of Lyon
Ecole Normale Superieure,

46, allee d’Italie - 69364 LYON Cedex 07 - FRANCE ,
Email: laurent.lefevre@inria.fr

Abstract

Large scale e-Research environments face classical
distributed challenges: performance, heterogeneous
equipment and variable contexts. The users of such
infrastructures want to benefit from full interactive
environments based on multimedia streams (voice,
video, virtual reality) which are difficult to design
and support on a large scale basis. In this paper,
we present a new approach to support the streaming
of live flows between e-Researchers. We show that
traditional techniques (using TCP-based live stream-
ing) are unsuitable for infrastructures with long delay
and high loss rate. TCP introduces rate oscillations
and requires more buffering and bandwidth to sustain
a smooth playback. We propose a streaming frame-
work which provides smoother rate control than TCP
and improves streaming performance based on cross-
layer feedback between the transport protocol and the
streaming server. Our solution keeps the buffer us-
age at the client and server to a minimum level and
provides quick rate adaptation. This paper presents
simulation results for streaming in different eResearch
scenarios.

Keywords: Live streaming, eResearch, Congestion
control, Multimedia communication, Streaming me-
dia.

1 Introduction

Many eResearch projects are large enough to re-
quire the skills and expertise of scientists distributed
around the world. Some of these eResearch problems
are based on regional and geographical contexts, in
which collaboration across distance is critical (An-
derson & Kanuka 2003). Recently several projects
have created collaborative eResearch tools and infras-
tructures (Paterson et al. 2007, Sakai Project 2005).
These projects use the Internet as a viable platform
for long distance collaboration among eResearchers.
Live streaming is one of the key techniques for dis-
seminating lectures, tutorials and eLearning content
in such a collaborative research environment. How-
ever the user experience of streaming over the Inter-
net is not always satisfactory. A recent measurement
study on Internet streaming has reported that about
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13% home and 40% of business streaming sessions
suffer various quality degradations (Guo et al. 2006).

Historically the Internet does not provide any
Quality of Service (QoS) such as minimum band-
width or delay in packet transmission. Depending
on the level of over provisioning, the available band-
width may vary significantly at times of congestion.
In order to create high quality interactive sessions,
the eResearch community must have access to high
bandwidth links which may not be always available
among all researchers even in today’s modern univer-
sities. This situation is more complicated when the
research project involves collaboration with research
facilities in developing countries with comparatively
low bandwidth, high inter-link delay and loss rate.

A recent measurement study has reported signifi-
cant disparity in end-to-end link delay between dif-
ferent parts of the world (ICFA-SCIC 2007). Ac-
cording to that report, the minimum RTT between
United States and some East Asian or African coun-
tries ranges between 250ms to 400ms. The minimum
RTT between United States and most European or
Australasian countries varies between 100 to 250ms.
However, in some African countries where satellite
links are still prevalent, the minimum RTT is above
600ms. As the delay between links increases, interac-
tive communication using traditional techniques be-
comes more challenging.

In this paper, we illustrate the performance of live
streaming in three different eResearch scenarios. The
scenarios were chosen to represent links with different
RTT groups:

• National eResearch infrastructure : links within
New Zealand.

• Large scale eResearch infrastructure : links be-
tween Australia/New Zealand and North Amer-
ican/European countries.

• Worldwide eResearch infrastructure : links
between Australia/New Zealand and East
Asia/African Countries.

eResearch infrastructures can benefit from tradi-
tional group communications in networks (like mul-
ticast) to allow efficient delivery to large number of
clients (see Figure 1). However, in contrast to tra-
ditional client-server based live streaming methods,
eResearch communities also need to establish point-
to-point streaming session between end hosts. The
possible scenario is shown in Figure 2. In addition
to regular PC based sessions, there are ubiquitous
computing devices like PDAs and hand-held mobile
devices connected through different access links hav-
ing various QoS requirements. Often the ubiquitous
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Figure 1: Multicast supported e-Research scenario

computing devices used in eResearch may have lim-
ited memory and processing power. As a result, the
traditional streaming techniques which require signif-
icant computational resources may appear to be in-
sufficient in many occasions. A suitable streaming
framework for eResearch scenarios must support de-
vices with limited memory and processing resources.
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Figure 2: Point-to-Point eResearch scenario

Streaming applications use a playout buffer at the
client side to hide the inter-packet delay variation
from the playback process. The idea is to prefetch
some packets for future playback which protects the
stream playback from stalling when the available
bandwidth drops below the application’s streamed bit
rate. Although this mechanism can protect playback
disruptions for a brief period of congestion, the size
of the playback buffer increases as the inter-link delay
and loss increases. For live streaming, the buffering
adds delay in playback, and this delay is unacceptable
beyond a certain range.

Live streaming applications can tolerate a few
packet drops but require in-time delivery of pack-
ets. Although UDP is a preferable transport protocol
to most streaming applications, very often UDP is
blocked by firewalls for security reasons. As a result,
TCP is used by almost 70% of live streaming sessions
on the Internet (Guo et al. 2006). TCP’s congestion
control mechanism proactively controls the sending
rate of the application. On a single packet loss, TCP
cuts the transmission rate by half and blocks the de-
livery of packets to the receiving application until the
lost packet is received through retransmission. Real-
izing the limitations of TCP, the Internet Engineering
Task Force (IETF) is designing a new transport pro-
tocol named Datagram Congestion Control Protocol

(DCCP) (Kohler et al. 2006) which decouples relia-
bility from congestion control and incorporates TCP-
Friendly Rate Control (TFRC) (Handley et al. 2003)
as a viable rate control algorithm for multimedia ap-
plications. TFRC is a equation based rate control
algorithm which provides smoother throughput while
being friendly to TCP applications. DCCP is still
under development and requires more testing.

In this paper, we conduct experiments with TCP
and TFRC for streaming in different eResearch sce-
narios and propose a framework for Point-to-Point
streaming. Our approach makes the streaming ap-
plication more adaptive by providing fine grain cross
layer feedback between the application and the trans-
port protocol. We introduce Dynamic Buffer Ac-
tive Tuning (DBAT), which monitors the send buffer
queue size and provides feedback to the application
when the queue size increases beyond a threshold.
Using network simulator ns-2 (ns-2 n.d.), this paper
illustrates that the proposed framework requires less
buffering delay and improves streaming performance
by reducing playback interruptions.

The paper is organized as follows. In Section 2,
some background on streaming techniques and the
underlying transport protocols are discussed. The
proposed framework is presented in Section 3. In
Section 4 the experimental results are illustrated. Re-
lated work is discussed in Section 5, and Section 6
contains the conclusions and future work.

2 Background

Classical streaming applications support several
streamed bit rates in order to match the available
bandwidth with the streamed bit rate. In addition,
streaming incorporates several quality adaptive tech-
niques. We begin this section with a brief discussion
on the application model for streaming, its key per-
formance indicators and present two protocols.

2.1 Streaming Application Model

In traditional streaming solutions, the client and
server exchange control packets to negotiate appro-
priate sending rates. At the beginning of the session,
the server uses a packet pair based bandwidth probing
technique to determine the available bandwidth and
chooses the streaming bit rate accordingly. A playout
buffer is used at the client side to reduce the effects
of inter-packet jitter. Playback starts as soon as the
buffer is filled.

A streaming system goes through three phases:

• Buffering: If the size of the playout buffer
is large, the initial buffering period is longer,
but it protects against playback interruptions
when the available bandwidth briefly drops be-
low streamed bit rate. For live streaming, this
delay in buffering should be small.

• Playback: As long as there are packets at the
playout buffer, the client keeps playing at the
encoding rate.

• Rebuffering: If the buffer gets empty, playback
has to stop until the buffer is filled to the thresh-
old level.

The streaming client and server are in a control loop
to monitor the packet loss rate and the client side
buffer’s status. Depending on the available band-
width, the streaming server may change its streamed
bit rate to a new rate whenever the packet loss reaches
a predefined threshold or a buffering event occurs. As
shown in Figure 3, this loop is decoupled from the rate
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Figure 3: Classical streaming architecture based on
TCP / TFRC

control loop of the transport protocol, i.e. there is no
exchange of cross-layer information.

2.2 Streaming Performance Metrics

Streaming performance can be evaluated in terms of
packet loss rate, rebuffering events, packet loss rate,
smoothness in achieved throughput of streamed flows.

• Number of Packet lost in Burst: Streaming
audio-video applications are able tolerate a few
packet losses but streaming performance de-
grades if packets are lost in burst.

• Number of Rebuffering Events: Every time the
playout buffer gets drained below a threshold,
playback is paused while the buffer is refilled.
These abrupt interruptions in playback nege-
tively impact the quality of the streaming ses-
sion. The number of rebuffering events and the
percentage of time spent for buffering can be a
good performance indication of streaming ser-
vice.

• Average Service Rate: If the application is able to
sustain a high bit rate for long time, the streamed
content is of high quality. This improves the
users perception of streaming.

A streaming application is able to reduce the num-
ber of packet losses and/or the possibility of rebuffer-
ing events by quickly adjusting the sending rate. The
role of the underlying transport protocol is of ut-
most importance for such an application. A send
buffer is employed to deal with the rate mismatch be-
tween the application’s sending rate and the transport
protocol’s allowed transmission rate. This buffering
adds end-to-end delay and may become an obstacle
for achieving the new streamed bit rate when stream
switching occurs. We call this stream switch response
time.

A canonical streaming application emits packets
at a constant rate. The transport protocol is respon-
sible for sending the packets from the send buffer to
the network interface. Packets are queued at the send
buffer when the application’s packet generation rate
is lower than the transmission rate of the underly-
ing transport protocol. As the feedback delay be-
tween the client and the server increases, the client’s
feedback becomes outdated, and the application level
rate adaptation mechanism fails to react soon enough
to reduce packet loss and rebuffering events. Some
mechanism for reducing this feedback delay will be
hugely beneficial.

2.3 Transport Protocol for streaming

2.3.1 TCP

It is well known that TCP’s congestion control mech-
anism is vital for the scalability of the Internet (Ja-

cobson 1988). In order to avoid congestion and en-
sure fairness among competing flows, TCP controls
the sending rate of the application using an Additive-
Increase-Multiplicative-Decrease (AIMD) algorithm.
TCP keeps an estimate of the available bandwidth
for the next RTT using a variable known as a conges-
tion window.

Although UDP is preferable to most streaming ap-
plications, TCP is used more often. However the reli-
able, in order and congestion controlled service model
of TCP is inappropriate for streaming flows which re-
quire more control and flexibility over its flows. The
following are the main obstacles for streaming using
TCP:

• Information Hiding: TCP hides the loss rate and
RTT information from the application.

• Buffering Delay: TCP’s window based conges-
tion control mechanism requires a send buffer at
the application to transport layer interface for
briefly storing the in-flight packets as well as
enough new packets to saturate the congestion
window in the next flight.

• Abrupt Rate Controlling: TCP’s AIMD reduces
the application’s sending rate by half on a single
packet loss. The application does not get enough
time to adapt the sending rate. As a result, a
large number of packets are buffered at the send
buffer.

• Head-of-line Blocking: Whenever a packet loss
is detected, TCP’s in order delivery mechanism
blocks the delivery of received packets to the
client until the lost packet is delivered through
retransmission.

Although the effects of TCP’s rate fluctuation due
to congestion control can be reduced using the client
side playout buffer, buffering becomes insufficient to
reduce the effects of rate variation as the link delay
increases. For live streaming, it is challenging to use
TCP if the link-delay and/or loss rate is significant.

2.3.2 TFRC

TCP-Friendly Rate Control (TFRC) (Handley et al.
2003) is a rate control algorithm which provides
smoother throughput by reacting more slowly to
packet loss while being friendly to other TCP flows.
In order to be a good network citizen, a deployable
congestion control algorithm should be friendly to
TCP flows. A flow is TCP-friendly if its average
sending rate is no more than a TCP flow running
between the same links. A TFRC sender calculates
the TCP throughput using a TCP equation (Padhye
et al. 1998) based on the receiver’s feedback of loss
rate, received packet rate, and the RTT information.

TFRC has been incorporated as an alternative
congestion control algorithm for the newly stan-
dardized Datagram Congestion Control Protocol
(DCCP) (Kohler et al. 2006). DCCP provides an
unreliable service with reliable connection establish-
ment and option negotiation states. Applications us-
ing DCCP have the option to choose different conges-
tion control mechanisms for each direction. Currently
only two types of congestion control have been stan-
dardized: TCP-like and TFRC.

Due to its smoother rate control, TFRC requires
less playout buffer space than TCP. However vari-
ous studies report poor performance of TFRC based
audio-video transmission. For streaming applica-
tion, even though TFRC reacts slowly on congestion
events, the sender only reacts based on the receiver’s
feedback. An earlier feedback on congestion events



would give more time for the sender to change its
sending rate.

3 Proposed Framework: Dynamic Buffer Ac-
tive Tuning (DBAT)

In this section, we discuss our active queue manage-
ment mechanism named Dynamic Buffer Active Tun-
ing (DBAT). The goals of DBAT are as follows:

• Reduce buffering delay: DBAT keeps the send
buffer queue at a minimum level.

• Provide feedback to the application: DBAT sends
feedback to the application depending on the
level of send buffer queue size.

• Preferential treatment of marked packets: When
the send buffer queue size increases beyond a
certain threshold, DBAT only sends the marked
packets.

3.1 Motivation

The motivation for designing DBAT is to make the
streaming application more adaptive and reactive.
The traditional method of changing streamed bit rate
based on packet loss rate and client side buffer under-
flow is inefficient. By the time the application reacts
to the changing available bandwidth, it might be too
late due to the delay in the feedback loop and send
buffer.
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Figure 4: Water Clock Model

The idea behind DBAT can be easily understood
by looking at the water clock model shown in Fig-
ure 4 (Luenberger 1979). In order to maintain a con-
stant flow rate into the main tank of the clock, the
water level at the regulating tank is held nearly con-
stant. This constant level is achieved through a float
valve, which is essentially a feedback mechanism. Wa-
ter from an external supply enters the regulating tank
through a pipe. As the water level at the regulat-
ing tank rises, it forces the floating ball to tighten
against the pipe opening, reducing the input supply
rate. When the level drops, the input rate increases.
In our streaming architecture, DBAT plays the role of
the regulating tank to keep the packet transmission
rate at a constant level.

3.2 DBAT Architecture

As shown in Figure 5, DBAT couples the applica-
tion’s control loop with the transport protocol’s con-
trol loop. Upon connection establishment, the appli-
cation informs the transport protocol about its bit
rate requirement and the transport protocol tries to

sustain that rate. Note that streaming applications
are data limited and as such cannot grab the avail-
able capacity. Knowing the application’s desired rate,
the transport protocol limits its sending rate up to a
certain range.
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Figure 5: DBAT Architecture

DBAT monitors the send buffer queue size and
sends feedback to the sender application when the
queue size is increased beyond a threshold. As shown
in Figure 6, DBAT keeps a minimum threshold and
a maximum threshold for controlling the send buffer
queue size. Minimum threshold is calculated by mul-
tiplying the streamed bit rate with the delay and
the maximum threshold is set to twice the minimum
threshold.
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Figure 6: DBAT Queue

On each packet arrival the weighted queue length,
Qavg, is calculated. If the average queue length in-
creases beyond the mid point of minimum and max-
imum threshold, feedback is sent to the sender. The
amount of feedback is limited to at most one per RTT.
If Qavg grows beyond the maximum threshold, only
marked packets are transmitted. The algorithm is
presented in Figure 7.

Min_Th = streamed_bit_rate * delay
Max_Th = 2*Min_Th

On each packet arrival
calculate weighted avg queue length Qavg

If (Qavg > Max_Th)
preferentially drop unmarked packets

else if ((Qavg > (Max_Th + Min_Th )/2 and
(last_feedback_time > RTT))

send feedback

Figure 7: DBAT Algorithm



4 Experimental Results

In this section, we present the experimental results
for different representative eResearch scenarios. We
use network simulator, ns-2 (ns-2 n.d.) for sim-
ulation. Currently the standard ns-2 distribution
does not have any streaming module included. How-
ever, we found a streaming module named Goddard
(Chung et al. 2002) which is suitable for our experi-
ments. We integrated Goddard in ns-2 and conducted
experiments using it. Goddard is based on the studied
behaviors of Real Networks and Windows Streaming
Media (Chung & Claypool 2006). During streaming
the Goddard client and server reselect the streamed
bit rate in response to network packet loss or rebuffer-
ing events that occur when the client’s playout buffer
gets emptied. The Goddard server supports multiple
bit rate streaming. We vary the inter-packet gap to
stream at the rate of 80, 120, 240, 320, 640, 960 and
1920 kbps.

Goddard does not have any support for TFRC.
We modified the code so that we can use TFRC as
a transport protocol for streaming. We found that
the TFRC implementation in ns-2 does not have any
real data transmission capability which is required by
the streaming module. We changed the interface of
this implementation so that data can be transmit-
ted with each packet enabling the Goddard client and
server to exchange media frames. By default the ns-2
implementation of TFRC has an infinite send buffer.
We introduced a send buffer with adjustable size into
TFRC. As for TCP, we modified the full TCP im-
plementation of ns-2 to support an adjustable send
buffer size. To the best of our knowledge, we are the
first to conduct experiments involving the interaction
of streaming applications with TFRC in ns-2.

TCP Background 
Traffic Sender

1 Mbps

Variable RTT

Router Router

Streaming Sender

TCP Background 
Traffic Receiver

Streaming Receiver

Figure 8: Live streaming simulation topology

We use the dumbbell topology for simulat-
ing Point-to-Point live streaming in eResearch ses-
sions (Figure 8). Depending on the scenario, we set
the link delay. The bottleneck link is 1 Mbps. In all
cases, one streaming flow is competing with a back-
ground FTP flow and some HTTP traffic. The HTTP
traffic is generated using empirical data provided by
ns-2. The background FTP and HTTP traffic sim-
ulates a real world scenario where most streaming
flows compete with web and FTP flows. The FTP
application starts at 0.1 second and stops at 200 sec-
onds. The streaming flow starts at 30 seconds and
stops at 240 seconds. The bottleneck router queue
size is set to twice the bandwidth and delay product
of the link. Due to the randomness of the background
HTTP traffic, the loss rate of the bottleneck link may
vary. Therefore for each scenario, we run the experi-
ment several times and plot the average values. The
send buffer size for TCP and TFRC based streaming
is set to a fixed value of 64 packets. This is in line
with the existing configurations in Linux and Win-
dows systems where the default send buffer is set to
64KB (64 1KB packets).

For each scenario, we determine the through-
put and end-to-end application level latency. The
throughput is calculated with one second granular-

ity. The latency is calculated by measuring the delay
between the time when the streaming sender sends a
packet to the transport layer and the time when that
packet arrives at the streaming receiver. In all cases,
DBAT is used on top of TFRC.

4.1 Scenario 1: National eResearch infras-
tructure : links within New Zealand.

Often eResearchers need to collaborate on projects
undertaken at the national level. The RTT for Sce-
nario 1 is set to 20ms which is an approximation of
maximum RTT within New Zealand.

Figures 9, 10 and 11 show the throughput of TCP,
TFRC and DBAT based streaming, respectively. In
comparison to TCP, TFRC and DBAT provides bet-
ter streaming throughput. In case of TCP, the avail-
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Figure 9: Streaming(TCP) throughput
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Figure 10: Streaming(TFRC) throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  50  100  150  200  250

T
hr

ou
gp

ut
 (

kb
ps

)

Time (seconds)

TCP flow 
streaming(DBAT)

Figure 11: Streaming(DBAT) throughput

able bandwidth is shared equally among the stream-
ing flow and the background FTP flow.

Due to the background HTTP traffic, packets are
dropped from the bottleneck router causing TFRC
and TCP flows to retreat. Since TFRC only reacts to
average packet loss rate, the TFRC flow gains more
bandwidth than the TCP flows. It can be seen from
Figure 11 that the background HTTP flow also affects
the FTP throughput during the initial period.
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Figure 12: Streaming(TCP) latency
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Figure 13: Streaming(TFRC) latency
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Figure 14: Streaming(DBAT) latency

The latency graphs for TCP, TFRC and DBAT
based streaming are shown in Figures 12, 13 and 14
respectively. Due to the fixed size send buffer, latency
varies for TFRC based streaming. The end-to-end
delay increases is proportion to the size of the send
buffer queue. We can see the difference in case of
DBAT based streaming. Since DBAT keeps the send
buffer queue level at a minimum level, the end-to-
end latency is much smoother. The delay variation in
TCP based streaming is within an acceptable range.

In this scenario, TCP based streaming is suitable.
However DBAT and TFRC also provide good perfor-
mance. In case of DBAT, the streaming throughput
is higher.

4.2 Scenario 2: Large scale eResearch infras-
tructure : links between Australia/New
Zealand and North American/European
countries

Due to the geographic location of Australia and New
Zealand, any communication with Europe and Amer-
ica involves long delay. The RTT for this scenario
is set to 150ms. As shown in Figures 15, 16 and
17, TCP based streaming has lower throughput than
TFRC or DBAT based streaming flows. With the in-
creased link delay, the retransmitted packets are less
likely to arrive at the client in time and hence rebuffer-
ing occurs frequently. This results in lower through-
put. Since TFRC or DBAT do not retransmit lost
packets, the streamed service rate is higher.

Figure 18 illustrates the latency for TCP based
streaming flows. The latency varies by almost 2 sec-
onds between consecutive packets. Due to this vari-
ance, the playout buffer gets empty and streaming
pauses for rebuffering.

DBAT based streaming provides the highest
streaming throughput. Since DBAT flows are more
adaptive, the streaming sender is able to pump the
packets at a higher rate without losing many packets
in a burst. It can be noted that this time TFRC is
fair with the TCP flows.
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Figure 15: Streaming(TCP) throughput
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Figure 16: Streaming(TFRC) throughput



Figures 19 and 20 show that more packets are
transmitted with DBAT based streaming since DBAT
attains a higher packet rate than TCP or TFRC based
streaming. In this scenario, TCP performs poorly.
To overcome these issues, the streaming client needs
more memory for the playout buffer. This additional
buffering delay is unacceptable for live streaming ses-
sions. Moreover, allocating the required buffer mem-
ory may not be possible in many cases when the client
is a hand-held mobile device.
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Figure 17: Streaming(DBAT) throughput
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Figure 18: Streaming(TCP) latency
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Figure 19: Streaming(TFRC) latency

4.3 Scenario 3: World wide eResearch infras-
tructure : links between Australia/New
Zealand and East Asian/African Coun-
tries

Many East-Asian/African countries have limited In-
ternet bandwidth and some of them are connected
through satellite links. This type of infrastructure im-
poses additiona(like XCP (Katabi et al. 2002) needs
in terms of fairness with TCP (Pacheco et al. 2007))
challenges in achieving workable streaming perfor-
mance for eResearch. For this case, the RTT is set
to 450ms. Figures 21, 22 and 23 illustrate that TCP
based streaming has very low throughput in compar-
ison to TFRC and DBAT based streaming flows.
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Figure 20: Streaming(DBAT) latency
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Figure 21: Streaming(TCP) throughput
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Figure 22: Streaming(TFRC) throughput
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Figure 23: Streaming(DBAT) throughput
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Figure 24: Streaming(TCP) latency
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Figure 25: Streaming(TFRC) latency

As shown in Figure 24, inter-packet latency fluc-
tuates significantly when streaming with TCP. Fig-
ures 25 and 26 show that TFRC and DBAT based
streaming provide better latency performance, re-
spectively. Despite the high inter-link delay, it is
possible to experience better streaming playback if
TFRC is used instead of TCP based streaming.

4.4 Discussion

The amount of time spent in buffering is the most im-
portant performance indicator for streaming sessions
since playback remains paused during this period. As
a result, the users’ perception of streaming is aggra-
vating. Table 1 shows the amount of time spent for
buffering with different protocols in our representa-
tive scenarios. For Scenario 3, TCP based stream-
ing flows spend 37.80% of its total streaming time
in rebuffering. TCP shows good performance in Sce-
nario 1 where the link delay is only 20 ms. This is
because in low delay links TCP’s acknowledgement
based feedback mechanism is effective. TFRC and
DBAT reduces the rebuffering period significantly.
However the fairness issue between TFRC and TCP
flows should be improved.
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Figure 26: Streaming(DBAT) latency

Scenario 1 Scenario 2 Scenario 3
TCP 0.39% 10.46% 37.80%

TFRC 0.84% 1.12% 4.44%
DBAT 0.43% 1.01% 4.13%

Table 1: Total buffering time

5 Related Work

In an experimental study, Balan et al. (Balan et al.
2007) reported that voice quality is not improved
when TFRC is used for rate control. Wang et
al. (Wang et al. 2004) developed an analytical model
for TCP based streaming and concludes that TCP
generally provides a good streaming performance
when the achievable TCP throughput is roughly twice
the media bit rate with only a few seconds of start
up delay. Luo et al. (Guo et al. 2006) presented the
result of measurement study based on large stream-
ing media work load taken from thousands of broad-
band home users and business users hosted by a ma-
jor ISP. It shows that the median time to change
to a lower bit rate stream was around 4 seconds
and proposes coordinated streaming, a mechanism
that coordinates client side buffering and rate adap-
tation to reduce the stream switching delay. Kra-
sic et al. (Krasic et al. 2003) presented a framework
for adaptive video streaming based on priority drop-
ping. Chung et al. (Chung et al. 2002) developed a
transport level protocol named Media Transport Pro-
tocol(MTP) which removes the burden of in order
delivery from TCP. Goel et al. (Goel et al. 2002) pro-
posed a dynamic send buffer tuning approach where
the buffer size is kept slightly larger than the TCP
congestion window for TCP-based media streaming.
Unlike their work, we focus on media streaming on
TFRC.

6 Conclusions and Future Work

In this paper, we investigated the performance of
streaming on three different eResearch infrastruc-
tures. We showed that TCP performs poorly when
the inter-link delay is high, but TFRC based stream-
ing improves the performance. We proposed Dynamic
Buffer Active Tuning (DBAT) framework and showed
that DBAT increases streaming throughput and re-
duces rebuffering events by making streaming flows
more adaptive.

Our future work will involve exploration of a router
assisted approach (like XCP (Katabi et al. 2002)
needs in terms of fairness with TCP) to ensure fair-
ness (Pacheco et al. 2007). We also will investigate
the impact on DBAT in terms of responsiveness and
reactivity. Moreover, we will focus on live streaming
in group communication as shown in Figure 1 and
solve some scalability issues (in terms of memory and



buffer usage) by deploying DBAT solutions in clients.
DBAT can be tailored easily to streaming in multicast
scenarios by using a layered media encoding format.

References

Anderson, T. & Kanuka, H. (2003), E-research:
Methods, Strategies, and Issues, Allyn and Bacon,
p. 73.

Balan, V., Eggert, L., Niccolini, S. & Brunner, M.
(2007), An experimental evaluation of voice qual-
ity over the Datagram Congestion Control Proto-
col, in ‘IEEE Infocom’, Anchorage, Alaska, USA,
pp. 2009–2017.

Chung, J. & Claypool, M. (2006), ‘Empirical evalua-
tion of the congestion responsiveness of Real Player
video streams’, Kluwer Multimedia Tools and Ap-
plications 31(2), 171 – 193.

Chung, J., Claypool, M. & Kinicki, R. (2002), MTP:
A streaming-friendly transport protocol, Technical
report, Oregon Graduate Institute School of Sci-
ence and Engineering.

Goel, A., Krasic, C., Li, K. & Walpole, J. (2002), Sup-
porting low latency TCP-based media streams, in
‘Tenth International Workshop on Quality of Ser-
vice (IWQoS)’, Miami, pp. 193– 203.

Guo, L., Tan, E., Chen, S., Xiao, Z., Spatscheck, O. &
Zhang, X. (2006), Delving into internet streaming
media delivery: A quality and resource utilization
perspective, in ‘Proceedings of the 6th ACM SIG-
COMM on Internet measurement’, Rio de Janeiro,
Brazil, pp. 217–230.

Handley, M., Floyd, S., Padhye, J. & Widmer,
J. C. (2003), ‘TCP Friendly Rate Control (TFRC):
Protocol specification’, Internet Engineering Task
Force, RFC 3448.

ICFA-SCIC (2007), ICFA-SCIC network monitoring
report, Technical report, International Committee
for Future Accelerators (ICFA) - Standing Com-
mittee on Inter-Regional Connectivity (SCIC).

Jacobson, V. (1988), Congestion avoidance and con-
trol, in ‘ACM SIGCOMM’, Stanford, California,
United States., pp. 314–329.

Katabi, D., Handley, M. & Rohrs, C. (2002), Con-
gestion control for high bandwidth-delay product
networks, in ‘Proceedings of the 2002 ACM SIG-
COMM conference’, pp. 89–102.

Kohler, E., Handley, M. & Floyd, S. (2006), Design-
ing DCCP: congestion control without reliability,
in ‘ACM SIGCOMM 2006’, Pisa, Italy, pp. 27–38.

Krasic, C., Walpole, J. & Feng, W.-c. (2003), Quality-
adaptive media streaming by priority drop, in ‘13th
International Workshop on Network and Operat-
ing Systems Support for Digital Audio and Video
(NOSSDAV)’, pp. 112 – 121.

Luenberger, D. (1979), Introduction to Dynamic Sys-
tems, Wiley New York, chapter 8, p. 297.

ns-2 (n.d.), ‘The Network Simulator ns-2’,
http://www.isi.edu/nsnam/ns/.

Pacheco, D. M. L., Lefevre, L. & Pham, C.-D.
(2007), Fairness issues when transferring large vol-
ume of data on high speed networks with router-
assisted transport protocols, in ‘High Speed Net-
works Workshop 2007, in conjunction with IEEE
INFOCOM 2007’, Anchorage, Alaska, USA, pp. 46
– 50.

Padhye, J., Firoiu, V., Towsley, D. & Kurose, J.
(1998), Modeling TCP throughput: A simple
model and its empirical validation, in ‘ACM SIG-
COMM’, pp. 30–314.

Paterson, M., Lindsay, D., Monotti, A. & Chin,
A. (2007), ‘DART: A new missile in Australia’s
e-research strategy’, Online Information Review
31(2), 116–134.

Sakai Project (2005), http://www.sakaiproject.org/.

Wang, B., Kurose, J., Shenoy, P. & Towsley, D.
(2004), Streaming via TCP: An analytic perfor-
mance study, in ‘Proceedings of the 12th an-
nual ACM international conference on Multimedia’,
New York City, NY, pp. 908–915.


