
View-based Consistency and Its Implementation

Z. Huang†, C. Sun‡, S. Cranefield†, and M. Purvis†
†Departments of Computer & Information Science

University of Otago, Dunedin, New Zealand

‡School of Computing & Information Technology
Griffith University, Brisbane, Australia

Email:hzy@cs.otago.ac.nz, scz@cit.gu.edu.au,
{mpurvis, scranefield}@infoscience.otago.ac.nz

Abstract

This paper proposes a novel View-based Consistency model

for Distributed Shared Memory. A view is a set of ordinary

data objects that a processor has the right to access in
a data-race-free program. The View-based Consistency

model only requires that the data objects of a view are
updated before a processor accesses them. Compared

with other memory consistency models, the View-based
Consistency model can achieve data selection without user

annotation and can reduce much false-sharing effect. This

model has been implemented based on TreadMarks. Per-
formance results have shown that for all our applications

the View-based Consistency model outperforms the Lazy
Release Consistency model.

Key Words: Distributed Shared Memory, Sequential Con-
sistency, False Sharing

1 Introduction

Distributed Shared Memory (DSM) has become an ac-
tive area of research in parallel and distributed computing
[16, 8, 4, 3, 1, 19]. A DSM system can provide application
programmers the illusion of shared memory on top of mes-
sage passing distributed systems, which facilitates the task
of parallel programming in distributed systems. The goal
of our research is to make DSM systems more convenient
to use and more efficient to implement [10, 19]. In this pa-
per, we propose a View-based Consistency (VC) model for
DSM, which is a significant step toward our goal.

The consistency model of a DSM system specifies the or-
dering constraints on concurrent memory accesses by multi-
ple processors, and hence has fundamental impact on DSM
systems’ programming convenience and implementation ef-
ficiency [17]. The Sequential Consistency (SC) model [15]
has been recognized as the most natural and user-friendly
DSM consistency model. The SC model guarantees that the

result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the

operations of each individual processor appear in this se-
quence in the order specified by its own program [15]. This
means that in a SC-based DSM system, memory accesses
from all processors may be interleaved in any sequential or-
der that is consistent with each processor’s memory access
order, and the memory access orders observed by all pro-
cessors are the same. One way to strictly implement the
SC model is to ensure all memory updates be totally or-
dered and memory updates performed at one processor be
immediately propagated to other processors. This imple-
mentation is correct but it suffers from serious performance
problems [17].

In practice, not all parallel applications require each pro-
cessor to see all memory updates made by other processors,
let alone to see them in order. Many parallel applications
regulate their accesses to shared data by synchronization,
so not all valid inter-leavings of their memory accesses are
relevant to their real executions. Therefore, it is not neces-
sary for the DSM system to force a processor to propagate
all its updates to every other processor (with a copy of the
shared data) at every memory update time. Under certain
conditions, the DSM system can select the time, the proces-

sor, and the data for making shared memory updates public
to improve the performance while still appearing to be se-
quentially consistent[19]. Under these circumstances, the
following three basic techniques can be used: Time selec-
tion: Updates on a shared data object by one processor are
made visible to the public only at the time when the data ob-
ject is to be read by other processors. Processor selection:
Updates on a shared data object are only propagated from
one processor to the processor that is the next in sequence
to access the shared data object. Data selection: Processors
only propagate to each other those shared data objects that
are really shared among them.

To improve the performance of the strict SC model, a
number of weaker SC models have been proposed [6, 9, 14,
2, 13], which perform one or more of the above three se-
lection techniques while appearing to be sequentially con-
sistent. However, none of them can achieve data selection
without programmer annotation [19]. We argued previously
[19] that a consistency model should not impose any extra
burden on programmers, such as annotation of lock-data as-
sociation in the Entry Consistency (EC) [2] and scope-data
association in the Scope Consistency (ScC) [13] models.
In this paper, we propose a View-based Consistency (VC)

model which, besides time selection and processor selec-
tion, can transparently achieve data selection.

The rest of this paper is organized as follows. Section 2
describes in detail the VC model and its properties. In Sec-
tion 3 the VC model is compared with some related models,
e.g. EC and ScC, in terms of user annotation, data selec-
tion, interface for programmers, and false-sharing effect in
Section 3. Issues regarding an implementation of VC are
discussed and presented in Section 4. Performance results
are presented and evaluated in Section 5. Finally, the ma-
jor contributions of this paper and areas for future work are
summarized in Section 6.

2 View-based Consistency

During the execution of a DSM parallel program, multiple
processors communicate with each other through the shared
memory. In shared memory some data objects are read-

only, and some read/write. To prevent data races (where
multiple processors read and write the same data object
concurrently), a parallel program has to guarantee that a
processor has gained exclusive access before accessing a
read/write data object. This kind of parallel programs is

called data race free.

We distinguish synchronization data objects from ordi-
nary data objects in shared memory, just like many other
DSM systems. Synchronization data objects are those
which are explicitly used to enforce exclusive access to
other data objects, such as locks and barriers1. The rest of
the data objects in shared memory are called ordinary data
objects. Exclusive access to the synchronization data ob-
jects is guaranteed by system-provided primitives, such as
acquire, release, and barrier, while exclusive access to the
ordinary data objects has to be guaranteed by using those
system primitives. Like many Weak Sequential Consis-
tency models[11], sequential consistency for the synchro-
nization data objects is guaranteed by the system; how-
ever, sequential consistency for the ordinary data objects is
achieved conditionally, depending on the underlying con-
sistency model. Therefore, we only need to be concerned
with the consistency of the ordinary data objects.

A view is a set of ordinary data objects a processor has
the right to access in shared memory. We say a processor
has the right to access some data object if and only if it has
gained exclusive access to the data object or the data object
is read-only. At any time point of an execution, suppose
any two processors P1 and P2 have views V1 and V2 re-
spectively. Then V1 ∩ V2 must only contain read-only data
objects; otherwise a data race occurs. Fig. 1 shows a snap-
shot of views of processors in shared memory. The over-
lapped part of different views only contains read-only data
objects.

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

��

��

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���
���
���

���
���
���

P1 P2 P3

shared memory

read−only data

Figure 1: A snapshot of processors’ views

Many DSM systems require explicit calls to acquire, re-
lease and barrier in programs to achieve weak sequential
consistency. An execution of such a DSM program can be

1A barrier is a synchronization device that requires all processes to wait
for the last of them to arrive at the same synchronization point. It can be
implemented by acquire and release.

viewed as a sequence of barrier sessions shown in Fig. 2.
A barrier session begins with a barrier and ends with an-
other barrier. Inside a barrier session there is a sequence
of regions which are delimited by acquire, release and bar-
rier primitives. A critical region begins with an acquire and
ends with a release, while a non-critical region begins with
a release (the outermost one in nested critical regions) or
a barrier and ends with an acquire (the outermost one in
nested critical regions) or a barrier. A non-critical region
does not overlap with any critical region, but a critical re-
gion may overlap with another critical region due to the pos-
sibility of nested critical regions.

barrier session session
barrier

B
non−

critical
region

A
critical
region R

non−
critical
region

A region
critical

R B B

program order
B: barrier A: acquire R:release

Figure 2: A view of a program execution based on the con-
cept of region

In a DSM program, exclusive access to a data object can
only be gained in the following three ways:

1. implicit assignment by the programmer inside a barrier
session. Exclusive access is guaranteed by barriers.

2. explicit acquisition by calling the acquire primitive.
Exclusive access is guaranteed by the lock mechanism
of critical regions.

3. implicit acquisition by changing the status of data ob-
jects protected by critical regions. For example, exclu-
sive access to a task from a task queue is guaranteed by
removing the task from the lock-protected task queue.

Therefore, in an execution of a DSM program, only
when a processor calls synchronization primitives, such
as barrier, acquire, and release, does its view change, as
shown in Fig. 3. A processor’s view is constant inside a
critical region or a non-critical region. Only when a proces-
sor moves from one region to another, does it gain or lose
exclusive access to some data objects.

According to this observation, views can be classified
as Critical Region Views (CRVs) and Non-critical Region

Views (NRVs). A processor’s CRV is its view while it ex-
ecutes inside a critical region. A processor’s NRV is its
view while it executes inside a non-critical region. More
precisely, the following definitions are given for CRV and
NRV.

ji

i

objects in CRi

get exclusive
access to some data

objects in NCR

lose exclusive
access to some data
objects in CR , but
still hold exclusive
access to some data

i

j

objects in CRi

granting
exclusive access
to some data

objects in CRi

to some data

requesting
exclusive access

A R B B

A R R B B

P1

P2

NCRCR

CRA

B

B

NCR A R CR

NCR CR NCR

program order

B: barrier A: acquire R:release
CR: critical region NCR: non−critical region

Figure 3: Views and their transitions

Definition 1 Critical Region View (CRV)

A processor’s CRV comprises read-only data objects and
the data objects to which the processor has exclusive access
guaranteed by the current critical region and the current bar-
rier session.

Definition 2 Non-critical Region View (NRV)

A processor’s NRV comprises read-only data objects and
the data objects to which the processor has exclusive ac-
cess guaranteed by the status of critical-region-protected
data objects and the current barrier session.

Based on the definitions of CRV and NRV, we propose
a View-based Consistency (VC) model with the following
consistency conditions.

Definition 3 Conditions for View-based Consistency

• Before a processor Pi is allowed to enter a critical
region or a non-critical region, all previous write ac-
cesses to the ordinary data objects of the CRV or NRV
must be performed with respect to Pi according to their
order.

• The sequential consistency of synchronization data ob-
jects is guaranteed by the implementation of the sys-
tem primitives such as acquire, release, and barrier.

A write access to a memory location is said to be per-

formed with respect to processor Pi at a time point when

a subsequent read access to that location by Pi returns the
value set by the write access.

The VC model has the following properties:

• In the VC model, only when a processor moves from
one region to another region does its view change. A
processor’s view is constant within a region.

• In the VC model, when a processor changes to a new
region all the data objects of its new view must be up-
dated.

• The VC model guarantees the same execution result as
the Sequential Consistency model for a data-race-free
DSM program.

• The VC model can achieve time selection, processor
selection, and data selection. Data selection can be
achieved by updating only the data objects in the cur-
rent view of a processor.

3 Comparison of related models

Among the different consistency models, only ScC [13] and
EC [2] can achieve data selection. But the VC model is
different from them in the following aspects.

User annotation: VC requires no user annotation to
achieve data selection. EC requires the user to specify the
association between a synchronization data object s and the
shared data Ds, where s controls access to a critical re-
gion protecting Ds. This specification is essential for EC
to achieve data selection. If the specification is not correct,
EC can not achieve data selection correctly. ScC also re-
quires the user to specify scope annotation for some pro-
grams, though it can detect scope automatically for some
other programs.

Data selection: To selectively update data objects, VC
uses a concept of view, while EC uses guarded shared data
Ds and ScC scope. However, the view in VC is different
from Ds in EC and the scope in ScC. Both Ds and scope
are static and fixed with a particular synchronization data
object or a critical region. Even if some data objects are
not accessed by a processor in a critical region, they are up-
dated simply because they are associated with the lock or
the critical region. However, the view in VC is dynamic
and may be different from region to region. Even for the
regions protected by the same lock, the views in them are
different and depend on the data objects actually accessed
by the processor in the regions. Because of this difference,

VC is more selective than EC and ScC in terms of data se-
lection. For example, suppose lock l is used to protect a set
of shared data objects S = {s1, ...sn}. Because it is com-
mon for a processor to access only some data objects in S

after it acquires lock l, we can assume the set of accessed
data objects is S′ ⊂ S. Then when the processor enters the
critical region, the Ds in EC and the scope in ScC are S,
while the view in VC is S ′. EC and ScC have to update all
data objects in S, while VC only updates data objects in S ′.

Interface for programmers: VC provides a simple and
clear interface for the programmer: if a program is data
race free, VC can guarantee the same execution result as
Sequential Consistency. But EC requires the programmer
to provide correct lock-data association. If the lock-data as-
sociation is not correct, EC does not guarantee the correct
execution of the program. Similarly, ScC does not guaran-
tee the same execution result as Sequential Consistency for
some data-race-free programs if explicit scope annotation is
not correctly provided by the programmer.

Apart from the above differences, VC has more potential
to reduce the effect of false sharing2 in page-based DSM.
It can reduce the false sharing effect in the following two
ways:

1. Restrict the propagation of invalidation notices. Only
the invalidation notices that are useful for updating the
data objects in a processor’s new view are propagated
to the processor;

2. Restrict the effective scope of invalidation notices.
Even though some invalidation notices have been prop-
agated to a processor, only the invalidation notices that
are useful for updating the data objects of the current
view of the processor are effective in the current region
of the processor.

We have shown examples in [12] to explain how VC can
reduce false-sharing effect in the above two ways in contrast
with LRC and ScC. In the following section, we discuss
some issues in the implementation of the VC model.

4 Implementation

There are two technical issues in the implementation of VC.
One is view detection, and the other is view transition. View

2False sharing occurs when one processor modifies a shared data object
that lies in the same memory consistency unit (e.g. a page) as another
shared data object lies, while another processor reads or writes the other
shared data object.

detection means that before a processor enters a new region
we should find out all the data objects in its new view. View
transition means that when a processor’s view changes we
should update all the data objects of its new view. Any im-
plementation of the VC model should guarantee that before
a processor enters a new region, view detection and view
transition are achieved correctly.

We have implemented the VC model in the framework
of TreadMarks [1], which is a page-based DSM system. In
our implementation of the VC model, we regard a page as
the basic unit of data objects. Thus a view in our implemen-
tation consists of pages.

4.1 View detection

View detection is implemented at run time. In view detec-
tion, if a page is not modified it is not necessary to record
it in a view, because it has no change and thus does not
need consistency maintenance. Therefore, only the modi-
fied pages are recorded in a view in view detection.

To detect modified pages in view detection, our imple-
mentation takes advantage of the following two existing
mechanisms needed by other schemes in the DSM system:

1. When a write access is performed on an invalidated
page, a page fault will occur. The page fault handler in
the DSM system can be extended to record the faulty
page’s identifier in the corresponding view, as well as
fetching an updated copy of the faulty page from an-
other processor.

2. When a write access is performed on a write-protected
page, a protection violation interrupt will occur. The
interrupt handler in the DSM system can be extended
to record the modified page’s identifier in the corre-
sponding view, as well as making a twin of the ac-
cessed page in the multiple-writer scheme or obtaining
the ownership of the accessed page in the single-writer
scheme [5].

Because the above two mechanisms have already been pro-
vided by the underlying DSM system, there is little extra
overhead for recording the identifiers of modified pages.
However, if a page is already writable before a new view
is entered, that page will not be detected and recorded in
the new view if it will be modified in the view. To detect all
modified pages of a view, we make all writable pages write-
protected (read-only) before a new view is entered. This is
the additional overhead required for view detection. From

our experimental results we know this additional overhead
is trivial.

The CRVs detected in our implementation are complete
and accurate since a processor entering a critical region has
exclusive access to those pages modified by other proces-
sors in the same critical region. Unfortunately, an NRV de-
tected in our implementation consists of all pages modified
by other processors in non-critical regions. That means a
processor entering a non-critical region may not have ex-
clusive access to some pages in its NRV. Thus a detected
NRV may be bigger than the real one. This inaccuracy only
affects the performance, not the correctness of our imple-
mentation.

4.2 View transition

Before a new view is entered view transition needs to be
done. View transition can be either based on the invalida-

tion protocol, which only invalidates those modified pages
in the new view, or based on the update protocol, which
only updates those modified pages in the new view. If the
invalidation protocol is used in view transition, the pages
that are not in the new view but are modified stay valid until
some later view transition needs to invalidate them.

The update protocol is suitable for VC, as is the invalida-
tion protocol for LRC, because VC has done data selection
through the use of views and thus the pages in the new view
are most likely to be accessed in the corresponding critical
region. Therefore updating them straightforwardly helps to
reduce the number of messages requesting updates and thus
is more efficient than the invalidation protocol. [19]

However, since the detected NRVs are not accurate we
adopt a hybrid protocol, which incorporates both the in-
validation protocol and the update protocol, in our imple-
mentation. The hybrid protocol is similar to the SLEUP
protocol[19]. It uses the update protocol for the modified
pages in CRVs, but the invalidation protocol for the modi-
fied pages in NRVs.

5 Experimental results

In this section, we present an experimental evaluation of the
LRC model and our implementation of the VC model. Both
of them are implemented in TreadMarks [1]. The experi-
mental platform consists of 8 PCs running Linux Red Hat
6.1, which are connected by a 10 Mbps Ethernet. Each of

the PCs has a 500 MHz processor and 128 Mbytes memory.
The page size in the virtual memory is 4 KB.

TreadMarks has adopted a multiple-writer scheme [5],
which was proposed to minimize the effect of false shar-
ing. In the multiple-writer scheme, initially a page is write-
protected. When a write-protected page is first updated by
a processor, a twin of the page is created and stored in the
system space. When the updates on the page are needed by
another processor, a comparison of the twin and the current
version of the page is done to create a diff, which can then
be used to update copies of the page in other processors.
Thus in the multiple-writer scheme the page diff, instead of
the whole page, is used to renew an old copy.

Since our implementation of VC is based on Tread-
Marks, we have to adapt to the multiple-writer scheme at the
price of false-sharing effect. There are two kinds of false-
sharing effect: write/read and write/write. Write/read false-
sharing effect occurs when one processor modifies a shared
data object that lies in the same memory consistency unit
(e.g. a page) as another shared data object, while another
processor reads the other shared data object. Write/write
false-sharing effect occurs when one processor modifies a
shared data object that lies in the same memory consistency
unit (e.g. a page) as another shared data object, while an-
other processor writes to the other shared data object. In our
implementation we can completely remove the write/read
false-sharing effect. However, to work with the multiple-
writer scheme properly, our implementation has to tolerate
the write/write false-sharing effect. Thus the write/write
false-sharing effect has not been removed in our current im-
plementation.

We used four applications in the experiment: TSP, QS,

BT and Water. TSP, QS, and Water are provided by the
TreadMarks research group. All the programs are written
in the C language. TSP is the Travelling Salesperson Prob-
lem. QS is a recursive sorting algorithm. BT is an algorithm
that creates a fixed-depth binary tree. Water is a molecular
dynamics simulation. These applications are representative
of both numerical computing (Water and QS), and symbolic
computing(TSP and BT). Table 1 gives the performance re-
sults.

In the table, VC i is the VC implementation based on
the invalidation protocol, VC h is the VC implementation
based on the hybrid protocol. Time is the total running time
of an application program, Diff Req is the number of mes-
sages for diff requests, RPF is the reduction in page faults

APP Model Time Diff Req RPF RFS Mesgs

(Sec.)

LRC 2.54 962 - - 2763

TSP VC i 2.56 960 - 0 2756

VC h 1.65 25 937 0 911

LRC 7.09 3267 - - 12209

QS VC i 7.15 3330 - 0 12375

VC h 4.59 791 1044 0 5301

LRC 28.26 11437 - - 79468

BT VC i 27.59 11347 - 792 79426

VC h 25.73 7429 3441 776 69342

LRC 19.86 12428 - - 96600

Wa- VC i 19.91 12423 - 3 96600

ter VC h 19.09 11891 511 3 95478

Table 1: Performance Statistics for applications on eight
processors

due to the use of the hybrid protocol in the VC model, RFS

is the reduction in page faults due to the reduction of the
false-sharing effect in the VC model, and Mesgs is the total
number of messages.

VC h vs. LRC
VC outperforms LRC for all four applications tested. From
Table 1 we know VC h has improved the performance sig-
nificantly compared with LRC (35% for TSP , 35.3% for
QS, 9% for BT , and 3.9% for Water). The number of
diff request messages in VC h is significantly less than that
in LRC (97.4% less in TSP , 75.8% less in QS, 35% less
in BT , and 4.3% less in Water). The hybrid protocol has
contributed very much to the reduction of diff request mes-
sages. Consequently the number of total messages in VC h
has been greatly reduced compared with LRC.

VC i vs. LRC
The implementation of VC i aims at investigating the ex-
tra overhead of maintaining the views in VC and the false-
sharing effect of application programs.

From Table 1 we know some applications, such as TSP

and QS, do not benefit from the implementation of VC i
because there is no false-sharing effect in TSP and no re-
duction in false sharing in QS due to the inaccuracy of NRV
in the implementation. However, the performance of VC i
is not significantly worse than that of LRC (0.7% worse for
TSP , and 0.8% worse for QS). This demonstrates that
the overhead of view maintenance (including view detection

and view transition) is only a trivial portion of the expense
of the whole system.

As we mentioned early in this section, our current imple-
mentation of VC removes any write/read false-sharing ef-
fect, but does not remove the write/write false-sharing effect
as a result of compromise with the multiple-writer scheme
in TreadMarks. Thus the RFS showed in Table 1 is only
the reduced number of page faults due to the reduction of
the write/read false-sharing effect. Among the four applica-
tions, only BT and Water have the write/read false-sharing
effect, and 6% of page faults in BT are due to the write/read
false-sharing effect. We have collected the total number of
page faults that are due to false-sharing effect inside critical
regions, and the results are shown in Table 2.

APP TPF RFS TFS

TSP 1002 0 58

QS 3084 0 2

BT 13963 792 4347

Water 12046 3 6

Table 2: Number of page faults due to the false-sharing ef-
fect

In Table 2, TPF is the total number of page faults; RFS

is the number of page faults that are due to the write/read
false-sharing effect inside critical regions; TFS is the num-
ber of page faults that are due to all false-sharing effects (in-
cluding write/read and write/write false-sharing) inside crit-
ical regions. From Table 2, we know the reduced write/read
false-sharing effect in our current implementation of VC is
only a small portion of the total false-sharing effect (0% for
TSP , 0% for QS, 18.2% for BT , and 50% for Water).
Further research will be needed to remove the write/write
false-sharing effect in VC implementation.

Except for BT , however, the performance of most ap-
plications is less affected by the false-sharing effect inside
the critical regions, considering the ratio of the total number
of page faults that are due to the false-sharing effect inside
critical regions to the total number of page faults (5.8% for
TSP , 0.06% for QS, 31% for BT , and 0.05% for Water).
Thus there is not much potential for VC to further improve
their performance if the false-sharing effect inside the non-
critical regions is not considered. Detecting the accurate
NRVs is an important task to remove the false-sharing ef-
fect inside the non-critical regions and to further improve
the performance of the applications.

6 Conclusion

In this paper we have proposed a novel View-based Consis-

tency (VC) model for DSM and discussed important issues
for its implementation. Compared with other DSM consis-
tency models, this model can achieve data selection without
user annotation and reduce more of false sharing effects. Its
only consistency requirement is that all the data objects in
a processor’s new view must be updated during view transi-
tion. The further relaxation on consistency requirement en-
ables VC to have more room for optimization in the imple-
mentation of DSM. The VC model can guarantee the same
execution result as the Sequential Consistency model for
data-race-free programs. Performance results have shown
that for all our applications the VC model outperforms the
LRC model. We have also demonstrated that the extra over-
head of view maintenance is trivial.

The VC model appears to be the appropriate framework
for future DSM implementation, since VC has the potential
performance advantage to achieve the maximum relaxation
of constraints on update propagation and execution for data-
race-free programs. It is generic enough for the previous
models to be considered as limited versions of the VC im-
plementation. As a consequence it would appear that future
implementation of DSM would best be devoted to optimiz-
ing data selection in the VC model.

Further research should be carried out under the frame-
work of the VC model. (1) Accurate detection of NRVs.
Run-time and compile-time techniques need to be devel-
oped for the detection. These techniques are different from
previous work on compile-time optimization, e.g.[7], or
run-time optimization, e.g.[18], which work at the level of
update propagation protocol in LRC, instead of the level
of a consistency model. (2) Efficient view representation.
The current implementation uses a page as the basic unit
of a view. A page is too coarse for the representation of
views and may result in propagation of useless updates on
the same page. (3) Reduction of the write/write false shar-
ing. A new update representation scheme, rather than the
single-writer and the multiple-writer schemes, is needed to
reduce the write/write false sharing.

Acknowledgments

The authors would like to thank Kin Cheung and Malcolm
Fraser for their assistance in the implementation of the VC

model. The research is partially supported by an Otago Re-
search Grant.

References

[1] C. Amza, et al.: “TreadMarks: Shared memory com-
puting on networks of workstations”, IEEE Computer,
29(2), pp.18-28, February 1996.

[2] B.N. Bershad, et al.: “Shared Memory Parallel Pro-
gramming with Entry Consistency for Distributed
Memory Multiprocessors”, CMU Technical Report
CMU-CS-91-170, September 1991.

[3] B.N. Bershad, et al.: “The Midway Distributed Shared
Memory System”, In Proc. of IEEE COMPCON Con-

ference, pp.528-537, 1993.

[4] J.B. Carter, J.K. Bennett, and W. Zwaenepoel: “Imple-
mentation and performance of Munin”, In Proceed-

ings of the 13th ACM Symposium on Operating Sys-
tems Principles, pp.152-164, Oct. 1991.

[5] J.B. Carter, J.K. Bennett, and W. Zwaenepoel: “Tech-
niques for reducing consistency-related information in
distributed shared memory systems,” ACM Transac-
tions on Computer Systems, 13(3), pp.205-243, Au-
gust 1995.

[6] M. Dubois, C. Scheurich, and F.A. Briggs: “Memory
access buffering in multiprocessors”, In Proc. of the
13th Annual International Symposium on Computer

Architecture, pp.434-442, June 1986.

[7] S. Dwarkadas, et al.: “An Integrated Compile-
Time/Run-Time Software Distributed Shared Memory
System”, In Proc. of the Seventh Symposium on Ar-

chitectural Support for Programming Languages and

Operating Systems, Oct. 1996.

[8] B. Fleisch and R.H. Katz: “Mirage: A coherent dis-
tributed shared memory design”, In Proc. of the 12th

ACM Symposium on Operating Systems Principles,
pp.211-223, Dec. 1989.

[9] K. Gharachorloo, D. Lenoski, J. Laudon: “Mem-
ory consistency and event ordering in scalable shared
memory multiprocessors”, In Proc. of the 17th Annual
International Symposium on Computer Architecture,

pp.15-26, May 1990.

[10] Z. Huang, W.-J. Lei, C. Sun, and A. Sattar: “Heuristic
Diff Acquiring in Lazy Release Consistency Model”,
in Proc. of 1997 Asian Computing Science Confer-

ence, Lecture Notes in Computer Science 1345, pp.98-
109, Springer Verlag, 1997.

[11] Z. Huang, C. Sun, S. Cranefield, and M. Purvis:
“Overview of weak sequential consistency models for
distributed shared memory”, in Proc. of the 10th Inter-

national Conference on Computing and Information,
November 2000.

[12] Z. Huang, C. Sun, M. Purvis, and S. Cranefield:
“View-based Consistency and False Sharing Effect in
Distributed Shared Memory”, Operating Systems Re-
view, 35(2), April 2001.

[13] L. Iftode, J.P. Singh and K. Li: “Scope Consistency: A
Bridge between Release Consistency and Entry Con-
sistency”, In Proc. of the 8th Annual ACM Symposium

on Parallel Algorithms and Architectures, 1996.

[14] P. Keleher: “Lazy Release Consistency for Distributed
Shared Memory”, Ph.D. Thesis, Dept of Computer
Science, Rice Univ., 1995.

[15] L. Lamport: “How to make a multiprocessor com-
puter that correctly executes multiprocess programs”,
IEEE Transactions on Computers, 28(9), pp.690-691,
September 1979.

[16] K. Li, P. Hudak: “Memory Coherence in Shared Vir-
tual Memory Systems”, ACM Trans. on Computer

Systems, Vol. 7, pp.321-359, Nov. 1989.

[17] D. Mosberger: “Memory consistency models”, Oper-
ating Systems Review, 17(1), pp.18-26, Jan. 1993.

[18] C.B. Seidel, R. Bianchini, and C.L. Amorim: “The
Affinity Entry Consistency Protocol”, In Proc. of the

1997 International Conference on Parallel Process-
ing, August 1997.

[19] C. Sun, Z. Huang, W.-J. Lei, and A. Sattar: “Towards
Transparent Selective Sequential Consistency in Dis-
tributed Shared Memory Systems”, In Proc. of the

18th IEEE International Conference on Distributed
Computing Systems, pp.572-581, Amsterdam, May
1998.

