
Astraea: Towards QoS-Aware and Resource-Eicient Multi-stage
GPU Services

Wei Zhang
Shanghai Jiao Tong University

China
zhang-w@sjtu.edu.cn

Quan Chen
Shanghai Jiao Tong University

China
chen-quan@cs.sjtu.edu.cn

Kaihua Fu
Shanghai Jiao Tong University

China
midway@sjtu.edu.cn

Ningxin Zheng
Microsoft Research Asia

China
Ningxin.Zheng@microsoft.com

Zhiyi Huang
University of Otago

New Zealand
hzy@cs.otago.ac.nz

Jingwen Leng
Shanghai Jiao Tong University

China
leng-jw@cs.sjtu.edu.cn

Minyi Guo
Shanghai Jiao Tong University

China
guo-my@cs.sjtu.edu.cn

ABSTRACT
Multi-stage user-facing applications onGPUs arewidely-used nowa-
days, and are often implemented to be microservices. Prior re-
search works are not applicable to ensuring QoS of GPU-based
microservices due to the dierent communication patterns and
shared resource contentions. We propose Astraea to manage GPU
microservices considering the above factors. In Astraea, a microser-
vice deployment policy is used to maximize the supported peak
service load while ensuring the required QoS. To adaptively switch
the communication methods between microservices according to
dierent deployments, we propose an auto-scaling GPU communi-
cation framework. The framework automatically scales based on
the currently used hardware topology and microservice location,
and adopts global memory-based techniques to reduce intra-GPU
communication. Astraea increases the supported peak load by up to
82.3% while achieving the desired 99%-ile latency target compared
with state-of-the-art solutions.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; Neu-
ral networks; • Networks→ Cloud computing.

KEYWORDS
Microservice, GPU, Resource management, QoS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507721

ACM Reference Format:
Wei Zhang, Quan Chen, Kaihua Fu, Ningxin Zheng, Zhiyi Huang, Jingwen
Leng, and Minyi Guo. 2022. Astraea: Towards QoS-Aware and Resource-
Ecient Multi-stage GPU Services. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’22), February 28 – March 4, 2022, Lausanne,
Switzerland. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3503222.3507721

1 INTRODUCTION
User-facing services have strict quality-of-service (QoS) require-
ments, and many of them (e.g., Intelligent personal assistant [25],
Graph processing [56], Conversational AI and Cyber Security [10])
rely on GPUs to provide high computational ability [7]. Due to
the increasing complexity of real application scenarios, the ser-
vices are becoming large and complex. For instance, many in-
production image services [3, 4, 6, 66] on GPUs are implemented
with “big models” including multiple neural networks or machine
learning modules. Image caption [3, 4, 6] has two modules, an en-
coder using a deep convolutional neural network and a decoder
based on a stack of LSTM layers [73]. Many AI-related services,
e.g., text-to-text [53, 65], text-to-image [39, 66, 77, 84], text-to-
speech [26, 61], text-to-video [31], image-to-image [17, 33, 74],
image-to-text [48, 73], speech-to-text [27, 46, 54], the neural per-
sonalized recommendation [44, 45], are also implemented by con-
necting multiple AI modules. Besides, another type of multi-stage
GPU applications is cloud gaming. GPUs in the cloud perform con-
nected stages like game logic, remote rendering, and hardware
encoding [42, 52, 62]. In addition, there are some large models
(such as GPT-3 [21]), which cannot be placed in a single GPU. In
this case, the model has to be split into several subgraphs (kernels).

For the multiple-stage user-facing services, stages are often im-
plemented to be loosely coupled microservices [37]. A single mi-
croservice stage often under-utilizes a powerful GPU, hence some
of the microservices will be deployed on a GPU especially when the
load is low. Figure 1 shows an example where an application with
a four-stage pipeline is deployed on three GPUs from two nodes.

570

https://doi.org/10.1145/3503222.3507721
https://doi.org/10.1145/3503222.3507721
https://doi.org/10.1145/3503222.3507721

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Wei Zhang, an Chen, Kaihua Fu, Ningxin Zheng, Zhiyi Huang, Jingwen Leng, and Minyi Guo

query

 : SMs contention : Global memory (capacity and bandwidth) contention

Global memory

Microservice M1

SM SM SM...

Microservice M2

SM SM...

Host memory

GPU1

Global memory

GPU2

Microservice M3

SM SM...

Output

Node1 Node2

Host memory

Global memory

GPU3

Microservice M4

SM SM...

Network
 : PCIe bus contention : Communication overhead

Figure 1: An example of deploying GPU microservices.

The tail latency required for each stage is strict due to the depen-
dencies between microservices and their back pressure eects [37].
QoS violations occur when one or more critical microservice in-
stances experience load spikes (diurnal or unpredictable workload
patterns [19]) or shared-resource contention.

There are some research works on managing the latency of
independent GPU applications [25, 28, 29, 43, 80, 81]. Clipper [28]
adaptively batched the requests to improve the GPU throughput
while maintaining tail latency. ClockWork [43] presented a runtime
time-sharing scheduler for DL requests. Baymax [25] and Laius [80]
ensured the QoS of a user-facing service when it co-runs with best-
eort applications on time-sharing GPUs and spatial-sharing GPUs,
respectively. However, ensuring the short latency of a single-stage
may increase the latency of other stages due to the limited shared
resources. They are not applicable for GPU microservices that have
complex dependency relationships, ignoring the communication
overhead between stages and the eciency of the stage graph.

Prior works on scheduling CPU microservices [18, 36, 38, 51, 71]
are also not adequate. Firstly, the communication overhead for
CPU microservices occupies about 5% of the end-to-end latency
(smaller than 2ms) for CPU microservices in DeathStarBench [37],
but the counterpart between stages in a GPU service takes up to 45%
(240ms) according to our measurement. In this case, CPU microser-
vices use a unied heavy communication framework (e.g., RPC)
through Network Interface Cards (NICs), and “randomly” schedule
the microservices based on resource constraints. Secondly, the very
limited GPU global memory constraints the deployment of GPU
microservices, but the machine resources are often considered un-
limited when deploying CPU microservices [63]. Moveover, GPU
microservices contend for SMs (shown at ¬), global memory capac-
ity and bandwidth (shown at), and PCI-e bandwidth (shown at ®)
that are not considered before. Thirdly, they relied on sophisticated
resource isolation mechanisms (e.g., Cache Allocation Technology),
but there is no such support on o-the-shelf GPUs.

This work aims to maximize the throughput of a multi-stage
user-facing service with QoS guarantee. As the load of service varies
and the contention situations are only known at runtime, an oine
method is not applicable for eectively deploying GPU microser-
vices. This work resolves this problem based on two main insights.
1) The communication overhead should be the rst-class factor
while deploying GPU microservices. Deploying the microservice
graph based on the interconnect topology of GPUs matters for GPU
microservices. 2) The optimal deployment changes dynamically
due to factors such as real-time user load, performance/resource
trade-os, resource contention, and communication overhead.

We propose a runtime system named Astraea to achieve the
above purpose. Astraea is composed of an online performance pre-
dictive model, a microservice deployment policy, and an auto-scaling
communication framework. Without assuming resource isolation on
GPU, Astraea uses the online predictive model to predict the shared
global bandwidth usage, duration, and throughput of each GPU
microservice under various resource congurations. Based on the
prediction, Astraea dynamically tunes the microservice deployment.
In Astraea, microservices communicate through the auto-scaling
communication framework. When the deployment changes, the
communication framework automatically scales based on the cur-
rently used hardware topology and microservice location. It also
eliminates the expensive data transfer between main memory and
global memory for the microservices on the same GPU, by propos-
ing global memory-based communication.

This paper makes four main contributions.

• Comprehensive characterization ofGPUmicroservices.
The characterization helps address the challenges in manag-
ing GPU microservices.
• Anonlinemicroservice performance predictor.TheML-
based predictor can precisely predict global bandwidth usage,
duration, and throughput of each GPU microservice under
various resource congurations.
• A lightweight deployment policy for GPU microser-
vices. The policy considers communication overhead, global
memory capacity, shared resource contention, and pipeline
stall when managing the GPU resources.
• An auto-scalingGPU communication framework. Sim-
ilar to the unied communication frameworks, Thrift [2] and
gRPC [11] for CPUs, the proposed framework enables auto-
scaling without modifying the microservice source codes, no
matter if the microservices are on the same GPU, dierent
GPUs, or dierent nodes.

We implement Astraea and evaluate it on a GPU server with
two Nvidia 2080Ti GPUs, and three DGX-2 machines with Nvidia
V100 GPUs. Astraea eectively increases the supported peak load
by up to 82.3% compared with Laius [80] and 45.1% compared with
FIRM [63], while ensuring the required QoS.

2 RELATEDWORK
There have been some eorts on related topics: GPU resource man-
agement and microservice architecture.

There have been some resource allocation or scheduling work
for GPU co-location. TimeGraph [49] and ESha [23] used priority-
based scheduling to guarantee the performance of real-time ker-
nels on GPUs. Prophet [24] identied “safe” co-locations where
the performance interference would not result in QoS violations.
DART [76] employed a pipeline-based scheduling architecture with
data parallelism, where heterogeneous CPUs and GPUs are ar-
ranged into nodes with dierent parallelism levels. Baymax and
GrandSLAm [25, 47] reordered GPU kernels for ensuring QoS of a
user-facing task at co-location on GPUs. Salus [78] and G-NET [79]
designed eective task sharing models on GPUs. These queuing-
basedmethods are not applicable to themodern spatial multitasking
GPUs where kernels share SMs spatially.

571

Astraea: Towards QoS-Aware and Resource-Eicient Multi-stage GPU Services ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

There have been some prior works on eliminating QoS viola-
tions for CPU microservices. Bao et al. [18] analyzed the perfor-
mance degradation of microservices and developed a workow-
based scheduler to minimize latency and improve utilization. Based
on the workloads’ characteristics, HyScale and ATOM [41, 50] de-
signed resource controllers that combine horizontal and vertical
scaling with dynamic resource division to improve the processing
time of microservices. Considering the complexity of performance
prediction, Seer [38] proposed an online performance prediction
system. FIRM [63] and Sinan [82] presented ML-based frameworks
for resource sharing across microservices based on isolation tech-
niques for shared resources. They are not applicable to GPU mi-
croservices lacking isolation support on GPUs.

Aiming at a single RNN inference model instead of general
microservices, BatchMaker [40] improved both the latency and
throughput of RNN inference using cellular batching. But the cel-
lular batching is not applicable to DNNs with xed inputs such as
CNNs and MLPs applications, while Astraea can handle various
microservices. Nexus [69] provides a mechanism to breakdown
end-to-end SLO into dierent stages in the context of DNN models.
These works do not consider the dependency relationship between
microservices as Astraea does. They ignored the characteristics
of the microservice architecture, thus resulted in the inecient
pipeline and low resource utilization compared with Astraea.

3 PERFORMANCE ISSUES OF GPU
MICROSERVICES

In this section, we characterize GPU microservices, show perfor-
mance issues, analyze the shortcomings of existing work, and dis-
cuss the deployment challenges.

3.1 Benchmarks and Experimental Platforms
Table 1 lists the benchmarks that cover a wide spectrum of real
multi-stage GPU applications. The benchmarks include six AI-based
GPU microservices from AIbench [1], and a cloud gaming bench-
mark. The benchmarks reect the real productions: natural lan-
guage processing (text-to-text), image processing (img-to-img), image
generation (text-to-img), image caption (img-to-text), speech synthe-
sis (text-to-speech), speech recognition (speech-to-text), and cloud
gaming. Since cloud gaming mainly involves rendering and image
compression [42] and there is no standard benchmark, we build the
cloud gaming benchmark using open-sourced implementations of
rendering and compression [5, 9]. Nvidia Data Loading Library [14]
is used for data preprocessing between microservices.

We use two Nvidia RTX 2080Ti GPUs as the experimental plat-
form and choose four workloads from Table 1 to investigate the
performance issues. Our study does not rely on any specic feature
of 2080Ti, it can be applied to other GPUs.

3.2 Characterizing GPU Microservices
The latency of a multi-stage user-facing query is determined by the
processing time of each stage and the communication time between
the stages, the throughput is determined by the throughput of each
stage. In order to maximize the supported throughput of service and
ensure the required latency target, a microservice system should
resolve four problems.

Table 1: Seven representative GPU microservices

Workload Microservices Algorithm Language

Img-to-img [17] Face recognition FR-API [8] PYTHON&
Image enhancement FSRCNN [33] CUDA

Img-to-text [73] Image feature extraction VGG [70] C++ &
Image caption LSTM CUDA

Text-to-image[66] Semantic understanding LSTM [67] C++&
Image generation DC-GAN [64] CUDA

Text-to-text [65] Text summarization BERT [32] PYTHON&
Text translation Opennmt [16] CUDA

Text-to-speech [61] Text-to-wave Deep Voice 3 [32] PYTHON&
Waveform synthesis WaveNet [16] CUDA

Speech-to-text [46] ASR LSTM [67] PYTHON&
Machine Translation LSTM [67] CUDA

Cloud Gaming [12] 3D Rendering RayTracing [5] C++&
Image compression FFmpeg [9] CUDA

img-to
-img img-to

-text text-to
-img text-to

-text text-to
-speech speech-to

-text cloud
gaming

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
im

e

Data Transfer Computing

Figure 2: Breaking down the end-to-end latency.

1) Large communication overhead. GPU microservices com-
municate through the host main memory inside the node but
through Network Interface Card (NIC) cross nodes. Taking image-
to-image as an example, when the batchsize is 32, the microservice
“face recognition” transfers 253.125MB data to the microservice
“image enhancement”. The latency increases by 17% when shift-
ing inter-node deployment to cross-node deployment. Even if the
microservices are on the same GPU, the communication is still
expensive. In Figure 1, whenm1 sends the result to the next mi-
croservicem2, its data is rst transferred from the global memory to
the host memory, and then transferred back to the global memory
used bym2. Figure 2 shows the breakdown of the end-to-end laten-
cies of the benchmarks when the microservices are on the same
node. The communication takes 26.4% to 46.9% of the latency. It is
crucial to minimize the communication overhead when deploying
multi-stage GPU microservices.

2) Require adaptive unied communication. The appropri-
ate deployment of multi-stage service changes with dierent hard-
ware. The appropriate deployment also changes with the load of a
service in the scenario of minimizing resource usage. In this case,
the upstream/downstream communication target and method(e.g.,
from main memory-based communication to NIC-based communi-
cation, and vice versa) vary. We need to take dierent communi-
cation patterns as the rst-class factor during resource scheduling
and deploying. A unied low overhead communication framework
that scales according to the deployment without modifying the
source code of microservices is required.

3) Limitation on global memory space. Figure 3 shows the
global memory usage and the corresponding GPU utilization when
the rst microservice of img-to-img and the second microservice of
cloud gaming use dierent batchsizes. As shown in the gure, the
global memory of GPU is only able to host the microservice with a
batchsize smaller than 256, where the GPU utilization is lower than

572

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Wei Zhang, an Chen, Kaihua Fu, Ningxin Zheng, Zhiyi Huang, Jingwen Leng, and Minyi Guo

32 64 128 256 512
Batchsize

0

4GB

8GB

12GB

GP
U

gl
ob

al

 m
em

or
y

us
ag

e 21GB 19GB
out of memory

global memory capacity

0

20%

40%

60%

80%

100%

GP
U

ul
til

iza
tio

n

img-to-img
Cloud gaming

img-to-img
Cloud gaming

Figure 3: Global memory usage of the microservices (FR-
API and FFmpeg in Table 1) with dierent batch sizes.

img-to
-img img-to

-text text-to
-img text-to

-text text-to

-speech speech-to

-text cloud
gaming

0.0
0.2
0.4
0.6
0.8
1.0

tim
e(

s)

stage1(co-located) stage2(co-located) stage1(offline) stage2(offline)

1x

No
rm

al
ize

d
99

%
-il

e
la

te
nc

y

Figure 4: QoS violation with intuitive SM allocation policies.

37% and 35%. In this situation, we are not able to deploy multiple
instances of a global memory-consuming microservice on a GPU.

4) Shared-resource contention.A service achieves the highest
throughput when its stages have identical throughputs due to the
pipeline eect. An intuitive policy is carefully allocating SMs based
on the oine proles of microservices so that the throughputs
of the stages are identical, and the aggregated processing time is
shorter than the QoS target.

However, the oine policy often results in the QoS violation.
Figure 4 illustrates the QoS violation of benchmarks using this
policy. In the gure, the stars represent the normalized 99%-ile
latencies of the benchmarks (the right y-axis). The bars “stage1/2
(oine)” and “stage1/2 (co-located)” represent the oine-proled
and actual processing time of microservice stages respectively (the
left y-axis). As observed, the actual processing time of the stages
is longer than their oine time, and all the benchmarks suer
from QoS violations. This is mainly because the microservices on
the same GPU contend for PCI-e bandwidth and global memory
bandwidth, although the SMs are explicitly allocated. It is crucial
to handle the unstable runtime contention due to the dynamic
microservice deployment.

3.3 Deciencies of Prior Work
Several prior works target similar problems. Laius [80] manages
the SM allocation to ensure the QoS of a single application, while
the performance of the co-located low priority applications can be
sacriced. It is not applicable for GPUmicroservices through simple
adaption for three reasons. 1) It ignores the pipeline interaction
between microservices. There is no support to breakdown the QoS
of the entire service into the latency requirements of each microser-
vice stage. 2) Ensuring the QoS of a microservice stage may result
in the long processing time of other co-running microservices. 3) It
does not consider the deployment of microservices across multiple
GPUs even multiple nodes.

FIRM [63] and SINAN [82] minimize the resource usage of tradi-
tional CPU microservices while ensuring the required QoS. Since
the communication overhead takes a minor part of the latency for
CPU microservices (e.g. 5% in DeathStarBench [37]), all the mi-
croservices communicate through sockets based on NIC. They use
Kubernetes to randomly deploy microservices after the resources
are allocated without considering dierent communication pat-
terns. On the contrary, optimizing the communication mechanism
is crucial for the GPU microservices. In addition, the main memory
can be easily scaled to meet the requirements for CPU microser-
vices. FIRM [63] and SINAN [82] are more focused on fast resources
(e.g., cores, LLC, memory bandwidth, main memory) reallocation
between microservices. There are not such isolation techniques
available on GPUs. And the global memory in the GPU is limited,
which should be considered in the microservice deployment.

We also compare Astraea with Laius and FIRM through extensive
experiments in Section 8.

3.4 Design Principles of Astraea
Based on the characterization study in Section 3.2, we design As-
traea following four principles.

(1) Themicroservice deployment onGPUs should consider
the dierent communication overheads. The communication
overhead across nodes, across GPUs on the same node, and on a
GPU show great gaps. Astraea should consider such dierences
when deploying GPU microservices, due to the relatively large data
among stages. It is better to use the fewest nodes to host a service
for the low cross-node overhead.

(2) The communication overhead between microservices
on the same GPU should be reduced. The CPU-GPU data trans-
fer between microservices results in the long end-to-end latency.
The PCI-e bandwidth contention also leads to increased communi-
cation overhead and long latency.

(3) Microservices have to be scheduled across GPUs/nodes
considering the limited global memory space. Since global
memory space is one of the resource bottlenecks for a GPU, Astraea
should be able to use multiple GPUs to host an entire multi-stage
user-facing service.

(4) The microservice pipeline eciency should be max-
imized while achieving the required QoS online. Since the
pipeline eciency is aected by both the percentage of SM re-
sources allocated to each microservice and the runtime contention
behaviors, Astraea considers runtime contention of the shared re-
sources (e.g., global memory bandwidth).

4 THE ASTRAEA METHODOLOGY
Figure 5 shows an overview of the Astraea system. Astraea maxi-
mizes the supported peak load of a multi-stage GPU service while
ensuring the desired 99%-ile latency target. To achieve this pur-
pose, Astraea comprises an online performance predictive model, a
microservice deployment policy, and an auto-scaling communication
framework.

The performance model predicts the duration, and shared re-
source usage of a microservice stage if it is allocated a given number
of SMs in a GPU (Section 5). Dierent from other performance mod-
els, our model also predicts the shared resource usage (e.g., the

573

Astraea: Towards QoS-Aware and Resource-Eicient Multi-stage GPU Services ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Users

Queries

Allocation&
Deployment

Decisions

Contention-aware
resource allocation
Object: Maximize peak

load & QoS

Performance predictive models

Auto-scaling communication framework

Astraea runtime system

Microservice deployment policy

···

Process
Pool 1

Process
Pool 2

Process
Pool n

···𝑆! 𝑆" 𝑆#

GPU Microservice

𝑆%

GPU-0

GPU-X

𝑆!
𝑆"

𝑆$

…

GPU-0
Node-2

Node-1

𝑆%

Cross-node &
intra-node
deployment

Figure 5: Design overview of Astraea.

consumed global memory bandwidth). The shared resource usage
is used to quantify the runtime contention between microservices
on a GPU since only the SMs can be explicitly allocated. We also use
the process pool technique [80] to enable dynamic SM allocation.

The microservice deployment policy distributes the microser-
vices to the available GPUs, based on the predicted performance,
the requirement on minimizing communication overhead, and the
requirement on making the throughputs of the stages identical
(Section 6). One challenging part here is that some microservices
may not scale well with the number allocated to SMs or some GPUs
only have small numbers of free SMs. We therefore propose to use
both multi-instance and SM allocation techniques to balance the
throughput of the stages. Another challenge is restricting the perfor-
mance degradation caused by the runtime contentions, by nding
an appropriate trade-o between the communication overhead and
the resource contention on each GPU.

As the communication patterns between microservices vary
with GPU and node interconnect topologies, the communication
framework adapts the communication no matter the microservices
are on the same GPU, on the same node, or on dierent nodes
(Section 7). The communication framework also proposes global
memory-based communication to eliminate unnecessary global
memory-main memory data transfer.

Astraea rst collects the performance data of each microservice
online, and trains the performance predictor until its accuracymeets
requirements. When the load/resource changes, Astraea predicts
the performance and shared resource usage of each microservice
under dierent resource congurations. According to the predic-
tion, the deployment policy determines the percentages of SMs and
the number of instances allocated to each microservice. At the same
time, Astraea uses a communication-aware deployment strategy to
deploy all instance while ensuring QoS target. Once the microser-
vice deployment is determined, the auto-scaling communication
framework will automatically select the appropriate upstream and
downstream microservices to communicate based on the resource
topology and load balancing, and choose the best communication
method(through global memory, Nvlink, etc).

5 PREDICTING PERFORMANCE AND
RESOURCE USAGE

The inecient microservice pipeline is due to the contention of
shared resources and the dierent throughputs of the microservice

GBDT GBDT GBDT LR LR LR RF RF RF
0

10

20

30

40

50

Pr
ed

ict
io

n
er

ro
r% Processing time Global memory bandwidth Throughput

Figure 6: Errors of predicting duration, global memory
bandwidth and throughput with GBDT, LR, and RF.

stages. Astraea predicts the processing duration, the global mem-
ory bandwidth usage, and the throughput of each microservice to
support the ecient resource allocation policy. The task duration
denotes the period time from when a user query is received to the
time point when the microservice gets its result. The task through-
put represents the number of queries that can be processed per
second at each microservice. Besides, Astraea also predicts the
FLOPs (oating point operations) and the required global memory
space of the microservices with dierent workloads.

For each microservice, we use the microservice’s input param-
eters, input data size, batchsize and percentage of computational
resources as input features, since they dominate a microservice’s
performance. All the input features can be collected with Nsight
systems [15] online on the backup server (an independent server).

More precisely, to build a performance model for a microservice,
we submit queries with random inputs, execute them with dier-
ent computational resource quotas and collect the corresponding
input features online. In order to guarantee the accuracy of the
performance model, Astraea collects online data continuously, in-
crementally updates the training set, and train the model until the
accuracy of the model reaches a pre-dened threshold (e.g., 90%).
We randomly select 80% of the samples to trains the model and use
the rest to evaluate the accuracy of the trained model.

When a batch of new samples are obtained (e.g., 100 samples), we
rst predict its performance with the current ready-trained model.
If the accuracy is higher than the threshold, the model training
stops. Otherwise, the new batch of samples are used to further
update the model incrementally. During online training, queries are
executed in solo-run mode to avoid resource contention. Based on
the prediction results, at most 200×10=2000 samples (200 dierent
inputs and 10 dierent percentages of computational resources
increasing from 10% to 100% with step 10%) are sucient for each
microservice, as the modeling method is not sophisticated.

Since the QoS target of a user query is within hundreds of mil-
liseconds to support smooth user interaction [30], it is crucial to
choose the modeling technique that shows both high accuracy and
low complexity for online prediction. We evaluate a spectrum of
low latency algorithms for the performance prediction: Linear Re-
gression (LR) [68], Gradient Boosting Decision Tree (GBDT) [75],
and Random Forest [20].

Figure 6 presents the prediction errors with LR, GBDT and RF af-
ter 60 minutes training. GBDT and RF show high accuracy (95.75%
and 92.08%, respectively) for predicting the microservice perfor-
mance. We also measured the execution time of dierent prediction
models. The time of predicting with GBDT is shorter than 1ms,
while the RF model runs longer than 5ms. We therefore choose
GBDT as our performance modeling technique.

574

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Wei Zhang, an Chen, Kaihua Fu, Ningxin Zheng, Zhiyi Huang, Jingwen Leng, and Minyi Guo

6 DEPLOYING MICROSERVICES
In this section, we discuss the resource allocation and microservice
deployment in Astraea. We rst determine the resource allocation
for each microservice instance, and then identify an appropriate
microservice deployment across nodes/GPUs.

6.1 Contention-Aware Resource Allocation
Based on our accurate features and precise prediction, we design a
contention-aware resource allocation policy. Specically, we rst
estimate the minimum number of GPUs based on the load pressure
level to deploy a multi-stage service. Then, the SMs of the GPUs
are allocated to each microservice.

Determine the minimum number of GPUs. When the load
of a service is high, deploying its microservices on a single GPU
leads to serious resource contention. Occupying multiple GPUs
requires careful selection of the number of GPUs to avoid resource
waste and minimize the expensive cross-node communication. In
this case, Astraea uses the predicted number of oating-point opera-
tions and the global memory footprint ofmicroservices to determine
the minimum number of GPUs required as shown in Equation 1.
The parameters are dened in Table 2. In the equation, the compu-
tational ability and the global memory space are the two factors to
determine the number of required GPUs.

n = MAX (

∑n
i=1 C(i , s)

G
,

∑n
i=1 M (i , s)

F
) (1)

Fined-grained resources allocation.Once the number of GPUs
is determined, Astraea allocates resources to microservices.Directly
allocating resources based on the performance prediction in Sec-
tion 5 cannot ensure the QoS of GPU microservices due to the
contention on shared resources.

We therefore formalize the resource allocation problem to be a
single-objective optimization problem with multiple constraints on
shared resource usage in Equation 2. The designed object function
is to maximize the smallest throughput of microservices in a multi-
stage service, while ensuring the end-to-end latency shorter than
the QoS target. Without loss of generality, we consider user-facing
applications with various microservice dependency graphs. Our
design does not depend on any specic microservice dependency.

There are ve constraints in the optimization problem. 1) The
accumulated global memory bandwidth required by all themicroser-
vices on a GPU should be less than its available global memory
bandwidth. 2) The accumulated SM quotas allocated to concur-
rent instances should not exceed the overall available SMs. 3) The
number of microservice instances on a GPU should not exceed 48
(MPS allows at most 48 client-server connections per-device). 4)
The global memory capacity should be smaller than the GPU global
memory limit. 5) The latency required for the entire service should
be smaller than the QoS target.

In a complex service, the latency of a user request is determined
by the Critical Path (CP, the path of the maximal duration) of the
execution graph. One problem here is that the CP of a service
changes based on the performance of microservice instances, the
allocated resources, and underlying shared-resource contention. It
is not applicable to statically identify the CP of service through
oine analysis. We therefore identify the CP of service online
using the weighted longest path algorithm [55]. In the algorithm,

Table 2: The variables used in the optimization problem

Variable Varible description Provided by
Ai The i th part of a multi-stage service A Benchmarks
pi The resource quotas of the i th microservice Section 6.1
s The batchsize of Microservice Ai scheduler
n The total number of GPUs Section 6.1
BW The available global memory bandwidth Nvprof
I The maximal client CUDA contexts per-device Volta MPS
R The overall computational resources respectively Nvprof
Ni The number of the i-th microservice’s processes Scheduler
f (pi , s) The predicted throughput of Ai Section 5
b(pi , s) The predicted global mem. BW usage of Ai Section 5
д(pi , s) The predicted latency of Ai Section 5
M (i , s) The global mem. footprint of Ai with batch size s Section 5
C(i , s) The oat point operations of Ai with batch size s Section 5
G The GFLOPS of the used GPU Nsight compute
T rans The communication overhead Section 7
CP End-to-end latency with CP Section 6.1
F The global memory capacity of the used GPU Nvprof

we take into account the communication overhead (Trans) and
computation patterns in microservice architectures.

Objective = MAX (minni=1 Ni × f (pi , s))

Constraint-1:
∑n

i=1 Ni × pi ≤ n × R, 0 ≤ pi ≤ R

Constraint-2:
∑n

i=1 Ni ≤ n × I , 0 ≤ Ni ≤ I

Constraint-3:
∑n

i=1 Ni × b(pi , s) ≤ n × BW

Constraint-4:
∑n

i=1 Ni ×M (i , s)) ≤ n × F

Constraint-5: CP (
∑n

i=1 д(pi , s),T rans) ≤ QoS

(2)

In Equation 2, we assume a service has n microservice stages.
Table 2 lists the variables in Equation 2. f (pi , s), b(pi , s) and д(pi , s)
are the predicted throughput, global memory bandwidth usage and
latency of the i-th microservice when it is allocated pi SM quotas
respectively. The optimal number of instances for eachmicroservice
stage and the resource quotas can be obtained by solving Equation 2.

Resource allocation space exploration. Given the large re-
source allocation space in microservices, it is essential to quickly
identify the boundaries of that space that allow the service to meet
its QoS. Assuming we are deploying M microservice stages on n
GPUs, the SM allocation granularity is P (in % of a GPU’s SMs), and
the maximum number of instances in each microservice stage is N .
In this case, there areCM−1

n
P −1
×NM possible allocation combinations.

When n = 10,M = 20, P = 10%, N = 10, there are 1.07× 1040 possi-
ble resource allocation combinations. It is impossible to enumerate
all the combinations with reasonable time at runtime.

Many algorithms can be used to solve optimization problems,
such as heuristics approaches [34, 72] and reinforcement learning
(RL). RL is recently widely used in CPU resource scheduling prob-
lems [58, 63]. We do not choose such a black-box method because
of its data starvation, in which a large number of real samples are
needed to achieve good results.

We use a heuristics approach that eectively avoids local optima
to solve the problem. To enable quick convergence, we employ the
Epsilon-Greedy algorithm, which is one of the widely adopted ran-
domized greedy algorithms in this domain [57]. It has low overhead
(10ms) according to our experiments. Even if the prediction was
slightly inaccurate, a common compensation mechanism [83] can
be adopted to solve it. However, there is no QoS violation caused
by inaccurate prediction in our experiments.

575

Astraea: Towards QoS-Aware and Resource-Eicient Multi-stage GPU Services ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

6.2 Identifying Appropriate Deployment
Randomly deploying microservices like FIRM results in QoS viola-
tion due to the large communication overhead, although the above
step nds the number of instances for each stage and the computing
resource quotas needed for each instance.

As the communication across node show much higher overhead
than intra-node, Astraea rst minimizes the cross-node communi-
cation. Specically, the cross-node deployment rst allocates mi-
croservice stages to multiple servers if a server is not capable to host
an excessive number of microservices. On each node, cross-GPU
deployment deploys the instances of the allocated microservice
stages to multiple GPUs.

Algorithm 1: Clustering of Microservice Stages
Input :The computing requirements of the n stagesC1, · · ·Cn
Input :Balanced distance matrix for the n stages X (nxn)
Output :The k clusters A1, · · ·Ak
Parameter :The remaining computing power of the k nodes R1, · · · Rk

1 Initialize R1, · · · Rk with the full computing power of the k nodes;
2 Select k inital stages which are far from each other;
3 Assign the inital stages to the corresponding k clusters A1, · · ·Ak ;
4 Update R1, · · · , Rk according to the initial k clusters;
5 Put the rest n − k stages into set Rest
6 while Rest is not ∅ do
7 Randomly select a stage i in Rest
8 Select cluster Aj withmin(Disti ,Aj) and Rj > Ci ;
9 Add stage i into cluster Aj ;

10 Update Rj ← Rj −Ci ;
11 Remove stage i from Rest ;
12 Return A1, · · ·Ak ;

6.2.1 Cross-Node Deployment. The principle here is to minimize
the inter-node communication overhead. We formalize the cross-
node deployment as a graph min-cut problem. Each microservice is
a node in the graph and the communication between microserives
corresponds to the edge between two nodes. The communication
data sizes are used as the weights of the edges. Our policy tries
to divide the graph into N (the number of nodes in the cluster)
subgraphs while minimizing the aggregated weight of the broken
edges. We therefore propose a Balanced-Kmeans++ algorithm opti-
mized for the min-cut problem. This algorithm generates k clusters
of microservice stages to be mapped to the k nodes. Algorithm 1
shows the details of the clustering algorithm for microservice stages.
The algorithm adapts the Balanced-Kmeans++ with a constraint on
the size of a cluster due to the limited computing power of a node.
Compared with traditional Kmeans++, it also avoids assigning too
many stages to one single node.

Disti ,Aj =

{
∞ otherwise
Σm∈Aj Xi ,m i f {m |Xi ,m , ∞} , ∅

(3)

To eectively locate the high communication overhead, we also
carefully design the distance used in algorithm 1. First, the distance
between stage i and j is dened as Xi , j = 1/Comi , j where Comi , j
is the transferred data volume. Besides, the distance between stage
i and cluster A is dened in Equation 3.

6.2.2 Intra-Node Cross-GPU Deployment. There are often many
microservices to be deployed on each node. Exhaustively searching
through the entire space for the optimal deployment brings long
search time that reveals in the end-to-end latency of queries.

Step1

Rough pruning

[N1 … Nn]
[P1 … Pn]

25%
25%

25%

For example

Step2

25%

Qo# $%&'()*+&(
,-.%)/ 0*&12+1(ℎ $%&'()*+&(

M-.%)/ '+5- $%&'()*+&(
…
GPU1 GPU2 GPU3

25% 25%

Sorted GPU list

Figure 7: The microservice deployment scheme of Astraea.

We therefore propose a search strategy to quickly nd out a rea-
sonable deployment scheme through adaptive pruning as shown in
Figure 7. The idea of pruning is nding the appropriate trade-o be-
tween inter-GPU communication and shared resource contention.

When deploying the instances of a microservice stage, if the
data transmitted between two adjacent stages is particularly large,
Astraea deploys the adjacent stage on the same GPU or topo-close
GPUs (with smaller communication overhead). For the resource
contention, we sort the remaining GPUs according to their available
resources. The partial ordering of GPU resources is related to the
characteristics of microservices. As the global memory capacity is
a major resource bottleneck for GPU microservices, Astraea sets it
as the highest priority in the deployment scheme.

Astraea prefers to deploy microservices on GPUs with fewer
free resources. In this way, Astraea avoids excessive resource frag-
mentation available in the resource pool. Also deploying instances
of the same stage on the same GPU as much as possible enables
resource sharing among the instances from the same application,
reducing the global memory consumption.

7 AUTO-SCALING COMMUNICATION
FRAMEWORK

When the load ofmulti-stage service changes, the number of GPUs/n-
odes changes in consequence and the microservices are also dynam-
ically deployed. For intra-node communications between microser-
vice instances, servers (such as the DGX-1) have both inter-GPU
point-to-point (P2P) interconnects such as NVLink (20-25GB/s) [35]
and shared interconnects such as PCIe (8-12GB/s). For cross-node
communications, however, Remote Procedure Call (RPC) is often
used. An auto-scaling communication framework is required so
that the microservices are able to freely communicate with each
other without modifying the source code.

7.1 Unied Communication API
We propose a unied communication API for the programmers.
With our API (Listing 1), developers only need to set a unique
identier for each stage with SetStaдeIdenti f ier and then spec-
ify the following stages by AppendSuccessorStaдe . The actual data
is transferred through function publish and receive . Specically,
The auto-scaling communication framework includes a central con-
troller. After the deployment, each instance will communicate with
the central controller and send its location(which Node, which GPU)
to the controller. The central controller will return the upstream
and downstream services that each microservice should communi-
cate with based on the location of all microservices and load bal-
ancing. The auto-scaling communication framework will bind the

576

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Wei Zhang, an Chen, Kaihua Fu, Ningxin Zheng, Zhiyi Huang, Jingwen Leng, and Minyi Guo

Data transfer
CPU Sync

: handle Host memory

Global memory

M1 M2

shm_head

shm_data1

shm_datan

…

Load by handleStore data

(a)

Host memory

Global memory

M1 M2

M1 result

S_sem1 L_sem1

M1

M1

Shm
_buffer

M2

…

Isempty
IsFull

M1 result

(b)

Figure 8: The global memory based communication.

fastest communication channel (global memory-based or NVlink)
to each instance. Once the deployment changes, the communication
framework updates and rebinds the new communication channel
automatically without any code change.

Listing 1: Interface of Unied Communication Mechanism
1void SetStageIdentifier(string unique_id);
2void AppendSuccessorStage(string unique_id);
3void publish(void * data, size_t size);
4void receive(void** pdata, size_t* size);

7.2 Optimizing Intra-GPU Communication
The microservice instances run in dierent processes. In this case,
adjacent microservices (e.g.,M1 andM2 in Figure 1) communicate
by copying data back and forth between GPU global memory and
the CPU main memory. However, the data passed fromM1 toM2
is already in the global memory space of M1, although M2 is not
allowed to access the data directly.

IfM1 is able to share the data withM2, the expensive memcpy
(device to host, host to device) can be eliminated, and the latency
of a query can be further reduced. The PCI-e overhead caused by
the memcpy is also eliminated. We propose and implement a global
memory-based intra-GPU communication in our communication
framework.

In the mechanism, the results ofM1’s instances is temporarily
stored in the global memory, only the data handler is passed toM2.
The instances ofM2 are able to access results from the global mem-
ory directly through the data handler. Figure 8 illustrates the design
of the global memory-based communication. The mechanism can
also be used for cross-GPU communication, if gpuDirect based on
NVLink is enabled.

As shown in Figure 8(a), it is possible that there are multiple
instances for bothM1 andM2. To this end, a producer-consumer
protocol is adopted to ensure the correctness of the communication.
As shown, Astraea creates a shared buer for each microservice
pair and creates a store lock S_Sem1 and a load lock L_Sem1 to
record the occupancy of the buer. The locks are achieved through
the main memory.

In more detail, whenM1 passes its result toM2 on the same GPU,
its process on the host passes a global memory handle (8 bytes) to
the process ofM2 on the CPU side (Figure 8(b)). OnceM2 gets the
data handle, it is able to directly access the data from the global
memory. The transfer of data handle is implemented using the
CUDA IPC [13]. The sender process gets the IPC handle for a given
global memory pointer using cudaIpcGetMemHandle(), passes it to
the receiver process using standard IPC mechanisms on the host

16 32 64 128 32 64 128 256 2 4 8 16 64 128 256 512
Batchsize

0

2

4

6

8

Ti
m

e
(m

s)

img-to-img img-to-text text-to-img cloud-gaming

Global Mem
Main Mem

5

10

lo
g

sc
al

e
da

ta
 si

ze

Figure 9: Communication overhead with themainmemory-
based and global memory-based mechanisms.

side, and the receiver process uses cudaIpcOpenMemHandle() to
retrieve the device pointer from the IPC handle.

Figure 9 shows the communication time of four benchmarks with
the default and the global memory-based mechanisms. The two
microservices do not contend for the PCI-e bandwidth. As observed,
global memory-based communication greatly reduces the overhead
when the data is larger than 0.02MB. The larger the data is, the more
performance gain is achieved. If the data size is small (e.g., only 2
bytes), using memcpy takes a shorter time. This is because CUDA
IPC incurs a small, xed overhead when probing, transferring, and
decoding the IPC handle in the global memory-based mechanism.
For services that adopt large batchsizes, the transmitted data is
usually larger than 0.02MB. A hybrid communication mechanism
based on the size of the data is achievable if needed.

8 EVALUATION OF ASTRAEA
In this section, we evaluate Astraea in maximizing the supported
peak load, while ensuring the required QoS.

8.1 Experimental Setup
We evaluate Astraea with the benchmarks in Table 1 on a machine
equipped with two Nvidia RTX 2080Ti GPUs and three DGX-2
machines [60] equipped with V100 GPUs. Table 3 summarizes the
software and hardware experimental congurations. Astraea does
not rely on any special hardware features of 2080Ti or V100, and is
easy to be set up on later GPUs (e.g., A100). The peak global memory
bandwidths of 2080Ti and V100 are 616 GB/s and 897 GB/s [59].
Except the large scale evaluation in Section 8.5 and Section 8.6, the
experimental results are from the machine with 2080Ti.

Load Generation. To represent a production environment, we
provide an open-loop asynchronous workload generator to simu-
late users’ requests. The arrival time of user requests follows an
exponential distribution as in CPU microservices [37]. In Astraea,
users’ requests are executed in batches. If a request in the batch is
about to be timed out, Astraea patches some empty requests into
the batch, and starts pipeline inference in order to satisfy the QoS
requirement.

Comparison Baselines. Since the multi-stage GPU service is
a timely topic, we nd few prior work. We therefore compare As-
traea with state-of-the-art resource management system for CPU
microservice FIRM [63] and the resource management work for
GPU co-locations Laius [80]. When adapting FIRM for GPUs, we
implement its idea to GPU microservices, and nd the optimal re-
source allocation oine (i.e., the tuneable congurations, SMs and
the number of instances) without QoS violation for each microser-
vice. The optimal allocation is identied in a brute force way to
eliminate the runtime overhead of reinforcement learning in FIRM.

577

Astraea: Towards QoS-Aware and Resource-Eicient Multi-stage GPU Services ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

128643216
Batchsize

img-to-img

180

190

200

210

220

230

240

250

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

2561286432
Batchsize

img-to-text

200

300

400

500

600

700

800

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

16842
Batchsize

text-to-img

200

300

400

500

600

700

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

128643216
Batchsize

text-to-text

100
150
200
250
300
350
400
450
500
550

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

FIRM Laius Astraea tail Latency

2561286432
Batchsize

speech-to-text

200

300

400

500

600

700

800

900

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

2561286432
Batchsize

text-to-speech

200

300

400

500

600

700

800

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

51225612864
Batchsize

cloud-game

0
50

100
150
200
250
300
350
400
450

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
li
ze

d
 9

9
%

-i
le

 L
a
te

n
c
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
li
ze

d
 9

9
%

-i
le

 L
a
te

n
c
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
li
ze

d
 9

9
%

-i
le

 L
a
te

n
c
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
li
ze

d
 9

9
%

-i
le

 L
a
te

n
c
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
li
ze

d
 9

9
%

-i
le

 L
a
te

n
c
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
li
ze

d
 9

9
%

-i
le

 L
a
te

n
c
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
li
ze

d
 9

9
%

-i
le

 L
a
te

n
c
y

Figure 10: The throughput of the benchmarks with FIRM, Laius and Astraea. The stars show the normalized 99%-ile latencies
of the benchmarks with Astraea (corresponding to the right y-axis).

Table 3: Hardware and software specications.

Specication

Hardware

Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
Two Nvidia GeForce RTX 2080Ti

Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz
NVIDIA DGX-2 with 16 Tesla V100s-SXM3

Software Ubuntu 16.04.5 LTS with kernel 4.15.0-43-generic
CUDA Driver 410.78 CUDA SDK 10.0 CUDNN 7.4.2

We adapt Laius to microservices by taking the stage with the
lowest throughput as the non-QoS task to maximize its through-
put while ensuring the total latency of all stages. Since Laius is
designed for a single GPU, for fair comparison, we schedule two
microservices of a benchmark on one GPU using Laius. The total
throughput of the benchmark for Laius is calculated as the mini-
mum throughputs of all the GPUs. The QoS target of a user query
is ranging from 50ms to 200ms according to 1.5X solo-run duration
of each application and is dened as the end-to-end 99%-ile latency.

8.2 Maximizing Throughput and Guaranteeing
QoS

Since a server is capable to host a benchmark, we rst conduct
experiments on a single server. Figure 10 shows the throughput
of benchmarks with FIRM, Laius and Astraea, while ensuring the
99%-ile latency target. In this gure, x-axis shows the batchsize.
The GPU throughput is dened as the supported peak load pressure
for multi-stage applications while guaranteeing 99%-ile tail latency.
Astraea increases the throughput of benchmarks by 15.5% to 45.1%
compared with FIRM, and by 10.9% to 82.3% compared with Laius.

FIRM shows low throughput because it ignores the impact of
communication overhead and resource contention when deploying
the microservices. As FIRM randomly deploys the microservices on
the GPUs of a single node, it incurs large communication overhead
and unnecessary shared resource contention. In this case, to amor-
tize the overhead, it allocates more resources to each microservice
for speeding up the execution. The large communication overhead
results in low throughput while ensuring the QoS. Meanwhile, Laius
suers from high PCI-e contention without global memory-based
communication and ignores the pipeline eciency. It achieves a
slightly lower throughput compared with FIRM, because FIRM con-
siders multiple instances (scale-out) while Laius only adjusts the
resources of each microservice.

Table 4 shows the number of instances in each microservice
stage, and the percentage of SMs allocated to each microservice
instance with Astraea. For the stage that has a long processing time

Table 4: The detailed resource allocation with Astraea.

img-to img-to text-to text-to speech text-to cloud
img text img text to-text text gaming

batchsize1 (9, 10%) (2, 10%) (2, 10%) (1, 30%) (4, 20%) (8, 10%) (2, 30%)
(1, 10%) (8, 10%) (8, 10%) (1, 20%) (2, 10%) (1, 20%) (2, 20%)

batchsize2 (9, 10%) (2, 10%) (1, 10%) (1, 30%) (4, 20%) (8, 10%) (2, 30%)
(1, 10%) (8, 10%) (4, 20%) (1, 20%) (2, 10%) (1, 20%) (2, 20%)

batchsize3 (9, 10%) (1, 10%) (1, 70%) (1, 10%) (6, 10%) (9, 10%) (3, 20%)
(1, 10%) (9, 10%) (1, 10%) (1, 70%) (3, 10%) (1, 10%) (10, 40%)

batchsize4 (4, 20%) (1, 10%) (1, 90%) (1, 10%) (6, 10%) (8, 10%) (3, 20%)
(1, 10%) (9, 10%) (1, 10%) (1, 70%) (3, 10%) (1, 10%) (2, 20%)

level-1
level-2

level-3
level-1

level-2
level-3

level-1
level-2

level-3
level-1

level-2
level-3

level-1
level-2

level-3
level-1

level-2
level-3

level-1
level-2

level-3
0

20%

40%

60%

80%

100%

No
rm

al
ize

d
m

in
im

ize
d

re
so

ur
se

s

stage1 stage2

imgtoimg imgtotexttexttoimgtexttotextspeechtotext
texttospeech

cloudgaming

0

0.5x

1.0x

1.5x

No
rm

al
ize

d
99

%
-il

e
la

te
nc

yAstraea Astraea-NC Astraea-NG

Figure 11: The resource usages of benchmarks under dier-
ent load levels with Astraea, and the 99%-ile latencies of the
benchmarks with Astraea, Astraea-NC and Astraea-NG.

(e.g., stage 1 for img-to-img), Astraea automatically creates more
instances for it to increase the total throughput of the pipeline.

8.3 Considering Bandwidth Contention and
Eect of Global Memory-based
Communication

Astraea makes sure that the accumulated bandwidth usage of mi-
croservices is smaller than the peak global memory bandwidth of
GPU. In this subsection, we verify the need of this constraint in de-
ploying microservices (the constraints in Equation 2). We compare
Astraea with Astraea-NC that disables the constraint in Astraea.

Figure 11 shows the 99%-ile latency of the benchmarks with
Astraea-NC. According to this gure, Astraea-NC suers from QoS
violations in 14 out of the 21 test cases of the user-facing services.
For instance, img-to-img suers from up to 2X QoS violation at
high load level (level-3). The QoS violations are due to the global
memory bandwidth contention not being contained in Astraea-NC.

We also verify the need for the global memory-based commu-
nication. The blue line in Figure 11 presents the 99%-ile latency of

578

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Wei Zhang, an Chen, Kaihua Fu, Ningxin Zheng, Zhiyi Huang, Jingwen Leng, and Minyi Guo

M1 M2 M3 M1
M2

M4
M3

(a) Sequential DAGs (b) Parallel DAGs

Figure 12: Structures of articial multi-stage GPU services.

benchmarks with Astraea-NG, an Astraea variation that disables
the global memory communication. Observed from Figure 11, 9 out
of the 21 test cases suering from QoS violations with Astraea-NG.
The QoS violation is due to the large communication overhead
between host memory and global memory.

In addition, Figure 11 reports Astraea’s resource usages and the
corresponding 99%-ile latencies under three loads, where the load
level i is higher than j, if i > j. According to this gure, Astraea
reduces more resource usage when the load is lower, but always
guarantee the required QoS. Therefore, Astraea can nely tune the
resource allocation and deployment based on dierent loads and
the contention between the microservices on the same GPU.

8.4 Generalizing for Complex Microservices
To show the generalization of Astraea, we design several arti-
cial benchmarks including the articial three-stage benchmarks
and the benchmarks with a complex interconnect graph. Figure 12
shows the structures of the graphs in this section. The rst set of
benchmark is based on three PCI-e intensive, compute-intensive
and memory-intensive scientic workloads in Rodinia [22]. The in-
tensities of compute intensive microservices and memory intensive
microservices is congurable.

We create 3×3×3 = 27workloads using the articial benchmarks
(3 microservices with dierent compute intensities, 3 microservices
with dierent memory access intensities, and 3 microservices with
dierent PCI-e intensities) to evaluate Astraea for complexmicroser-
vices (Figure 12(a)). They are denoted by c1, c2, c3,m1,m2,m3, p1,
p2, and p3. ci /mi /pi is more PCIe/compute/memory intensive than
cj /mj /pj , if i > j.

Figure 13 shows the throughput of the 27 articial benchmarks.
Astraea improves the throughput of the benchmarks by 37.8% com-
pared to FIRM, and by 39.7% compared with Laius. Figure 14 shows
the resource allocation of Astraea, where it launches dierent num-
bers of instances of microservices, and allocates dierent percent-
ages of the SMs to them. For example, Astraea launches 1 instance
of p1, 2 instances of c1, and 5 instances of m1 for the 1st bench-
mark. Astraea also allocates dierent percentages of the SMs to the
same microservice in dierent benchmarks. It reveals Astraea can
automatically adjust the resource allocation and deployment.

The second set of articial benchmarks with complex graphs in
Figure 12(b) is based on one PCI-e intensive, two compute-intensive
and one memory-intensive workloads in Rodinia. We create 3 ×
2 × 1 × 3 = 18 workloads and Figure 15 shows the throughput of
benchmarks, where Astraea signicantly improves the throughput
by 38.1% and 32.1% compared to FIRM and Laius without QoS
violations.

Astraea is applicable to complex microservices because it does
not rely on specic features of the applications.

p1
+c

1+
m
1

p1
+c

1+
m
2

p1
+c

1+
m
3

p1
+c

2+
m
1

p1
+c

2+
m
2

p1
+c

2+
m
3

p1
+c

3+
m
1

p1
+c

3+
m
2

p1
+c

3+
m
3

p2
+c

1+
m
1

p2
+c

1+
m
2

p2
+c

1+
m
3

p2
+c

2+
m
1

p2
+c

2+
m
2

p2
+c

2+
m
3

p2
+c

3+
m
1

p2
+c

3+
m
2

p2
+c

3+
m
3

p3
+c

1+
m
1

p3
+c

1+
m
2

p3
+c

1+
m
3

p3
+c

2+
m
1

p3
+c

2+
m
2

p3
+c

2+
m
3

p3
+c

3+
m
1

p3
+c

3+
m
2

p3
+c

3+
m
3

0
200
400
600
800

1000
1200
1400
1600

Th
ro
ug

hp
ut
(q
ue

ry
/s
) FIRM

Laius
Astraea

Figure 13: The throughputs of the articial benchmarks
with FIRM, Laius, and Astraea.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

50

100

150

200

Re
so

ur
ce

 P
er

ce
nt

ag
e MicroService-1 MicroService-2 MicroService-3

Figure 14: Resource allocation for maximizing the through-
put of the benchmarks with Astraea.

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 N
or

m
al

iz
ed

 9
9%

-il
e

la
te

nc
y

Th
ro

ug
hp

ut
(q

ue
ry

/s
)

FIRM Laius Astraea Astraea 99%-ile Latency

Figure 15: The throughputs of the benchmark with the
complex graph with FIRM, Laius and Astraea and the cor-
responding 99%-ile latencies in Astraea.

8.5 Large Scale Evaluation on DGX-2
Astraea is evaluated on a DGX-2 machine for maximizing the
throughput. Figure 16 shows the throughput of benchmarks, with
the ensured 99%-ile latency target, where the x-axis shows the
batch sizes. Astraea increases the throughput by 31.2% and 40.2%
compared with FIRM and Laius. It shows Astraea is scalable on
large-scale GPU machines.

High-end GPU servers, such as DGX-2, support GPU-to-GPU
direct communication based on Nvidia NVLink [35], without using
PCI-e bus. We also evaluate Astraea on DGX-2 with GPU-to-GPU
direct communication enabled. Figure 17 shows the throughput of
Astraea at maximum batchsize with GPU-to-GPU communication
enabled. Comparing Figure 16 with Figure 17, Astraea’s throughput
is increased by 26.4% on average beneting from the GPU-to-GPU
communication. However, FIRM and Laius cannot benet from the
GPU-to-GPU communication as they do not manage the deploy-
ment of microservices across multiple GPUs.

8.6 Scheduling Across Multiple Servers
To evaluate the eectiveness of Astraea’s cross-node deployment,
we evaluate Astraea with three DGX2 servers. For each node, we
use two V100 GPUs. We stretch the articial benchmark above into

579

Astraea: Towards QoS-Aware and Resource-Eicient Multi-stage GPU Services ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

51225612864
Batchsize

img-to-img

200

250

300

350

400

450

500

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

51225612864
Batchsize

img-to-text

100
150
200
250
300
350
400
450
500

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

6432168
Batchsize

text-to-img

0

100

200

300

400

500

600

700

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

51225612864
Batchsize

text-to-text

400
500
600
700
800
900

1000
1100
1200

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

FIRM Laius Astraea tail Latency

51225612864
Batchsize

speech-to-text

200
300
400
500
600
700
800
900

1000

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

51225612864
Batchsize

text-to-speech

200

300

400

500

600

700

800

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

51225612864
Batchsize

could-game

0
50

100
150
200
250
300
350
400
450

T
h
ro

u
g
h
p
u
t(

q
u
e
ry

/s
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 9

9
%

-i
le

 L
a
te

n
cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 9

9
%

-i
le

 L
a
te

n
cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 9

9
%

-i
le

 L
a
te

n
cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 9

9
%

-i
le

 L
a
te

n
cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 9

9
%

-i
le

 L
a
te

n
cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 9

9
%

-i
le

 L
a
te

n
cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 9

9
%

-i
le

 L
a
te

n
cy

Figure 16: The throughput of the benchmarks on DGX-2 with FIRM, Laius and Astraea. The stars show the normalized 99%-ile
latencies of the benchmarks with Astraea (corresponding to the right y-axis).

img-to-img
text-to-img

img-to-text
text-to-text

speech-to-text
text-to-speech

cloud gaming
0

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (Q

ue
ry

/s
) FIRM Laius Astraea tail Latency

0.0x
0.1x
0.2x
0.3x
0.4x
0.5x
0.6x
0.7x
0.8x
0.9x
1.0x

No
rm

al
ize

d
99

%
-il

e
La

te
nc

y

Figure 17: Maximizing throughput with NVlink.

0x
0.2x

0.4x

0.6x

0.8x
1x

1.2x

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 N
or

m
al

iz
ed

 9
9%

-il
e

La
te

nc
y

Th
ro

ug
hp

ut
(q

ue
ry

/s
)

FIRM Laius Astraea Astraea 99%-ile Latency

Figure 18: The latency and throughput results of the bench-
marks on multiple servers with FIRM, Laius and Astraea.

the application with 21 microservices, including multiple copies of
PCIe/memory/compute-intensive tasks. And we randomly arrange
these microservices into 21 combinations. For communication be-
tween servers, we copy the shared data from the GPU to the CPU
memory and then use gRPC technology [11] to establish a TCP
connection between microservices.

As to the setting of baselines, for each combination, FIRM de-
ploys microservices on dierent nodes using the default policy in
Kubenetes. Laius rst manually nds the segmentation method
with the least communication overhead, and then each server still
uses the previous Laius for resource management.

As shown in Figure 18, Astraea achieves higher throughput than
FIRM and Laius by 47.2% and 32.9%. On average, Astraea improves
the throughput by 30.2% compared with Laius while maintaining
the QoS. Observed from Figure 15 and 18, FIRM performs worse
when the microservice has a complex topology or more pipeline
stages. That is because FIRM ignores the impact of communication
overhead on the microservice deployment. Random deployment
causes resource contention and much communication overhead.

8.7 Overhead of Astraea
Training overhead. The overhead of training models for predict-
ing microservice performance is acceptable. Collecting the training

samples of all microservices and training process nished within
60 minutes using a single GPU. As for the online predicting, each
prediction completes in 1 ms, which is much shorter than the QoS
target of a service. Resource allocation overhead. As stated in
Section 6, Astraea needs to solve the optimization problem us-
ing the simulated annealing algorithm to identify the appropri-
ate resource allocation and solve the deployment scheme using
balanced-Kmeans++. Our measurement shows that this operation
in our experiments completes in 10ms on a single CPU. We also
measured the overhead on a large-scale GPU microservice-based
application (50 microservices). Our scheduler can still complete
within 30ms. Communication overhead. Astraea needs to set
up global memory-based communication for microservices that
require data transfer. The setup operation for a pair of microser-
vices using CUDA IPC is only one-o when the end-to-end service
is launched and completes in 1ms. To conclude, the overhead of
Astraea is acceptable for real-system deployment.

8.8 Architectural Implications
We discuss three architectural implications in this subsection.

(1) If we build a datacenter for lightweight multi-stage services,
it is more ecient to use servers that equip with a single or a small
number of GPUs. For lightweight services, Astraea tends to run all
the microservice stages on a single GPU and use multiple GPUs for
independently responding to user requests (scale-out operation).
The global memory-based communication eectively works in this
situation. On the contrary, servers with multiple GPUs are more
suitable for the services that cannot be held by a single GPU, as
cross-node communication is time-consuming. In this case, Astraea
prefers to deploy adjacent stages with large communication data
to the same GPU/node.

(2) Weight-sharing technology can be used to reduce the global
memory footprint when multiple instances of microservice stages
are on the same GPU. However, it is not always the best to deploy
the instances of a microservice stage on the same GPU. This is
because these instances require the same types of shared resources,
and may bring serious resource contention. There is a trade-o
between global memory consumption and other shared resource
contention.

(3) If a single model is extremely huge (e.g. GPT3 [21]), we can
split the model where the operators show dierent characteriza-
tions, take some adjacent layers/ops as one microservice stage, and
apply Astraea to deploy the entire model.

580

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Wei Zhang, an Chen, Kaihua Fu, Ningxin Zheng, Zhiyi Huang, Jingwen Leng, and Minyi Guo

9 CONCLUSION AND FUTUREWORK
We propose Astraea to manage resources online for GPU microser-
vices. The resource allocation and deployment policy consider the
pipeline eciency, the shared resource contention, and the com-
munication overhead. An auto-scaling communication framework
with the global memory-based communication mechanism is also
proposed to enable eective GPU microservice communication. Ex-
perimental results show that Astraea increases the peak supported
load by up to 82.3% while achieving the desired 99%-ile latency
target compared with FIRM and Laius. Managing applications that
have both CPU and GPU components (though lacking in bench-
marks) would be interesting future work.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of
China under Grant 2019YFF0302600, and National Natural Science
Foundation of China (NSFC) grant (62022057, 61832006, 61632017,
61872240, 62072297). Quan Chen andMinyi Guo are the correspond-
ing authors.

REFERENCES
[1] [n. d.]. AIBench: A Datacenter AI Benchmark Suite. https://www.benchcouncil.

org/AIBench/.
[2] [n. d.]. Apache Thrift. https://thrift.apache.org..
[3] [n. d.]. Automatic Alternative Text. https://wordpress.org/plugins/automatic-

alternative-text/.
[4] [n. d.]. Best Caption For Facebook and Instagram. https://play.google.com/store/

apps/details?id=com.caption.facebook.instagram&hl=en_US.
[5] [n. d.]. bgfx - Cross-platform rendering library. https://github.com/bkaradzic/

bgfx.
[6] [n. d.]. Caption AI :Captions and Hashtags for Instagram/FB. https://play.google.

com/store/apps/details?id=caption.ai&hl=en_US.
[7] [n. d.]. The datacenter has an appetite for GPU compute. https:

//www.nextplatform.com/2020/02/15/the-datacenter-has-an-appetite-for-
gpu-compute/.

[8] [n. d.]. Facial recognition api for Python. github.com/ageitgey/face_recognition.
[9] [n. d.]. FFmpeg:A complete, cross-platform solution to record, convert and stream

audio and video. https://mpeg.org/.
[10] [n. d.]. GPU in AI &Machine Learning Use Cases. https://www.weka.io/blog/gpu-

for-ai-ml-deep-learning/.
[11] [n. d.]. gRPC. https://www.grpc.io/.
[12] [n. d.]. Moonlight. https://moonlight-stream.org/.
[13] [n. d.]. NVIDIA CUDAAPI. https://docs.nvidia.com/cuda/cuda-runtime-api/

group__CUDART__DEVICE.html.
[14] [n. d.]. NVIDIA DALI. https://github.com/NVIDIA/DALI.
[15] [n. d.]. Nvidia Night Compute. docs.nvidia.com/nsight-compute/NsightCompute/

index.html.
[16] [n. d.]. OpenNMT: An open source neural machine translation system. opennmt.

net/.
[17] Yancheng Bai, Yongqiang Zhang, Mingli Ding, and Bernard Ghanem. 2018.

Finding tiny faces in the wild with generative adversarial network. In the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 21–30.
https://doi.org/10.1109/CVPR.2018.00010

[18] Liang Bao, Chase Wu, Xiaoxuan Bu, Nana Ren, and Mengqing Shen. 2019. Per-
formance Modeling and Workow Scheduling of Microservice-based Applica-
tions in Clouds. IEEE Transactions on Parallel and Distributed Systems (2019).
https://doi.org/10.1109/TPDS.2019.2901467

[19] Luiz André Barroso and Urs Hölzle. 2009. The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Synthesis lec-
tures on computer architecture 4, 1 (2009), 1–108. https://doi.org/10.2200/
S00516ED2V01Y201306CAC024

[20] Gérard Biau and Erwan Scornet. 2016. A random forest guided tour. Test 25, 2
(2016), 197–227.

[21] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[22] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous

computing. In International Symposium on Workload Characterization (IISWC).
IEEE, 44–54. https://doi.org/10.1109/IISWC.2009.5306797

[23] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou. 2017. Esha: A
software framework for enabling ecient preemptive scheduling of gpu. In
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 3–16. https://doi.org/10.1145/3018743.3018748

[24] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and
Lingjia Tang. 2017. Prophet: Precise qos prediction on non-preemptive accel-
erators to improve utilization in warehouse-scale computers. In Proceedings of
the Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 17–32. https://doi.org/10.1145/3037697.
3037700

[25] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax:
Qos awareness and increased utilization for non-preemptive accelerators in
warehouse scale computers. ACM SIGPLAN Notices 51, 4 (2016), 681–696.
https://doi.org/10.1145/2872362.2872368

[26] Yutian Chen, Yannis Assael, Brendan Shillingford, David Budden, Scott Reed,
Heiga Zen, Quan Wang, Luis C Cobo, Andrew Trask, Ben Laurie, et al. 2018.
Sample ecient adaptive text-to-speech. arXiv preprint arXiv:1809.10460 (2018).

[27] Yu-An Chung, Wei-Hung Weng, Schrasing Tong, and James Glass. 2019. Towards
unsupervised speech-to-text translation. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 7170–7174.
https://doi.org/10.1109/ICASSP.2019.8683550

[28] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A low-latency online prediction serving system.
In 14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17). 613–627.

[29] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen Leng, Jieru Zhao,
Zhuo Song, Tao Ma, Yong Yang, Chao Li, et al. 2021. Enable simultaneous DNN
services based on deterministic operator overlap and precise latency prediction.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–15. https://doi.org/10.1145/3458817.3476143

[30] Jerey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80. https://doi.org/10.1145/2408776.2408794

[31] Kangle Deng, Tianyi Fei, Xin Huang, and Yuxin Peng. 2019. IRC-GAN: introspec-
tive recurrent convolutional GAN for text-to-video generation. In Proceedings
of the 28th International Joint Conference on Articial Intelligence. AAAI Press,
2216–2222. https://doi.org/10.24963/ijcai.2019/307

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018). https://doi.org/10.18653/v1/n19-1423

[33] Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerating the super-
resolution convolutional neural network. In European conference on computer
vision (ECCV). Springer, 391–407. https://doi.org/10.1007/978-3-319-46475-6_25

[34] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant colony optimiza-
tion. IEEE computational intelligence magazine 1, 4 (2006), 28–39.

[35] Denis Foley and John Danskin. 2017. Ultra-performance Pascal GPU and NVLink
interconnect. IEEE Micro 37, 2 (2017), 7–17. https://doi.org/10.1109/MM.2017.37

[36] Kaihua Fu,Wei Zhang, Quan Chen, Deze Zeng, Xin Peng,Wenli Zheng, andMinyi
Guo. 2021. Qos-aware and resource ecient microservice deployment in cloud-
edge continuum. In 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 932–941. https://doi.org/10.1109/IPDPS49936.2021.
00102

[37] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
Open-Source Benchmark Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. In the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 3–18. https://doi.org/10.1145/3297858.3304013

[38] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and
Christina Delimitrou. 2019. Seer: Leveraging Big Data to Navigate the Complexity
of Performance Debugging in Cloud Microservices. In the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS). ACM, 19–33. https://doi.org/10.1145/3297858.3304004

[39] Lianli Gao, Daiyuan Chen, Jingkuan Song, Xing Xu, Dongxiang Zhang, and
Heng Tao Shen. 2019. Perceptual Pyramid Adversarial Networks for Text-to-
Image Synthesis. (2019). https://doi.org/10.1609/aaai.v33i01.33018312

[40] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. 2018. Low latency RNN infer-
ence with cellular batching. In Proceedings of the Thirteenth EuroSys Conference.
1–15. https://doi.org/10.1145/3190508.3190541

[41] Alim Ul Gias, Giuliano Casale, andMurrayWoodside. 2019. ATOM:Model-Driven
Autoscaling for Microservices. In the 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 1994–2004. https://doi.org/10.1109/ICDCS.
2019.00197

[42] Sergey Grizan, David Chu, Alec Wolman, and Roger Wattenhofer. 2015. dJay:
enabling high-density multi-tenancy for cloud gaming servers with dynamic
cost-benet GPU load balancing. In Proceedings of the sixth ACM symposium on
cloud computing. 58–70. https://doi.org/10.1145/2806777.2806942

581

https://www.benchcouncil.org/AIBench/
https://www.benchcouncil.org/AIBench/
https://thrift.apache.org.
https://wordpress.org/plugins/automatic-alternative-text/
https://wordpress.org/plugins/automatic-alternative-text/
https://play.google.com/store/apps/details?id=com.caption.facebook.instagram&hl=en_US
https://play.google.com/store/apps/details?id=com.caption.facebook.instagram&hl=en_US
https://github.com/bkaradzic/bgfx
https://github.com/bkaradzic/bgfx
https://play.google.com/store/apps/details?id=caption.ai&hl=en_US
https://play.google.com/store/apps/details?id=caption.ai&hl=en_US
https://www.nextplatform.com/2020/02/15/the-datacenter-has-an-appetite-for-gpu-compute/
https://www.nextplatform.com/2020/02/15/the-datacenter-has-an-appetite-for-gpu-compute/
https://www.nextplatform.com/2020/02/15/the-datacenter-has-an-appetite-for-gpu-compute/
github.com/ageitgey/face_recognition
https://ffmpeg.org/
https://www.weka.io/blog/gpu-for-ai-ml-deep-learning/
https://www.weka.io/blog/gpu-for-ai-ml-deep-learning/
https://www.grpc.io/
https://moonlight-stream.org/
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html
https://github.com/NVIDIA/DALI
docs.nvidia.com/nsight-compute/NsightCompute/index.html
docs.nvidia.com/nsight-compute/NsightCompute/index.html
opennmt.net/
opennmt.net/
https://doi.org/10.1109/CVPR.2018.00010
https://doi.org/10.1109/TPDS.2019.2901467
https://doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/3018743.3018748
https://doi.org/10.1145/3037697.3037700
https://doi.org/10.1145/3037697.3037700
https://doi.org/10.1145/2872362.2872368
https://doi.org/10.1109/ICASSP.2019.8683550
https://doi.org/10.1145/3458817.3476143
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.24963/ijcai.2019/307
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1007/978-3-319-46475-6_25
https://doi.org/10.1109/MM.2017.37
https://doi.org/10.1109/IPDPS49936.2021.00102
https://doi.org/10.1109/IPDPS49936.2021.00102
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1609/aaai.v33i01.33018312
https://doi.org/10.1145/3190508.3190541
https://doi.org/10.1109/ICDCS.2019.00197
https://doi.org/10.1109/ICDCS.2019.00197
https://doi.org/10.1145/2806777.2806942

Astraea: Towards QoS-Aware and Resource-Eicient Multi-stage GPU Services ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

[43] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving DNNs like clockwork: Performance
predictability from the bottom up. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20). 443–462.

[44] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-
YeonWei, Hsien-Hsin S Lee, David Brooks, and Carole-JeanWu. 2020. Deeprecsys:
A system for optimizing end-to-end at-scale neural recommendation inference.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 982–995. https://doi.org/10.1109/ISCA45697.2020.00084

[45] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
2020. The architectural implications of Facebook’s DNN-based personalized rec-
ommendation. In 2020 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). IEEE, 488–501. https://doi.org/10.1109/HPCA47549.
2020.00047

[46] Ye Jia, Melvin Johnson,WolfgangMacherey, Ron JWeiss, Yuan Cao, Chung-Cheng
Chiu, Naveen Ari, Stella Laurenzo, and Yonghui Wu. 2019. Leveraging weakly
supervised data to improve end-to-end speech-to-text translation. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 7180–7184. https://doi.org/10.1109/ICASSP.2019.8683343

[47] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn,
Jason Mars, and Lingjia Tang. 2019. Grandslam: Guaranteeing slas for jobs in
microservices execution frameworks. In Proceedings of the Fourteenth EuroSys
Conference 2019. 1–16. https://doi.org/10.1145/3302424.3303958

[48] Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for gen-
erating image descriptions. In the IEEE conference on Computer Vision and Pattern
Recognition (CVPR). 3128–3137. https://doi.org/10.1109/CVPR.2015.7298932

[49] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. 2011.
TimeGraph: GPU scheduling for real-time multi-tasking environments. In Proc.
USENIX ATC. 17–30.

[50] Anthony Kwan, Jonathon Wong, Hans-Arno Jacobsen, and Vinod Muthusamy.
2019. HyScale: Hybrid and Network Scaling of Dockerized Microservices in
Cloud Data Centres. In the 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 80–90. https://doi.org/10.1109/ICDCS.2019.00017

[51] Shanshan Li, He Zhang, Zijia Jia, Zheng Li, Cheng Zhang, Jiaqi Li, Qiuya Gao,
Jidong Ge, and Zhihao Shan. 2019. A dataow-driven approach to identifying
microservices from monolithic applications. Journal of Systems and Software 157
(2019), 110380. https://doi.org/10.1016/j.jss.2019.07.008

[52] Yusen Li, Chuxu Shan, Ruobing Chen, Xueyan Tang, Wentong Cai, Shanjiang
Tang, Xiaoguang Liu, Gang Wang, Xiaoli Gong, and Ying Zhang. 2019. GAugur:
Quantifying performance interference of colocated games for improving resource
utilization in cloud gaming. In Proceedings of the 28th international symposium on
high-performance parallel and distributed computing. 231–242. https://doi.org/10.
1145/3307681.3325409

[53] Yang Liu and Mirella Lapata. 2019. Text summarization with pretrained encoders.
arXiv preprint arXiv:1908.08345 (2019). https://doi.org/10.18653/v1/D19-1387

[54] Yuchen Liu, Jiajun Zhang, Hao Xiong, Long Zhou, ZhongjunHe, HuaWu, Haifeng
Wang, and Chengqing Zong. 2019. Synchronous Speech Recognition and Speech-
to-Text Translation with Interactive Decoding. arXiv preprint arXiv:1912.07240
(2019).

[55] Ming Lu and Heng Li. 2003. Resource-activity critical-path method for construc-
tion planning. Journal of construction engineering and management 129, 4 (2003),
412–420. https://doi.org/10.1061/(ASCE)0733-9364(2003)129:4(412)

[56] Grzegorz Malewicz, MatthewHAustern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In the ACM International Conference on Management of data
(SIGMOD). ACM, 135–146. https://doi.org/10.1145/1807167.1807184

[57] Rajiv Nishtala, Paul Carpenter, Vinicius Petrucci, and Xavier Martorell. 2017.
Hipster: Hybrid task manager for latency-critical cloud workloads. In 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 409–420. https://doi.org/10.1109/HPCA.2017.13

[58] Rajiv Nishtala, Vinicius Petrucci, Paul Carpenter, and Magnus Sjalander. 2020.
Twig: Multi-agent task management for colocated latency-critical cloud services.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 167–179. https://doi.org/10.1109/HPCA47549.2020.00023

[59] NVIDIA. 2017. NVIDIA TESLA V100 GPU ARCHITECTURE. https://www.nvidia.
com/en-us/data-center/nvidia-ampere-gpu-architecture/.

[60] NVIDIA. 2019. NVIDIA DGX-2 System User Guide. docs.nvidia.com/dgx/dgx2-
user-guide/index.html.

[61] Wei Ping, Kainan Peng, and Jitong Chen. 2018. Clarinet: Parallel wave generation
in end-to-end text-to-speech. arXiv preprint arXiv:1807.07281 (2018).

[62] Zhengwei Qi, Jianguo Yao, Chao Zhang, Miao Yu, Zhizhou Yang, and Haibing
Guan. 2014. VGRIS: Virtualized GPU resource isolation and scheduling in cloud
gaming. ACM Transactions on Architecture and Code Optimization (TACO) 11, 2
(2014), 1–25. https://doi.org/10.1145/2632216

[63] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Ravis-
hankar K Iyer. 2020. FIRM: An Intelligent Fine-grained Resource Management

Framework for SLO-Oriented Microservices. In 14th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI). 805–825.

[64] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[65] Colin Rael, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the lim-
its of transfer learning with a unied text-to-text transformer. arXiv preprint
arXiv:1910.10683 (2019).

[66] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,
and Honglak Lee. 2016. Generative adversarial text to image synthesis. arXiv
preprint arXiv:1605.05396 (2016).

[67] Haşim Sak, Andrew Senior, and Françoise Beaufays. 2014. Long short-term
memory recurrent neural network architectures for large scale acoustic modeling.
In the Fifteenth annual conference of the international speech communication
association.

[68] George AF Seber and Alan J Lee. 2012. Linear regression analysis. Vol. 329. John
Wiley & Sons.

[69] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU
cluster engine for accelerating DNN-based video analysis. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 322–337. https:
//doi.org/10.1145/3341301.3359658

[70] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[71] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. 2019. Softsku:
Optimizing server architectures for microservice diversity@ scale. In the 46th
International Symposium on Computer Architecture (ISCA). 513–526. https://doi.
org/10.1145/3307650.3322227

[72] Peter JM Van Laarhoven and Emile HL Aarts. 1987. Simulated annealing. In
Simulated annealing: Theory and applications. Springer, 7–15.

[73] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show
and tell: A neural image caption generator. In the IEEE conference on Computer
Vision and Pattern Recognition (CVPR). 3156–3164. https://doi.org/10.1109/CVPR.
2015.7298935

[74] Fei Wang, Liren Chen, Cheng Li, Shiyao Huang, Yanjie Chen, Chen Qian, and
Chen Change Loy. 2018. The devil of face recognition is in the noise. In the
European Conference on Computer Vision (ECCV). 765–780. https://doi.org/10.
1007/978-3-030-01240-3_47

[75] Zeyi Wen, Jiashuai Shi, Bingsheng He, Jian Chen, Kotagiri Ramamohanarao, and
Qinbin Li. 2019. Exploiting GPUs for ecient gradient boosting decision tree
training. IEEE Transactions on Parallel and Distributed Systems 30, 12 (2019),
2706–2717. https://doi.org/10.1109/TPDS.2019.2920131

[76] Yecheng Xiang and Hyoseung Kim. 2019. Pipelined Data-Parallel CPU/GPU
Scheduling for Multi-DNN Real-Time Inference. In Real-Time Systems Symposium
(RTSS). IEEE, 392–405. https://doi.org/10.1109/RTSS46320.2019.00042

[77] Guojun Yin, Bin Liu, Lu Sheng, Nenghai Yu, Xiaogang Wang, and Jing Shao. 2019.
Semantics Disentangling for Text-to-Image Generation. In the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2327–2336. https://doi.org/
10.1109/CVPR.2019.00243

[78] Peifeng Yu and Mosharaf Chowdhury. 2019. Salus: Fine-grained gpu sharing
primitives for deep learning applications. arXiv preprint arXiv:1902.04610 (2019).

[79] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei Hua, Jiayi Meng, and Lishan
Yang. 2018. G-net: Eective {GPU} sharing in {NFV} systems. In 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 18). 187–
200.

[80] Wei Zhang, Weihao Cui, Kaihua Fu, Quan Chen, Daniel Edward Mawhirter,
Bo Wu, Chao Li, and Minyi Guo. 2019. Laius: Towards latency awareness and
improved utilization of spatial multitasking accelerators in datacenters. In Pro-
ceedings of the ACM International Conference on Supercomputing (ICS). 58–68.
https://doi.org/10.1145/3330345.3330351

[81] Wei Zhang, Kaihua Fu, Ningxin Zheng, Quan Chen, Chao Li, Wenli Zheng,
and Minyi Guo. 2021. CHARM: Collaborative Host and Accelerator Resource
Management for GPU Datacenters. In 2021 IEEE 39th International Conference
on Computer Design (ICCD). IEEE, 307–315. https://doi.org/10.1109/ICCD53106.
2021.00056

[82] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, Edward Suh, and Christina
Delimitrou. 2021. Sinan: ML-Based and QoS-Aware Resource Management for
Cloud Microservices. (2021). https://doi.org/10.1145/3445814.3446693

[83] Liang Zhou, Laxmi N Bhuyan, and KK Ramakrishnan. 2020. Gemini: Learning to
Manage CPU Power for Latency-Critical Search Engines. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 637–349.
https://doi.org/10.1109/MICRO50266.2020.00059

[84] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. 2019. Dm-gan: Dynamic
memory generative adversarial networks for text-to-image synthesis. In the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5802–5810.
https://doi.org/10.1109/CVPR.2019.00595

582

https://doi.org/10.1109/ISCA45697.2020.00084
https://doi.org/10.1109/HPCA47549.2020.00047
https://doi.org/10.1109/HPCA47549.2020.00047
https://doi.org/10.1109/ICASSP.2019.8683343
https://doi.org/10.1145/3302424.3303958
https://doi.org/10.1109/CVPR.2015.7298932
https://doi.org/10.1109/ICDCS.2019.00017
https://doi.org/10.1016/j.jss.2019.07.008
https://doi.org/10.1145/3307681.3325409
https://doi.org/10.1145/3307681.3325409
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.1061/(ASCE)0733-9364(2003)129:4(412)
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1109/HPCA.2017.13
https://doi.org/10.1109/HPCA47549.2020.00023
https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/
https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/
docs.nvidia.com/dgx/dgx2-user-guide/index.html
docs.nvidia.com/dgx/dgx2-user-guide/index.html
https://doi.org/10.1145/2632216
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3307650.3322227
https://doi.org/10.1145/3307650.3322227
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.1007/978-3-030-01240-3_47
https://doi.org/10.1007/978-3-030-01240-3_47
https://doi.org/10.1109/TPDS.2019.2920131
https://doi.org/10.1109/RTSS46320.2019.00042
https://doi.org/10.1109/CVPR.2019.00243
https://doi.org/10.1109/CVPR.2019.00243
https://doi.org/10.1145/3330345.3330351
https://doi.org/10.1109/ICCD53106.2021.00056
https://doi.org/10.1109/ICCD53106.2021.00056
https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1109/MICRO50266.2020.00059
https://doi.org/10.1109/CVPR.2019.00595

	Abstract
	1 Introduction
	2 Related work
	3 Performance Issues of GPU Microservices
	3.1 Benchmarks and Experimental Platforms
	3.2 Characterizing GPU Microservices
	3.3 Deficiencies of Prior Work
	3.4 Design Principles of Astraea

	4 The Astraea Methodology
	5 Predicting Performance and Resource Usage
	6 Deploying Microservices
	6.1 Contention-Aware Resource Allocation
	6.2 Identifying Appropriate Deployment

	7 Auto-scaling Communication Framework
	7.1 Unified Communication API
	7.2 Optimizing Intra-GPU Communication

	8 Evaluation of Astraea
	8.1 Experimental Setup
	8.2 Maximizing Throughput and Guaranteeing QoS
	8.3 Considering Bandwidth Contention and Effect of Global Memory-based Communication
	8.4 Generalizing for Complex Microservices
	8.5 Large Scale Evaluation on DGX-2
	8.6 Scheduling Across Multiple Servers
	8.7 Overhead of Astraea
	8.8 Architectural Implications

	9 Conclusion and Future Work
	Acknowledgments
	References

