View-Oriented Update Protocol with Integrated Diff for
View-based Consistency

Z. Huang, M. Purvisf, P. Wersteih
TDepartment of Computer Science

iDepartment of Information Science
University of Otago, Dunedin, New Zealand
Email:hzy@cs.otago.ac.nz, mpurvis@infoscience.otagoz, werstein@cs.otago.ac.nz

Abstract significant cost for applications running on distributed-sy
tems, which is also true for DSM programs. Since consis-
This paper proposes a View-Oriented Update Protocol with tency maintenance for DSM deals with the consistency of
Integrated Diff for efficient implementation of a View-base the whole shared memory space [5], there are many unnec-
Consistency model which supports a novel View-Orientedessary messages passed in DSM programs compared with
Parallel Programming style based on Distributed Shared MPI programs. In addition, the programmer cannot help
Memory. View-Oriented Parallel Programming requires the reduce those messages when designing the DSM programs.
programmer to divide the shared data into views accord- Traditionally DSM programs are required to be data race
ing to the nature of the parallel algorithm and its mem- free (DRF) using system provided synchronization primi-
ory access pattern. The advantage of this programmingtives such aock acquire lock release andbarrier. If a
Style is that it offers the pOtential for the Underlying Dis- DSM program has no data race through using those primi_
tributed Shared Memory system to optimize consistencyives, it is called groperly-labelledorogram [3]. However,
maintenance. The View-Oriented Update Protocol with In- properly-labelled DRF programs do not facilitate optimiza
tegrated Diff is proposed to exploit this performance peten tion such as data selection [10] in consistency maintenance
tial. This protOCOI is ComparEd with a traditional diff-bed in DSM. Since DRF oriented programming focuses on mu-
protocol and an existing home-based protocol. Experimen-tya| exclusion and synchronization rather than data alloca
tal results demonstrate the performance of the proposedijon, there is no opportunity in those programs for expert
protocol is significantly better than the diff-based pratbc programmers to interact with the DSM system in terms of
and the home-based protocol. performance tuning. As a matter of fact, it is the optimal
data allocation which can improve the performance of DSM
applications.

To help DSM optimize its performance as well as to al-
L . low programmers to participate in performance tuning of
A Distributed Shared Memory (DSM) system can provide pgy\ programs, we have proposed a novel View Oriented
application programmers the illusion of shared memory on pg el Programming (VOPP) style [6] for DSM appli-
top of message-passing distributed systems, which facili- .5ti0ns. The VOPP programming style allows program-
tates the task of parallel programming in distributed sys- ars to participate in performance optimization of pro-

tems. However, programs using DSM are normally not g5 ms through wise partitioning of shared data objects into
as efficient as those using the Message Passing Interfacgie\ys. The focus of VOPP is shifted more towards shared
(MPI)[11, 4]. The reason is that message passing is part Ofga¢a (j.e. data partitioning and allocation), rather tham s

the design of a MPI program and the programmer can finely o, onization and mutual exclusion. A View-based Consis-
tune the performance of the program by reducing the UnNNeC+ency (VC) model [6] is proposed to maintain the consis-

essary message passing. As we know, message passing is@ncy of views in VOPP programs. From our experience the

VOPP programs are normally more efficient than the tradi-

tional DSM programs [7]. However, compared with MPI
Regular paper submitted to DSM05. Please contact Zhiyi ~ programs VOPP programs are still slower. To make VOPP
Huang for correspondence: email hzy@cs.otago.ac.nz; fax programs run as efficiently as their MPI counterparts we
+64-3-4798529. propose a View-Oriented Update Protocol with Integrated

1 Introduction

Diff (VOUPID) in this paper, which can optimally imple- acquire Rviews can be nested. A processor can read multi-
ment the consistency maintenance of the VC model. ple views at the same time by using nestedjuire Rview

The rest of this paper is organised as follows. Section 2 primitives. For example, suppose a processor needs to read
describes the VOPP programming style and the VC model.arraysA and B, and puts their additions into arrady, and
Section 3 presents the View-Oriented Update Protocol with A, B andC' are defined as different views numbered 1, 2,
Integrated Diff (VOUPID) for efficient consistency mainte- and 3 respectively, a VOPP program can be coded as below.
nance of the VC model. Section 4 compares the VOUPID
protocol with related work. Section 5 presents and evatuate acqui re_vi ew(3) ;
the performance of the VOUPID protocol based on severalacqui r e_Rvi ew(2) ;
applications. Finally, our future work is suggested in Sec- acqui re_Rvi ew(1) ;
tion 6. for(i=0; i<a_size; i++)

qi] = Ali] + Bli];
. . rel ease_Rview(1);

2 View-Oriented Parallel Program- el ease Rview(2):

ming (VOPP) rel ease_view(3);

A viewis a concept used to maintain consistency in dis- 10 compare and contrast traditional DSM programs and

tributed shared memory. A view consists of data objects that VOPP programs, the following parallel sum problem is
require consistency maintenance as a whole body. ViewsuS€d, whichis very typicalin parallel programming. In this
are defined implicitly by the programmer in his/her mind probllem, every processor has its local array and needs to
or algorithm, but are explicitly indicated through primi- add ittoa shared array. In each outer loop, every processor
tives such amcquireviewandreleaseview. Acquireview ~ adds an arranged portion of its local array into the corre-
means acquiring (maybe exclusive) access to a view, whileSPonding location of the shared array in par_allel with othe_r
releaseview means having finished the access. By using Processors. The processors are synchronized by a barrier
these primitives, the focus of the programming is on access-after each outer loop. Finally the master processor (proces

ing shared objects (views) rather than synchronization andSOr V) calculates the sum of the shared array, which equals
mutual exclusion. to the sum of all local arrays. The traditional DSM program

The programmer should divide the shared data into 'S Similar to the code below.
views according to the nature of the parallel algorithm and

its memory access pattern. Views must not overlap eachf ©F (i = 0; i < nprocs; i++) {

other. The views are decided in the programmer’s mind or s=(i Fproc_l _d) Ynprocs*a_si ze/ nprocs,
algorithm. Once defined initially, they must be kept un- e=((i Fproc_l d) %npr ocs+1)*a_size/ nprocs;
changed throughout the whole program. The view primi- for (J=s;] < e] +.+) .
tives must be used when a view is accessed, no matter if ISZ?E 8;’_—"” ray[j] += local array[j];

there is any data race or not in the parallel program.
Before a processor accesses any data objects in a view, }

acquireview must be called; after it finishes the access to . _

the view, releaseview must be called. For example, sup- ' FCpr oc_| d==0) {, , .

pose multiple processors share a variablehich alone is for (i =a_size-1; i >0; i--)

defined as a view (which is numbered as view 1). Every sum += shared_array[i];

time a processor accesses the variable, it needs to inctemen }

itby one. The code in VOPP is as below. For the same problem, VOPP style offers the following

acquire_view(l); code pattern.
A=A+ 1;] . .
rel ease_view(1); for (i = 0; i < nprocs; i++) {
s=(i +proc_i d) %procs*a_si ze/ nprocs;
For the situation of read-only access, the view primi- e=((i +proc_i d) %procs+1)*a_si ze/ nprocs;
tives acquire Rviewand releaseRvieware provided. Ac-
quire_Rviewrequests read-only access to a view. acquire_view (i + proc_id)%procs);
A processor can only write one view at atime in VOPP for (j=s;j < e;j++)
(in order that the DSM system will be able to detect modifi- shared_array[j] += local _array[j];
cations for only one view), but it can read multiple views at rel ease_view((i + proc_i d) %procs);
the same time. That igcquireviews cannot be nested but }

barrier(0);

i f(proc_id==0){
for(j=0;]j<nprocs;j++)acquire_Rviewj);
for (i a size-1; i >0; i--)

sum += shared_array[i];
for(j=0;j<nprocs;j++)rel ease_Rviewj);

In the VOPP program, the shared array with sizeize
is partitioned intonprocs views, wherenprocs is the num-
ber of processors. Similar to the traditional DSM pro-
gram, every processor adds an arranged portion of its lo-
cal array into the right view of the shared array in parallel
with other processors in every outer loop. The primitives
acquire_view andrelease_view are added into the code
to get access to the views. Finally proces8aeads all
nprocs Views withacquire_Rview andrelease_Rview to
calculate the sum.

Inserting the view primitives is not an extra burden to
the programmer; on the contrary, they make the program-

rel ease_view0);

When a processor dequeues a new task, the VOPP code
is shown below.V and T are local variables, and is a
structure with a pointer element pointing to a shared task.

acquire_view(0);
dequeue(task_queue,
rel ease_view0);

V = T.view.d;
acquire_view(V);
consume_t ask(T);
rel ease_viewV);

T

In a VOPP program, there is no global view that in-
cludes every data object in the shared memory. Barriers in
VOPP are only used for synchronisation but have nothing
to do with consistency maintenance for DSM. In traditional
DSM programs, every processor can have a global view of
the shared memory after each barrier. To keep this con-
venience, we provide a primitiv@ergeviewsin VOPP to
merge views into a global view, so the programmer will be
able to redefine the views afterergeviews The price paid

mer feel more clear about which part of the shared array 3¢or this convenience. of course. is the DSM efficiency

processor needs to access. However, these primitives gen-
erate messages in DSM systems. The more primitives are

In summary, VOPP has the following features:

used, the more messages have to be passed in DSM systems.e The VOPP style allows programmers to participate in

By comparing the above two programs, it seems the VOPP
program will generate more messages. But if we look more
closely at the two programs, we can find in the VOPP pro-
gram the barrier is called outside the oufer loop and

the number of barriers is effectively reduced. The reason
is that the barrier is originally used for mutual exclusi@a b
tween loops but is not needed in the VOPP program because
view primitives automatically achieve the exclusive asces
to views. This advantage enables programmers to optimise
VOPP programs by reducing barriers, since barriers tend to
be more time-consuming than the view primitives, which
was demonstrated in our experimental results [6, 7]

To demonstrate more about the features of VOPP, we
provide the following VOPP program for a task-queue
based parallel algorithm. In the algorithm, every proces-
sor can access the task queue to either enqueue a new task
or dequeue a task. The task queue is defined as(iewd
each task is defined as a separate view. Before a processor
enqueues a new task, it generates a new view for the new
task with acquire_view(—1) which will return a system-

performance optimization of programs through wise
partitioning of shared objects (i.e. data allocation) into
views and wise use of view primitives. The focus of
VOPP is shifted more towards shared data (e.g. data
partitioning and allocation), rather than synchroniza-
tion and mutual exclusion.

e VOPP does not place any extra burden on program-

mers since the partitioning of shared objects is an im-
plicit task in parallel programming. VOPP just makes
the task explicit, which renders parallel programming
less error-prone in handling shared data.

VOPP offers a large potential for efficient implemen-
tations of DSM systems. When a view primitive such
asacquire_view is called, only the data objects asso-
ciated with the related view need to be updated. An
optimal consistency maintenance protocol is going to
be proposed in this paper based on this simplicity.

To maintain the consistency of views in VOPP pro-

chosen view identifier. Below is the VOPP code.

V = acquire_view-1);
create task(T);

rel ease_vi ew(V);
T.viewid =V,
acquire_view(0);
enqueue(task_queue,

m;

grams, a View-based Consistency (VC) model has been pro-
posed [6, 5]. In the VC model, a view is updated when a
processor callacquireviewor acquire Rviewto access the
view. Since a processor will modify only one view between
acquireviewandreleaseview, which should be guaranteed
by the programmer, we are certain that the data objects
modified betweemcquireviewandreleaseviewbelong to

that view and thus we only update those data objects when

the view is accessed later. More formally, the consistency of the page and makes the page both readable and writable.
condition for the VC model is stated below. When the modifications on the page are later needed by an-
other processor, the current version of the page is compared
Definition 1 Consistency Condition for View-based Con- with the twin in order to creatediff, which can then be used
sistency to update the copies of the page in other processors. Based
on the diff scheme, multiple processors can write on differ-
ent parts of the same page concurrently and consistency of
the page can be maintained by applying the corresponding

e Before a processoP; is allowed to access a view
by callingacquireviewor acquire Rview all previous

write accesses to data objects of the view niesper- diffs.
formed with respect t@&; according to their causal or- Our VC model can be implemented based on the above
der.

diff-based scheme. When a view is released, diffs are cre-
ated for all pages modified between theyuire_view and

the release_view. When a view is acquired, pages are
invalidated according to the consistency information. (i.e
write notices as in TreadMarks). When an invalidated page
is accessed later, a page fault occurs. The page fault han-

barriers are only used for synchronisation and have nothingd!€r Will request the corresponding diffs in order to make

to do with consistency maintenance for DSM. When a view the page up-to-date.

is acquired, consistency maintenance is restricted to the However, there is a diff accumulation problem in the
view. In this way the amount of data traffic for DSM con- above diff-based protocol. Along the course of execution
sistency in the cluster network can be reduced and the vcof @ DSM program, diffs can be accumulating and occupy-
model can be implemented optimally as what will be pro- ing lots of memory space and CPU time. In order to update
posed in Section 3. The Sequential Consistency (SC) [9] of@ copy of a page in a processor, numerous diffs generated by
VOPP programs can also be guaranteed by the VC model Other processors have to be passed to the processor and then

which has been provedin [6]. applied to the copy of the page. To explain the problem,
Figure 1 shows the execution of a typical VOPP program.

Create diff D1 on page x

A write access to a data object is saidhe performed
with respect tgprocessolP; at a time point when a subse-
guent read access to that objectByreturns the value set
by the write access.

From the above condition we know, in VOPP programs

3 View-Oriented Update Protocol

ARWXR() Recevediff D1

with Integrated Diff P1 ST
/ \ P C;[eate diff D2 on page x
In View-based Consistency, when a view is acquired we ~
only update the view with previous modifications made on > / Receive diffs D1 and D2

AR WXRE@) -

the view. A version number is maintained for each view saP2 -~

that when a view is acquired by a processor we can decide /\y Create diff D3 on page :
if the view in the processor should be updated or not ac- 1

cording to the version of the view of the processor and the Y Create diff D4
latest version of the view. The last processor that releasd® e ARIE) WIR()... - BN
a view should always have a copy of the latest view. If a = /7 /f‘
view is modified by a processor the latest version humber o \

of the view is increased by one. In this section we pro- Receive diffs D1, D2and D3, 3 WOOR(2)

pose a View-Oriented Update Protocol with Integrated DiffP4
(VOUPID) to efficiently update a view of a processor when
the version number of the view of the processor is smaller
than the latest version number of the view.

program order

w: write r:read A:acquire_view R:release_view

: page fault resulting in requesting diffs of x and

. . updating x at the processor
3.1 Diff accumulating problem

In TreadMarks [1] a multiple writer protocol [2] is used to Figure 1: Diff accumulation problem

implement the DSM consistency of the LRC model [8]. In In Figure 1 each processor accesses pag@eturn by

the protocol diffs are used to represent modifications on a acquiring view 2. Every time the view is released by a pro-

page. Initially a page is write-protected. When a write- cessor, a new diff is created for the modifications done by
protected page is first modified by a processor, a page faulthe processor. Every time the view is acquired, consistency
occurs. Then the page fault handler creates and stawée a information (such as write notices) is piggy-backed on the

view granting message and pagehich is previously mod- the bytes at the overlapped part are copied from the corre-
ified by other processors is invalidated. When pageac- sponding part in< Lq, O, byte, byte, ... >. For example,
cessed, a page fault occurs which results in requesting thesuppose there are two items §8,8,1,2,3,4,5,6,7,8 >
diffs of pagex. When the diffs are received by a processor, and < §8,12,9,10,11,12,13,14,15,16 > from D; and
they are applied to the copy of pagen the processor. A D, respectively. After the merging, the new item «s
processor has to get all diffs of pagepreviously created 12,8,1,2,3,4,9,10,11,12,13,14,15,16 >.

by other processors in order to make the page up-to-date. In The diff merging algorithm is described as below. In the
Figure 1 when the page fault on pag®ccursP, receives algorithm D, and D, (whereD- is more recently created)
the diffs created by?;, P, andP; and applies them one by are the input, ands is the output.l;, I and 3 are vari-
one to the page. If the number of processors increases in thables for the items in the diffs, whefe is initialized as the
figure, the number of diffs created for pagevill be accu- first item in D; and I, is initialized as the first item iDs.
mulating proportionally. If there are more pages modified The algorithm repeatedly executes the following stepd unti
in the figure, the diff accumulating problem will be more all items inD; and D, are processed.

severe and the number of page faults will increase propor- .
pag prop 1. Ifthe range of; does not overlap with the range bf,

tionally.

To make it even worse, if a page is widely modified a diff then
of the page is almost the same size as the page. When the o if the offset of I; is smaller than the offset df,
amount of diffs is large, more messages have to be used to copy I; into D3 and assign the next item from
transfer them since the maximum transfer unit of messages Dy to I, goto step 1.

is limited. Therefore, when the diffs are accumulating the
number of messages and the amount of data traffic in the
cluster network increase significantly. Many applications
have demonstrated this problem in our experiments.

o if the offset of I; is larger than the offset af;,
copy I, into D3 and assign the next item from
D to I, go to step 1.

2. If the range ofI; does overlap with the range
of I, the two items are merged intd;. Sup-

3.2 Diff merging algorlthm posel; =< Li,01,byte,byte,... > and I, =<

The idea of the VOUPID protocol is to integrate all the diffs La, O, byte, byte, ... >.

of each page into a single diff and then update the page with o If Oy + Ly is greater than or equal ©; + L1,
the single mtegrated diff. The diffs of a page are merged assign/s to I, and assign the next item frof;
based on the diff format. to I;. Go to step 1.

A diff is compressed using run-length encoding. It con-
sists of independent items each of which represents a range
of continuous bytes in a page. Each item has the format
<length, offset, byte, byte;x., wherelengthis the number

of bytes in the rangaffsettells from where to apply the fol- After the above algorithm is finished); and D, are
lowing bytes in the page. When a diff is applied to a page, merged intaDs. If a page is updated by applyings to it,

the bytes are simply copied to overwrite the correspondingthe result is the same as applyifiy and D, sequentially
bytes in the page. to the page.

According to the above diff format, we propose a diff ~ The advantages of diff merging are obvious. First, diff
merging algorithm to merge two diffs into one. Suppose merging can reduce the number of diffs as well as the
there are two diffsD; and D, for the same page, where amount of memory space used for diffs since most diffs of
D, is more recently created. The diff merging algorithm the same page overlap each other and the merged diff only
can merge them into a new diffs. In the algorithm an keeps the most up-to-date diffs. Second, less CPU time is
item (range of continuous bytes) is removed sequentially consumed by diff applying. The CPU time for diff applying
from each ofD; and D,. The two items are compared and is proportional to the total size of the applied diffs.
merged together if their byte ranges overlap each other. As-
sume the ranges of two items L, O1, byte, byte, ... >
and< Lo, O, byte, byte, ... > (from D; and D, respec- 3.3 The VOUPID protocol
tively) overlap each other. To merge the two items together, Using the diff merging algorithm, the VOUPID protocol
anew item< Lg, O3, byte, byte, ... > is created, wher&; maintains a single integrated diff for each page of a view.
is the minimum ofO,; andO,, L3 is L + Lo minus the Since the VOPP style requires that writable views must not
length of the overlapped part, the bytes are copied accord-be acquired in a nested manner, it is guaranteed that modifi-
ingly from the two items for the non-overlapped parts, but cations on different views are not mixed during execution of

o If Oy + Ly is smaller tharO; + L;, assign/s to
I; and assign the next item frof, to 7. Go to
step 1.

any VOPP-style programs. Also processors modify a view along with the single diffs from the diff list of the view;
one after another in a synchronized way. Therefore, it is otherwise leave this task to the view request handler
possible to maintain a single integrated diff for each pdge o which processes view requests at the background.
a view and then to update the view with those single diffs in
the implementation of the VC model. Note that a page may ~ Figure 2 shows an example explaining how VOUPID
belong to multiple views because of false sharing, in which Works.
case the page will have a single diff for each involved view. i Create diff D1 of page x and merge
Since views are non-overlapping, the diffs of the same page < (with the present single diff
for different views are irrelevant. , . . :

The VOUPID protocol for the optimal implementation of P1 - AR WIR(2) . Recelve the single dI Of PAGE X

’

the VC model is described as below. According to the con- ' Create diff D2 of page x and merge
dition of View-based Consistency, VOUPID only updates /\% _with the present single diff_____
the pages invplved in the view W_hen a view _is acquired. AQ2) r(x) W(X)Ré)

Pages (of a view) that were previously modified are veryp2 «omiem i g Lo
likely to be accessed after the view is acquired. Thus, in- ifvirt?f‘ttﬁedgezggsﬁﬁg%’a%“d mert
stead of invalidating pages, VOUPID piggy-backs the sin- B Y T T
gle diffs of those pages on the view granting message anfieceive the single diff of page v

eagerly updates the pages by applying the diffs. In thiswa§3 =" "*'\;;;;;"A(Z)'r(x) SWOORE)
VOUPID reduces the number of messages and avoids page -/

faults resulting from invalidation of pages. When a diff of ic_reate diff D4 of page x and mer‘gg», i T

a page is created at view releasing time, the diff is merged ~ :With the present single diff ! A@ T WIRE)

with the present single diff of the page to form the new sinP4
gle integrated diff of the page.

More specifically, the following tasks are done in
VOUPID whenacquire_view oOr acquire_Ruview is called.

program order
w: write r:read A:acquire_view R:release_view

e Send out the message of view request to the view man- Figure 2: The VOUPID protocol in action

ager and wait for the view granting message. The program in Figure 2 is the same as the one in Fig-
h . , . ived. the oi ure 1. In Figure 2 every time view 2 is released, a new diff
* When view granting message Is received, the piggy- s created and merged into the present single diff of page
backed diffs are applled tp the corresponding pages o, Every time the view is acquired, the single diff of page
update the pages in the view. x is piggy-backed on the view granting message and then

o In case ofacquire_Rview, if a page has a twin due to @PPlied to the page. Since pages already updated after
being previously modified, when the diff of the page is the view is acquwed_, there is no page fault for requesting
applied to the page it has to be applied to the twin as diffs when the page is accessed. In this way, the number of

well, in order to correctly acquire the modifications of Messages and the amount of diffs are significantly reduced
the page later atelease_view for a writable view. in VOUPID, especially when the number of processors and

the number of pages involved in a view is large.

e Make write-protected all pages with no twin so that In summary, compared with the original diff scheme
any page to be modified can be detected and its twin VOUPID has reduced the diff requests and the amount of
can be created. diffs. The extra overhead is diff integration, but it is nor-

mally faster than page fault handling, especially when the

Whenrelease_view or release_Ruview is called the fol- ranges of the diffs are overlapping.

lowing tasks are done in VOUPID.

e In case ofrelease_view, create a diff for each page .)
that is modified during the current access of the view. 4 ~Comparison with the home-based

e In case ofrelease view, for each modified page prOtOCO|

merge the newly created diff and the present single diff
into a new single integrated diff, which should be put The home-based protocol [12] allocates a processor (home)
into the diff list of the view. for each page. The home processor of a page keeps an up-
to-date copy of the page (home page). Every time a page is
o If there is a view requester waiting for accessing the modified, its diff is created and sent to the home of the page
view, send to the requester the view granting messagein order to update the home page. When a processor needs

to update its copy of a page, it requests the home page fromthe same. Also the home-based protocol requests a whole
the home of the page. page from the home once a page needs to be updated, while
The home-based protocol can avoid diff accumulating V_O'?JPID only needs a single diff to update a page. Since a
problem by integrating diffs of a page into the home page. diffis normall;_/ smaller than a page and would not be larger
For those applications with diff accumulation, the home- than a page in the_ worst case, the amoun_t of data trans-
based protocol is significantly better than the original dif [€/"€d in VOUPID is smaller. Compared with the home-
scheme. However, compared with VOUPID, it incurs more P@sed protocol, the extra overhead for VOUPID is again
messages for requesting home pages. Figure 3 gives an e)g_lff integration. Overall, VOUPII;) is more efﬁgem than
ample to explain how the home-based protocol works in ourthe home-based protocol, especially when a view involves

VC model. more pages.
py A@WWRQ)
/\ / \ ;‘ 5 Experimental evaluation
AQ) W(X)E(Z) In this section, we present our experimental results of sev-
el N 0 A A0 R 1 e | eral applications running on the following three DSM im-
A plementationsV Cy, VC, andV Cy oy .
e V(C, is our implementation of VC based on the diff-
P3 o ARYIO) WOOR(2) based protocol which uses multiple diffs to represent
modifications of a page.
e V ()}, is our implementation of VC based on the home-
PA e AT) WR(2) based protocol.

program ordel .))
e VCyv oy is our implementation of VC based on the

VOUPID protocol.

w: write r:read A:acquire_view R:release_view

: page fault resulting in requesting the home page of x All tests are carried out on a cluster of 32 PCs running
---=: send the created diff to the home of page x Linux 2.4, which are connected by a N-way 100 Mbps Eth-
ernet switch. Each of the PCs has a 350 MHz processor

and 192 Mbytes of memory. The page size of the virtual
,)) ,) memory is 4 KB.
. In Figure 3, every time view 2 is released a diff of page The applications used in our tests include Integer Sort
is created and_sent to the home of fche page (the hom_e S a1s), Gauss, Successive Over-Relaxation (SOR), Binary
sumed to be?; in _the flgur_e). Every time v_|evv_2 isacquired, 100 (BT), and Neural network (NNJS ranks an unsorted
the consistency information of the VIEWS p|gg_y-backeq ON sequence ofV keys. The rank of a key in a sequence is
the view granting message. The_ co_nS|stenc_y mformathn 'Sthe index value that the key would have if the sequence
generqted according FO the version m_forrpanoln of the view. of keys were sorted. All the keys are integers in the range
_In the figure, the conS|stency|_nformat|on invalidates page [0, Byna], and the method used is bucket sort. The mem-
in P, P; andP;. When pager is accessed by any of those ory access pattern is very similar to the pattern of our sum
processors, a page fault occurs which brings the home pag%xample in Section 2Gaussimplements the Gauss Elim-
of 2 to the processor. ination algorithm in parallel. Multiple processors proges
By comparing Figure 3 with Figure 2, we can see a matrix following the Gaussian Elimination stepSOR
the home-based protocol incurs more messages than theses a simple iterative relaxation algorithm. The input is a
VOUPID protocol. Each page fault incurs two messages in two-dimensional grid. During each iteration, every matrix
the home-based protocol. In addition, each modified pageelement is updated to a function of the values of neighbor-
incurs two messages for updating the home page. On theng elementsBT generates a fixed-depth binary tree. In the
other hand, the page faults are reduced in VOUPID by pre-algorithm, multiple processors get unexpanded nodes from
sending the single diffs and the diff requests are reduceda task queue. If a processor finds an unexpanded node, it
accordingly. For example, if view 2 involves two pages, the expands the node and creates new unexpanded nodes which
number of messages will increase by 12 in Figure 3 (in eachare put into the task queue. The algorithm terminates when
of P», P; and P, there will be two extra messages for the all nodes in the fixed-depth binary tree are expandén.
extra page fault and two extra messages for the extra homerains a back-propagation neural network in parallel using
updating), while in Figure 2 the number of messages staystraining data set. After each epoch, the errors of the weight

Figure 3: The home-based protocol in action

are gathered from each processor and the weights of the VCq VG VCvou
neural network are adjusted before the next epoch. The Time (Sec.) 16.6 48.5 11.7
training is repeated until the the neural network converges Data (MByte)| 27.4 200.3 24.7
Num. Msg | 232,574| 219,353| 171,238

5.1 Integer Sort (IS) Table 2: Statistics of Gauss on 32 processors
5.3 Successive Over-Relaxation (SOR)

The problem size dfSin our experiment IsT*° x 219, 40). SORprocesses a matrix with siz€00 x 4000 and the num-

Table 1 shows the statistics of IS running on 32 processors.par of iterations is 50 in our tests. Similar ®auss SOR
Ve, Ve Vivou does not have serious diff accumulation problem, and the
Time (Sec) | 158.2 56.6 3.6 shared data irSORbetween processors is smaller than a
Data (GByte)| 1.03 0.595 0.344 page. Therefore the diff-based protocol is more efficient
Num. Msg 627. 862 48'1 305 32'4 762 than the home-based protocol in this application. Table 3

shows data traffic in/C}, is nine times of that inCjy
and the number of messagesWid}, is significantly larger

Table 1: Statistics of IS on 32 processors than that inV’Cy. AgainVCy oy performs the best among
the three implementations in terms of time, data traffic, and
In the table,Time is the running time of the appll- number of messages.

cation; Data is the total amount of data transferred; and

Num.Msg is the total number of messagésC,; demon- VCqy | VCy, | VCyvou

strates serious diff accumulation problem in IS. From the Time (Sec.) | 7.18 | 7.93 5.61

statistics, we find the amount of data transferred/i@; Data (MByte)| 6.29 | 56.37 5.72

is about twice of that inl’C}, and three times of that in Num. Msg | 69,160| 81,043| 44,368

VCvou. Even though there is no diff accumulation prob-
lem inV C},, the amount of data transferreditC}, is larger
than that inV Cy op since a home page in the home-based
protocol is normally larger than a single integrated diff in - The apove three applications demonstrate that, if there
the VOUPID protocol. Table 1 shows the number of mes- js 4 serious diff accumulation problem in an application
sages and the amount of data transferred’fivou are the home-based protocol performs better than the diffdase
greatly reduced compared withC;; and are significantly rot0c0l; otherwise the diff-based protocol performsérett
less thari’ C},, which is consistent with our comparison be- qyever, the VOUPID protocol is superior to both the diff-
tween the diff-based protocol, the home-based protocdl, an paseq protocol and the home-based protocol, no matter if

the VOUPID protocol. Not surprisinglyy Cyor is about there is a diff accumulation problem or not.
seven times faster thaWiC,; and significantly faster than

V.

Table 3: Statistics of SOR on 32 processors

5.4 Binary Tree (BT)

BT generates a binary tree with a depth 9 in our tests. It
uses a task queue to keep all those unexpanded nodes. The
5.2 Gauss memory access pattern is very similar to the task queue ex-
ample described in Section 2. Each processor repeatedly
The matrix size ofGaussis 2048 x 2048 and the number acquires the task queue to get an unexpanded node. The
of iterations is 1024 in our tests. The diff accumulation number of times to access the task queue is not very sta-
problem is not serious itFauss. The shared data between ple and is different every time the application is run, but
processors is much smaller than a page, so using diffs tothe range for that number is very stable for any particular
represent modifications is more efficient than using pages.implementation. In Table 4Vum.Acquires, which is the
Table 2 shows/C}, transfers seven times more data than number of view primitives called in the application, is take
VCy4. Though the number of messagesliit’; is more from a typical execution of the application. From the table,
than that inV’ Cy, VCy is still three times faster thaviC,. we find the number of view primitives is significantly larger
VCyou is significantly distinguished among the three im- whenBT s running onl’ Cy o than when running o C,
plementations in terms of time, data traffic, and number of or V). The reason is thadt Cy oy is more efficient and
messages. the processors have more time to repeatedly check the task
gueue which may be empty. From the rolequireTime

in the table, we find the average time taken for view primi- also shown in Table 6. The performancdafy o is com-
tives inV Cy op is much smaller than that WC,; or VCy,. parable with that of the MPI version on up to 16 processors.
Therefore, even though the data traffic and the number ofOn more than 16 processors, the speeduplifrunning
messages are larger WC'y oy due to the large number of with VCy oy still keeps growing, though it is not as good
view primitives called during executio®,Cy oy performs as the MPI program. We will investigate the reason behind

significantly better thaty C; andV Cy,. the performance difference between the VOPP program and
the MPI program running on larger number of processors in
VCa VCn | VCvou the future.

Time (Sec.) 45.66 29.56 17.95

Data (MByte) 6.39 11.23 11.76)
Num. Msg 8850 | 11,545 | 83,743 6 Conclusions

Num. Acquires 1536 1800 28,214

Acquire Time (usec.) 711,630| 340,434| 8750 The VOUPID protocaol is very efficient for implementation

of the VC model. Compared with the diff-based protocol
and the home-based protocol, the VOUPID protocol is sig-
Table 4: Statistics of BT on 32 processors nificantly better in terms of performance. The amount of
data traffic and the number of messages are greatly reduced
in VOUPID, especially when there is a serious diff accu-
5.5 Neural Network (NN) mulation problem in the diff-based protocol. VOUPID is an
optimal protocol for supporting VOPP programs and makes
The size of the neural network INN is 9 x 40 x 1 and their performance comparable with MPI programs, though
the number of epochs taken for the training is 288\ is MPI programs may still perform better when the number
an application which has a very serious diff accumulation of processors is large. We will investigate the reasons be-
problem, especially when the number of processors is large hind the performance difference between VOPP programs
From Table 5 we find the data traffic IiC} is more than and MPI programs and will develop more efficient imple-
ten times of that il Cy oy andV C, is seven times slower ~ mentation techniques for the VC model. Our ultimate goal

thanV Cyop. V), performs much better tharCy, but is to make shared memory parallel programs as efficient as
takes twice the time a&€Cy oy . message-passing parallel programs on cluster computers.
VCd VCh VCVOU
Time (Sec.) | 302.89 | 83.74 | 42.64 Acknowledgments
Data (MByte) | 1420.6 | 436.6 122.3
Num. Msg | 343,658] 334,481 165,042 The authors would like to thank Mark Pethick who kindly

provided his neural network application.

Table 5: Statistics of NN on 32 processors

References
Table 6 presents the speedups Wf;, VC;, and

V Cvor with a varying number of processors. The table [1] Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu,

shows the speedups OfN are significantly improved by H., Rajamony, R., Yu, W., Zwaenepoel, W.: Tread-
VCvou. The speedup starts to dropWitC,; when the num- Marks: Shared memory computing on networks of
ber of processors is 16, and the speeduly @, starts to workstations. IEEE Computer 29 (1996) 18-28

drop when the number of processors is 24.
[2] Carter, J.B., Bennett, J.K., Zwaenepoel, W.: Tech-

2p [4p | 8p | 16p | 24-p | 32p nigues for reducing consistency-related information in
VvV, 1971 3791 6.18] 558 | 351 | 2.22 distributed shared memory systems. ACM Transac-
VO, 197 379 6.64| 901 | 8.73 | 7.81 tions on Computer Systems 13 (1995) 205-243
VCvou | 1.99] 3.97| 7.73| 13.43| 16.17| 16.95 [3] Gharachorloo, K., Lenoski, D., and Laudon, J.: Mem-
MPI | 1.78]3.64)| 7.17] 14.08] 20.22| 25.38 ory consistency and event ordering in scalable shared

memory multiprocessors. In: Proc. of the 17th Annual

Table 6: Speedup of NN oV Cy, VCy,, VCyou and MPI IrigeggatligngIGSymposium on Computer Architecture
To compare the performance of VOPP programs with () 15-26.

MPI programs, we run the equivalent MPI versionNifl [4] Gropp, W., Lusk, E., Skjellum, A.. A high-

on MPICH [4]. The speedups of the MPI versionNN is performance, portable implementation of the MPI

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

message passing interface standard. Parallel Comput-
ing 22 (1996) 789-828

Huang, Z., Sun, C., Purvis, M., Cranefield, S.: View-
based Consistency and its implementation. In: Proc.
of the First IEEE/ACM Symposium on Cluster Com-
puting and the Grid (2001) 74-81

Huang, Z., Purvis M., and Werstein P.: View-Oriented
Parallel Programming and View-based Consistency. to
appear In: Proc. of the Fifth International Conference
on Parallel and Distributed Computing, Applications
and Technologies (PDCAT04) (2004) Singapore.

Huang, Z., Purvis M., and Werstein P.: View-Oriented
Parallel Programming on Cluster Computers. submit-
ted to the 34th International Conference on Parallel
Processing (ICPPO05) (2005) Norway.

Keleher, P.: Lazy Release Consistency for distributed
shared memory. Ph.D. Thesis (Rice Univ) (1995)

Lamport, L.: How to make a multiprocessor computer
that correctly executes multiprocess programs. |IEEE
Transactions on Computers 28 (1979) 690-691

Sun, C., Huang, Z., Lei, W.-J., Sattar, A.: Towards

transparent selective sequential consistency in dis-
tributed shared memory systems. In: Proc. of the 18th
IEEE International Conference on Distributed Com-

puting Systems, Amsterdam (1998) 572-581

Werstein, P., Pethick, M., Huang, Z.: A Performance
Comparison of DSM, PVM, and MPI. In: Proc. of the
Fourth International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies
(PDCATO03), IEEE Press, (2003) 476-482

Zhou, Y., Iftode, L., Li, K.: Performance evaluation of
two home-based lazy release consistency protocols for
shared virtual memory systems. In Proc. of the Operat-
ing Systems Design and Implementation Symposium
(1996) 75-88

10

