
Dynamic Send Buffer Active Tuning for Low Latency Streaming
Media

Syed Hasan, Zhiyi Huang and Paul Werstein
Department of Computer Science

University of Otago
Dunedin, New Zealand

{shasan,hzy,werstein}@cs.otago.ac.nz

Abstract

The best-effort service model of the Internet is unsuitable
for streaming applications which require a smooth and
flexible packet transmission rate. TCP is unable to provide
such a sending rate due to its strict adherence to congestion
control. We study the effect of the transport protocol’s send
buffer size on the performance of streaming media and
propose a dynamic send buffer tuning approach which also
provides congestion feedback to the application. Simula-
tion results show that this technique improves streaming
performance.

Key Words: Streaming media, Congestion Control, TCP,
TCP-Friendly Rate Control (TFRC).

1 Introduction

There is a growing trend of streamed audio-video applica-
tions on the Internet. According to media research the num-
ber of streamed video increased by 38.85% in 2006 to 24.92
billion streams [1]. Faster and cheaper access bandwidth is
enabling various streamed audio-video services to the end
user. However, the user experience of streaming media is
not satisfactory always. Recent research shows that on the
Internet, about 13% home and 40% of business streaming
sessions suffer quality degradation [7].

The smooth and flexible sending rate required for
streaming is hard to achieve on the Internet which only pro-
vides ’best-effort’ delivery of packets. In times of conges-
tion, queues build up inside the routers delaying/dropping
incoming packets. In order to mitigate this problem,
streaming applications use techniques like client-side play-
out buffering and stream switching. The client-side play-
out buffer essentially borrows some current bandwidth to
prefetch packets for protection against future rate reduc-
tion. The buffer size has to be large enough to ensure that in
times of congestion it does not run out of packets and con-

tinues smooth playout. Stream switching allows changing
the streamed bit rate depending on the amount of conges-
tion. Despite these techniques, much of the performance is-
sues for streaming depend on the underlying transport pro-
tocol. A transport protocol which provides a smooth low
delay transmission of packets is highly desirable.

The success of the Internet can be attributed to TCP’s
congestion control mechanisms [10]. TCP controls the
sending rate of applications in order to ensure fairness and
avoid congestion. This proactive rate control is at odds with
streaming applications since they cannot change or sustain a
particular transmission rate whenever they want to. Unlike
TCP, UDP is a fast, light weight protocol without any con-
gestion control or retransmission functionality. This makes
UDP an ideal protocol for transmitting audio-video data
which can tolerate few packet losses. Applications using
UDP have complete control over their sending rates and are
responsible for avoiding congestion and ensuring fairness
so that other flows are not starved. However, UDP is a con-
nectionless protocol, and very often firewalls block UDP
traffic for security reasons. In that case, applications revert
to TCP and sometimes use HTTP on TCP to penetrate fire-
walls. A study shows TCP is used by 66% to 72% of all
streaming sessions [7].

Realizing the need for an unreliable, congestion con-
trolled and light weight transport protocol for a wide range
of multimedia applications, a new transport protocol named
Datagram Congestion Control Protocol (DCCP) [11] is
being designed by the Internet Engineering Task Force
(IETF). Applications using DCCP have an option to use
TCP-friendly Rate Control Protocol (TFRC) [8] which pro-
vides a smoother transmission rate than TCP by slowly re-
acting to congestion. While there have been a significant
amount of research on TFRC, most of these studies focus
on TFRC’s throughput variation and friendliness with TCP
flows.

In this paper, we focus on the end-to-end latency of
streaming applications when TFRC is used as a rate con-

trol algorithm. Latency is a denominating factor for a wide
range of streaming performance measures. A low latency
delivery of packets ensures that few packets are queued and
allows fast switching of streaming rates when needed and
makes streaming more interactive. When a sender’s trans-
mission rate is greater than the streamed bit rate, media
frames are queued and delayed at the transmit/send buffer.
High quality larger media frames can block low quality
smaller media frames in the send buffer introducing delay
in achieving the new media rate.

The focus of our paper is to tune TFRC for low latency
streaming. Through our experiments, we have found that
a significant portion of protocol latency comes from the
send buffer. This latency can be eliminated by making sim-
ple modifications of the send buffer dynamically without
changing the protocol itself. We call our modifications Dy-
namic Buffer Active Tuning (DBAT) approach. Previously
this sort of dynamic adaptation of send buffer size has been
proposed [15] for TCP to increase throughput of file trans-
mission applications. Unlike their work, we examine the in-
teraction of streaming applications with TFRC and focuses
on reducing the latency for streaming applications.

This paper is organized as follows. Some related work
is outlined in Section 2. In Section 3, the problem is illus-
trated and proposed modification is described in Section 4.
Section 5 presents the performance results with our modifi-
cation. Since this is an on-going project, Section 6 describes
the current status and future work of the project.

2 Related Work

A send buffer adaptation approach has been proposed for
increasing TCP throughput by Semke et al. [15]. They
tune the size of the send buffer between 2*congestion win-
dow (CWND) and 4*CWND to increase the throughput of
a high bandwidth-delay connection that is otherwise lim-
ited by the send buffer size. Hurley et al. [9] provides a
low delay Alternative Best-Effort (ABE) differentiated ser-
vice that trades high throughput for low latency. The ABE
service drops packets in the network if the packets are de-
layed beyond their delay constraint. But this approach re-
quires modifications in the core routers like most Differ-
entiated Services based proposals [3]. Luo et al. presents
the result of a measurement study based on large stream-
ing media work load taken from thousands of broadband
home users and business users hosted by a major ISP [7].
It shows that the median time to change to a lower bit
rate stream was around 4 seconds and proposes coordinated
streaming, a mechanism that coordinates client side buffer-
ing and rate adaptaton to reduce the stream switching de-
lay. Doug [13] proposes TCP-RC, a receiver side modifi-
cation of TCP which achieves low latency at the expense
of reduced reliabily. Wang et al. [16] develop an analyti-

cal model for TCP based streaming and concludes that TCP
generally provides a good streaming performance when the
achievable TCP throughput is roughly twice the media bit
rate with only a few seconds of start up delay. Krasic et
al. [12] presents a framework for adaptive video streaming
based on priority dropping. Chung et al. [5] develop a trans-
port level protocol named Media Transport Protocol (MTP)
which removes the burden of in order delivery from TCP.
In an experimental study, Balan et al. [2] report that voice
quality is not improved when TFRC is used for rate control.
Goel et al. [6] propose a dynamic send buffer tuning ap-
proach where the buffer size is kept slightly larger than the
TCP congestion window for TCP-based media streaming.
Unlike their work, we focus on media streaming on TFRC.

3 Effect of Send Buffer Size on
Streaming Performance

To handle the rate mismatch between the application’s send-
ing rate and TCP/TFRC’s transmission rate, a transmis-
sion/send buffer is used. This buffer can introduce signif-
icant latency into the media stream if not tuned properly.
For example, a 64KB buffer introduces a 1600ms one way
delay into a 320 kbps video stream. This delay is a major
obstacle for fast stream switch over as the new packets have
to wait for all the old packets to be drained out. Whenever
the stream switches to a lower bit rate, this situation aggra-
vates as the queue is normally full before switching occurs.
If there is congestion between the sender and receiver, the
send buffer queue will continue to grow as the transport pro-
tocol is unable to send packets as quickly as it is accumulat-
ing packets from the streaming application. Flushing the
send buffer before stream switching will underutilize the
available bandwidth because the transport protocol has to
wait for packets to be generated by the application.

The benefit of low-latency streaming is that the sending
side has more control and flexibility over what data should
be sent and when it can be sent. Most delay sensitive appli-
cations use a non-blocking socket so that the sending pro-
cess is not blocked if the socket buffer is full. We assume
that whenever the send buffer is full, the sending function
returns and drops the packet. Thus a fixed fize send buffer
may cause unwanted packet loss, if not tuned properly.

4 Dynamic Buffer Active Tuning

We believe that a fixed size send buffer is not optimum for
low delay smooth streaming playback. It has to adapt with
different states of the transport protocol. Both TCP and
TFRC have to go through a slow start phase at least once
in the lifetime of the connection. During slow start, the

application keeps sending packets to the send buffer at a
constant rate but the transport protocol starts emptying the
buffer at a slow rate. For this reason, a comparatively large
send buffer is required at the beginning, but when the con-
nection reaches steady stage, we need a smaller buffer.

Our Dynamic Buffer Active Tuning (DBAT) approach
automatically adjusts the send buffer size based on the state
of the transport protocol. At the beginning of a stream-
ing session, the streaming server uses packet pair based
bandwidth probing techniques to select the highest stream-
ing bit rate which is likely to be supported by the network.
DBAT uses the RTT information gathered during this prob-
ing stage to calculate the buffering required during the slow
start phase. During slow start, packets are queued at the
send buffer until transmission rate equals the application’s
sending rate. Since slow start doubles the transmission rate
every RTT, with the RTT information, we can calculate
the time needed by slow start to achieve the streamed bit
rate. By multiplying this time with the streamed packet-
rate, DBAT computes the minimum buffer size required
during the slow start phase.

Once slow start phase is over, DBAT tries to keep the
queue size close to a threshold which is set equal to the
available bandwidth-delay product. DBAT assumes that the
probed bandwidth is a good approximation of the available
bandwidth and uses this to compute the queue threshold.
Delay is calculated based on the wighted RTT measure-
ment.

DBAT is an active buffer tuning technique in the sense
that it provides feedback to the application about its sta-
tus. The application can infer incipient congestion when
the send buffer queue size increases. In order to filter out
transient response to queue size change, we use a weighted
average on the queue size and provide feedback to the appli-
cation only when the queue size crosses the queue thresh-
old. Based on this feedback, the application may decide on
the streamed bit rate much earlier.

5 Simulation Results

5.1 Experimental Setup

We use network simulator, ns-2 [14] as our preferred net-
work simulator. Currently the standard ns-2 distribution
does not have any streaming module included. However
we found a streaming module named Goddard [5] which
is suitable for our experiments. We integrated Goddard in
ns-2 and conducted experiments using it. Goddard is based
on the behaviors of Real Networks and Windows Stream-
ing media [4]. During streaming, the Goddard server re-
selects the streaming bit rate in response to packet loss or
rebuffering events that occur when the client playout buffer
get emptied. Goddard server supports multiple levels of en-

coded media that are configured by giving the frame size
and the frame rate for each scale level.

Goddard does not support TFRC. We modified the code
so that we can use TFRC as a transport protocol for stream-
ing. We found that the TFRC implementation in ns-2 does
not have any real data transmission capability which is re-
quired by the streaming module. We changed the inter-
face of this implementation so that data can be transmit-
ted with each packet enabling Goddard client and server to
exchange media frames. By default, the ns-2 implementa-
tion of TFRC has a infinite send buffer. We introduced a
send buffer with adjustable size into TFRC. As for TCP, we
modified the full-TCP implementation of ns-2 to support
adjustable send buffer size. To the best of our knowledge,
we are the first to conduct experiments involving the inter-
action of streaming application with TFRC in ns-2.

We use the dumb-bell topology for the simulation. The
bottleneck link is 500 kbps with 200 ms delay. The various
streaming rates supported are 80, 120, 240, 320 and 640
kbps. In all cases, one streaming flow is competing with
a FTP flow. The FTP application starts at 0.1 second and
stops at 100 seconds. The streaming flow starts at 30 sec-
onds and stops at 120 seconds. If the streaming throughput
matches the streamed bit rate most of the time, the user will
experience smooth uninterrupted playout.

5.2 Experiment with Fixed Size Send Buffer

In this section, we illustrate how a fixed size send buffer
affects streaming flows. We used fixed size drop tail send
buffers. When the buffer gets full, the arriving packets are
dropped until there is an empty space in the buffer. The
server is unable to detect that packets are being dropped
from the transport protocol’s send buffer until the client
sends reports back to the sever about the missing packets.
Server reacts by changing the streamed bit rate if the packet
loss crosses a predetermined threshold.

Figure 1 and 2 show that with TCP there is a significant
difference between streamed bit rate and achieved stream-
ing throughput. At the beginning, the server sends packet
pairs to determine the available bandwidth and selects 320
kbps bit rate streaming. The achieved streaming throughput
increases gradually from 1 kbps. By the time the throughput
increases beyond 200 kbps, the streamed bit rate switches
back to 120. Lack of feedback from the transport proto-
col keeps the server uninformed about the dropped packets
from the send buffer queue until it gets a report from the
client about the dropped packets. This is what happens in
real streaming servers when they use TCP. Figure 1 uses
a 64KB send buffer which is not flushed when the stream
switches to a lower sending rate, and as a consequence, the
streaming throughput does not reflect the streamed bit rate
while the queue gets drained.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120

T
hr

ou
gp

ut
(k

bp
s)

Time in seconds

FTP flow
streaming (TCP)
streamed bit-rate

Figure 1: Streaming (TCP) with 64KB send Buffer

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120

T
hr

ou
gp

ut
(k

bp
s)

Time in seconds

FTP flow
streaming (TCP)
streamed bit-rate

Figure 2: Streaming (TCP) with 16KB send buffer

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120

T
hr

ou
gp

ut
(k

bp
s)

Time in seconds

FTP flow
streaming(TFRC)
streamed bit-rate

Figure 3: Streaming (TFRC) with 64KB send buffer

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120

T
hr

ou
gp

ut
(k

bp
s)

Time in seconds

FTP flow
streaming(TFRC)
streamed bit-rate

Figure 4: Streaming (TFRC) with 16KB send buffer

Figure 2 illustrates TCP with 16KB buffer size. The
graph shows that even though the streaming throughput
matches the streamed bit rate more closely, the throughput
is very low. The lower send buffer size underutilizes the
link. This is because TCP has to wait for packets to be gen-
erated by the application as soon as it has finished transmit-
ting all the previously queued packets from the send buffer.
While TCP is waiting for packets to send, other FTP flows
sharing the bottleneck link grab the unused bandwidth, and
the streaming flow loses its share.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 30 40 50 60 70 80 90 100 110 120 130

La
te

nc
y

in
 s

ec
on

ds

Time in seconds

TFRC

Figure 5: Streaming (TFRC) latency with 64KB send buffer

 0

 2

 4

 6

 8

 10

 12

 14

 30 40 50 60 70 80 90 100 110 120 130

La
te

nc
y

in
 s

ec
on

ds

Time in seconds

TFRC

Figure 6: Streaming (TFRC) latency with 16KB send buffer

Figures 3 and 4 show streaming throughput when TFRC
is used as a transport protocol. For TFRC based streaming,
we have much better performance as the streaming through-
put closely matches the streamed bit rate. TFRC provides a
smoother sending rate than TCP by reacting to packet loss
much more slowly. This gives the server time to adjust the
streamed rate.

We calculate one way latency by subtracting the time
when a media frame is sent by the server to the transport
layer from the time when the media frame is delivered to
the client side media player. So the latency includes the
protocol latency as well as the link latency which is fixed
at 200ms. Figures 5 and 6 present the one way latency for
TFRC based streaming. Much like TCP, changing the send
buffer size from 64KB to 16KB reduces the latency from 8
to 3 seconds. Just after the TCP/TFRC’s slow start phase,
media frames are dropped due to send buffer overflow, and
the latency graph shows discontinuity around 40 seconds.

5.3 Experiment with Dynamic Buffer Active
Tuning (DBAT) Send Buffer

When using our DBAT algorithm, the performance im-
provement for TCP and TFRC based streaming flows are
shown in Figures 7, 8, 9 and 10. For TCP based stream-
ing, there is just one stream switch over. This is because
the streamed bit rate is chosen appropriately by the server
which gets feedback from the transport protocol about con-
gestion based upon send queue dynamics. The bandwidth
is shared equally between the FTP flow and the streaming
flow. Although there is a small variation in the streaming
throughput, this small fluctuation is offset by the client side
playout buffer.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120

T
hr

ou
gp

ut
(k

bp
s)

Time in seconds

FTP flow
streaming (TCP)
streamed bit-rate

Figure 7: Streaming (TCP) with DBAT

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120

T
hr

ou
gp

ut
(k

bp
s)

Time in seconds

FTP flow
streaming(TFRC)
streamed bit-rate

Figure 8: Streaming (TFRC) with DBAT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 30 40 50 60 70 80 90 100 110 120 130

La
te

nc
y

in
 s

ec
on

ds

Time in seconds

TCP

Figure 9: Streaming (TCP) latency with DBAT

Figure 8 illustrates TFRC based streaming throughput
when DBAT is used. Although the throughput is smooth,

 0

 2

 4

 6

 8

 10

 12

 14

 30 40 50 60 70 80 90 100 110 120 130

La
te

nc
y

in
 s

ec
on

ds

Time in seconds

TFRC

Figure 10: Streaming (TFRC) latency with DBAT

it is not much different from the one without DBAT. The
difference is that with DBAT the throughput reaches the
streamed bit rate much faster than the one without DBAT,
and this is crucial for good quality streaming. In both cases.
the latency is improved as shown in Figure 9 and 10. For
DBAT enabled TCP and TFRC, the maximum one way la-
tency is 4 seconds and 2 seconds, respectively. The key
thing is that DBAT reduces latency significantly without
sacrificing throughput.

6 Future Work

Using Dynamic Buffer Active Tuning (DBAT) send buffer
sizing improves the performance of streaming by reducing
latency. It keeps the send buffer size at an optimum level
and provides congestion feedback to the application. We
conclude that although TFRC provides smoother through-
put, there is room for improving TFRC when it competes
with a TCP flow. This is because TFRC is less aggressive
than TCP. Our on going work is improving TFRC’s achiev-
able throughput based on packet priority and more explicit
feedback from the receiver. We are working also on a strat-
egy which will couple the client side media playout buffer
with the sender-side transport buffer. If the sender is in-
formed about the receiver side buffer status, it can make
better decisions in advance before the buffer runs out.

References

[1] Streaming Media Growth and Content Category
Share: 2006-2010. Technical report, Accustream Re-
search. http://www.accustreamresearch.com/.

[2] Vlad Balan, Lars Eggert, Saverio Niccolini, and Mar-
cus Brunner. An experimental evaluation of voice
quality over the Datagram Congestion Control Proto-
col. In IEEE Infocom, pages 2009–2017, Anchorage,
Alaska, USA, May 2007.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,

and W. Weiss. An Architecture for Differentiated Ser-
vices. RFC 2475, December 1998, 1998.

[4] Jae Chung and Mark Claypool. Empirical evaluation
of the congestion responsiveness of Real Player video
streams. Kluwer Multimedia Tools and Applications,
31(2):171 – 193, 2006.

[5] Jae Chung, Mark Claypool, and Robert Kinicki. MTP:
A streaming-friendly transport protocol. Technical re-
port, Oregon Graduate Institute School of Science and
Engineering, 2002.

[6] Ashvin Goel, Charles Krasic, Kang Li, and Jonathon
Walpole. Supporting low latency TCP-based media
streams. In Tenth International Workshop on Qual-
ity of Service (IWQoS), pages 193– 203, Miami, May
2002.

[7] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao,
Oliver Spatscheck, and Xiaodong Zhang. Delving into
internet streaming media delivery: A quality and re-
source utilization perspective. In Proceedings of the
6th ACM SIGCOMM on Internet measurement, pages
217–230, Rio de Janeiro, Brazil, October 2006.

[8] Mark Handley, Sally Floyd, Jitendra Padhye, and Jo-
erg C. Widmer. TCP Friendly Rate Control (TFRC):
Protocol specification. Internet Engineering Task
Force, RFC 3448, January 2003.

[9] P. Hurley, J.Y. Le Boudec, P. Thiran, and M. Kara.
ABE: providing a low-delay service within best effort.
Network, IEEE, 15(3):60–69, 2001.

[10] V. Jacobson. Congestion avoidance and control. In
ACM SIGCOMM, pages 314–329, Stanford, Califor-
nia, United States., 1988.

[11] Eddie Kohler, Mark Handley, and Sally Floyd. De-
signing DCCP: congestion control without reliability.
In ACM SIGCOMM 2006, pages 27–38, Pisa, Italy,
2006.

[12] Charles Krasic, Jonathan Walpole, and Wu-chi Feng.
Quality-adaptive media streaming by priority drop. In
13th International Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video
(NOSSDAV), pages 112 – 121, June 2003.

[13] D. McCreary, K. Li, S.A. Watterson, D.K. Lowenthal,
et al. TCP-RC: a receiver-centered TCP protocol for
delay-sensitive applications. In 12th SPIE Multime-
dia Computing and Networking Conference (MMCN),
pages 126–130, January 2005.

[14] ns-2. The Network Simulator ns-2.
http://www.isi.edu/nsnam/ns/.

[15] J. Semke, J. Mahdavi, and M. Mathis. Automatic
TCP buffer tuning. In Proceedings of the ACM SIG-
COMM’98 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cation, pages 315–323, 1998.

[16] Bing Wang, Jim Kurose, Prashant Shenoy, and Don
Towsley. Streaming via TCP: An analytic perfor-
mance study. In Proceedings of the 12th annual ACM
international conference on Multimedia, pages 908–
915, New York City, NY, October 2004.

