
View-Oriented Update Protocol with Integrated Diff for
View-based Consistency

Z. Huang†, M. Purvis‡, P. Werstein†
†Department of Computer Science

‡Department of Information Science
University of Otago, Dunedin, New Zealand

Email:hzy@cs.otago.ac.nz, mpurvis@infoscience.otago.ac.nz, werstein@cs.otago.ac.nz

Abstract

This paper proposes a View-Oriented Update Protocol with
Integrated Diff for efficient implementation of a View-based
Consistency model which supports a novel View-Oriented
Parallel Programming style based on Distributed Shared
Memory. View-Oriented Parallel Programming requires the
programmer to divide the shared data into views accord-
ing to the nature of the parallel algorithm and its mem-
ory access pattern. The advantage of this programming
style is that it offers the potential for the underlying Dis-
tributed Shared Memory system to optimize consistency
maintenance. The View-Oriented Update Protocol with In-
tegrated Diff is proposed to exploit this performance poten-
tial. This protocol is compared with a traditional diff-based
protocol and an existing home-based protocol. Experimen-
tal results demonstrate the performance of the proposed
protocol is significantly better than the diff-based protocol
and the home-based protocol.

1 Introduction

A Distributed Shared Memory (DSM) system can provide
application programmers the illusion of shared memory on
top of message-passing distributed systems, which facili-
tates the task of parallel programming in distributed sys-
tems. However, programs using DSM are normally not
as efficient as those using the Message Passing Interface
(MPI) [11, 4]. The reason is that message passing is part of
the design of a MPI program and the programmer can finely
tune the performance of the program by reducing the unnec-
essary message passing. As we know, message passing is a

Regular paper submitted to DSM05. Please contact Zhiyi
Huang for correspondence: email hzy@cs.otago.ac.nz; fax
+64-3-4798529.

significant cost for applications running on distributed sys-
tems, which is also true for DSM programs. Since consis-
tency maintenance for DSM deals with the consistency of
the whole shared memory space [5], there are many unnec-
essary messages passed in DSM programs compared with
MPI programs. In addition, the programmer cannot help
reduce those messages when designing the DSM programs.

Traditionally DSM programs are required to be data race
free (DRF) using system provided synchronization primi-
tives such aslock acquire, lock release, andbarrier. If a
DSM program has no data race through using those primi-
tives, it is called aproperly-labelledprogram [3]. However,
properly-labelled DRF programs do not facilitate optimiza-
tion such as data selection [10] in consistency maintenance
in DSM. Since DRF oriented programming focuses on mu-
tual exclusion and synchronization rather than data alloca-
tion, there is no opportunity in those programs for expert
programmers to interact with the DSM system in terms of
performance tuning. As a matter of fact, it is the optimal
data allocation which can improve the performance of DSM
applications.

To help DSM optimize its performance as well as to al-
low programmers to participate in performance tuning of
DSM programs, we have proposed a novel View Oriented
Parallel Programming (VOPP) style [6] for DSM appli-
cations. The VOPP programming style allows program-
mers to participate in performance optimization of pro-
grams through wise partitioning of shared data objects into
views. The focus of VOPP is shifted more towards shared
data (i.e. data partitioning and allocation), rather than syn-
chronization and mutual exclusion. A View-based Consis-
tency (VC) model [6] is proposed to maintain the consis-
tency of views in VOPP programs. From our experience the
VOPP programs are normally more efficient than the tradi-
tional DSM programs [7]. However, compared with MPI
programs VOPP programs are still slower. To make VOPP
programs run as efficiently as their MPI counterparts we
propose a View-Oriented Update Protocol with Integrated

1

Diff (VOUPID) in this paper, which can optimally imple-
ment the consistency maintenance of the VC model.

The rest of this paper is organised as follows. Section 2
describes the VOPP programming style and the VC model.
Section 3 presents the View-Oriented Update Protocol with
Integrated Diff (VOUPID) for efficient consistency mainte-
nance of the VC model. Section 4 compares the VOUPID
protocol with related work. Section 5 presents and evaluates
the performance of the VOUPID protocol based on several
applications. Finally, our future work is suggested in Sec-
tion 6.

2 View-Oriented Parallel Program-
ming (VOPP)

A view is a concept used to maintain consistency in dis-
tributed shared memory. A view consists of data objects that
require consistency maintenance as a whole body. Views
are defined implicitly by the programmer in his/her mind
or algorithm, but are explicitly indicated through primi-
tives such asacquireviewandreleaseview. Acquireview
means acquiring (maybe exclusive) access to a view, while
releaseview means having finished the access. By using
these primitives, the focus of the programming is on access-
ing shared objects (views) rather than synchronization and
mutual exclusion.

The programmer should divide the shared data into
views according to the nature of the parallel algorithm and
its memory access pattern. Views must not overlap each
other. The views are decided in the programmer’s mind or
algorithm. Once defined initially, they must be kept un-
changed throughout the whole program. The view primi-
tives must be used when a view is accessed, no matter if
there is any data race or not in the parallel program.

Before a processor accesses any data objects in a view,
acquireview must be called; after it finishes the access to
the view,releaseview must be called. For example, sup-
pose multiple processors share a variableA which alone is
defined as a view (which is numbered as view 1). Every
time a processor accesses the variable, it needs to increment
it by one. The code in VOPP is as below.

acquire_view(1);
A = A + 1;
release_view(1);

For the situation of read-only access, the view primi-
tives acquireRviewand releaseRvieware provided.Ac-
quire Rviewrequests read-only access to a view.

A processor can only write one view at a time in VOPP
(in order that the DSM system will be able to detect modifi-
cations for only one view), but it can read multiple views at
the same time. That is,acquireviews cannot be nested but

acquireRviews can be nested. A processor can read multi-
ple views at the same time by using nestedacquireRview
primitives. For example, suppose a processor needs to read
arraysA andB, and puts their additions into arrayC, and
A, B andC are defined as different views numbered 1, 2,
and 3 respectively, a VOPP program can be coded as below.

acquire_view(3);
acquire_Rview(2);
acquire_Rview(1);
for(i=0; i<a_size; i++)

C[i] = A[i] + B[i];
release_Rview(1);
release_Rview(2);
release_view(3);

To compare and contrast traditional DSM programs and
VOPP programs, the following parallel sum problem is
used, which is very typical in parallel programming. In this
problem, every processor has its local array and needs to
add it to a shared array. In each outer loop, every processor
adds an arranged portion of its local array into the corre-
sponding location of the shared array in parallel with other
processors. The processors are synchronized by a barrier
after each outer loop. Finally the master processor (proces-
sor0) calculates the sum of the shared array, which equals
to the sum of all local arrays. The traditional DSM program
is similar to the code below.

for (i = 0; i < nprocs; i++) {
s=(i+proc_id)%nprocs*a_size/nprocs;
e=((i+proc_id)%nprocs+1)*a_size/nprocs;
for (j=s;j < e;j++)

shared_array[j] += local_array[j];
barrier(0);
}

if(proc_id==0){
for (i = a_size-1; i > 0; i--)

sum += shared_array[i];
}

For the same problem, VOPP style offers the following
code pattern.

for (i = 0; i < nprocs; i++) {
s=(i+proc_id)%nprocs*a_size/nprocs;
e=((i+proc_id)%nprocs+1)*a_size/nprocs;

acquire_view((i + proc_id)%nprocs);
for (j=s;j < e;j++)

shared_array[j] += local_array[j];
release_view((i + proc_id)%nprocs);
}

2

barrier(0);

if(proc_id==0){
for(j=0;j<nprocs;j++)acquire_Rview(j);
for (i = a_size-1; i > 0; i--)

sum += shared_array[i];
for(j=0;j<nprocs;j++)release_Rview(j);
}

In the VOPP program, the shared array with sizea size

is partitioned intonprocs views, wherenprocs is the num-
ber of processors. Similar to the traditional DSM pro-
gram, every processor adds an arranged portion of its lo-
cal array into the right view of the shared array in parallel
with other processors in every outer loop. The primitives
acquire view and release view are added into the code
to get access to the views. Finally processor0 reads all
nprocs views withacquire Rview andrelease Rview to
calculate the sum.

Inserting the view primitives is not an extra burden to
the programmer; on the contrary, they make the program-
mer feel more clear about which part of the shared array a
processor needs to access. However, these primitives gen-
erate messages in DSM systems. The more primitives are
used, the more messages have to be passed in DSM systems.
By comparing the above two programs, it seems the VOPP
program will generate more messages. But if we look more
closely at the two programs, we can find in the VOPP pro-
gram the barrier is called outside the outerfor loop and
the number of barriers is effectively reduced. The reason
is that the barrier is originally used for mutual exclusion be-
tween loops but is not needed in the VOPP program because
view primitives automatically achieve the exclusive access
to views. This advantage enables programmers to optimise
VOPP programs by reducing barriers, since barriers tend to
be more time-consuming than the view primitives, which
was demonstrated in our experimental results [6, 7]

To demonstrate more about the features of VOPP, we
provide the following VOPP program for a task-queue
based parallel algorithm. In the algorithm, every proces-
sor can access the task queue to either enqueue a new task
or dequeue a task. The task queue is defined as view0, and
each task is defined as a separate view. Before a processor
enqueues a new task, it generates a new view for the new
task with acquire view(−1) which will return a system-
chosen view identifier. Below is the VOPP code.

V = acquire_view(-1);
create_task(T);
release_view(V);
T.view_id = V;
acquire_view(0);
enqueue(task_queue, T);

release_view(0);

When a processor dequeues a new task, the VOPP code
is shown below.V andT are local variables, andT is a
structure with a pointer element pointing to a shared task.

acquire_view(0);
dequeue(task_queue, T);
release_view(0);
V = T.view_id;
acquire_view(V);
consume_task(T);
release_view(V);

In a VOPP program, there is no global view that in-
cludes every data object in the shared memory. Barriers in
VOPP are only used for synchronisation but have nothing
to do with consistency maintenance for DSM. In traditional
DSM programs, every processor can have a global view of
the shared memory after each barrier. To keep this con-
venience, we provide a primitivemergeviewsin VOPP to
merge views into a global view, so the programmer will be
able to redefine the views aftermergeviews. The price paid
for this convenience, of course, is the DSM efficiency.

In summary, VOPP has the following features:

• The VOPP style allows programmers to participate in
performance optimization of programs through wise
partitioning of shared objects (i.e. data allocation) into
views and wise use of view primitives. The focus of
VOPP is shifted more towards shared data (e.g. data
partitioning and allocation), rather than synchroniza-
tion and mutual exclusion.

• VOPP does not place any extra burden on program-
mers since the partitioning of shared objects is an im-
plicit task in parallel programming. VOPP just makes
the task explicit, which renders parallel programming
less error-prone in handling shared data.

• VOPP offers a large potential for efficient implemen-
tations of DSM systems. When a view primitive such
asacquire view is called, only the data objects asso-
ciated with the related view need to be updated. An
optimal consistency maintenance protocol is going to
be proposed in this paper based on this simplicity.

To maintain the consistency of views in VOPP pro-
grams, a View-based Consistency (VC) model has been pro-
posed [6, 5]. In the VC model, a view is updated when a
processor callsacquireviewor acquireRviewto access the
view. Since a processor will modify only one view between
acquireviewandreleaseview, which should be guaranteed
by the programmer, we are certain that the data objects
modified betweenacquireviewandreleaseviewbelong to
that view and thus we only update those data objects when

3

the view is accessed later. More formally, the consistency
condition for the VC model is stated below.

Definition 1 Consistency Condition for View-based Con-
sistency

• Before a processorPi is allowed to access a view
by callingacquireviewor acquireRview, all previous
write accesses to data objects of the view mustbe per-
formed with respect toPi according to their causal or-
der.

A write access to a data object is said tobe performed
with respect toprocessorPi at a time point when a subse-
quent read access to that object byPi returns the value set
by the write access.

From the above condition we know, in VOPP programs
barriers are only used for synchronisation and have nothing
to do with consistency maintenance for DSM. When a view
is acquired, consistency maintenance is restricted to the
view. In this way the amount of data traffic for DSM con-
sistency in the cluster network can be reduced and the VC
model can be implemented optimally as what will be pro-
posed in Section 3. The Sequential Consistency (SC) [9] of
VOPP programs can also be guaranteed by the VC model,
which has been proved in [6].

3 View-Oriented Update Protocol
with Integrated Diff

In View-based Consistency, when a view is acquired we
only update the view with previous modifications made on
the view. A version number is maintained for each view so
that when a view is acquired by a processor we can decide
if the view in the processor should be updated or not ac-
cording to the version of the view of the processor and the
latest version of the view. The last processor that releases
a view should always have a copy of the latest view. If a
view is modified by a processor the latest version number
of the view is increased by one. In this section we pro-
pose a View-Oriented Update Protocol with Integrated Diff
(VOUPID) to efficiently update a view of a processor when
the version number of the view of the processor is smaller
than the latest version number of the view.

3.1 Diff accumulating problem

In TreadMarks [1] a multiple writer protocol [2] is used to
implement the DSM consistency of the LRC model [8]. In
the protocol,diffs are used to represent modifications on a
page. Initially a page is write-protected. When a write-
protected page is first modified by a processor, a page fault
occurs. Then the page fault handler creates and stores atwin

of the page and makes the page both readable and writable.
When the modifications on the page are later needed by an-
other processor, the current version of the page is compared
with the twin in order to create adiff, which can then be used
to update the copies of the page in other processors. Based
on the diff scheme, multiple processors can write on differ-
ent parts of the same page concurrently and consistency of
the page can be maintained by applying the corresponding
diffs.

Our VC model can be implemented based on the above
diff-based scheme. When a view is released, diffs are cre-
ated for all pages modified between theacquire view and
the release view. When a view is acquired, pages are
invalidated according to the consistency information (i.e.
write notices as in TreadMarks). When an invalidated page
is accessed later, a page fault occurs. The page fault han-
dler will request the corresponding diffs in order to make
the page up-to-date.

However, there is a diff accumulation problem in the
above diff-based protocol. Along the course of execution
of a DSM program, diffs can be accumulating and occupy-
ing lots of memory space and CPU time. In order to update
a copy of a page in a processor, numerous diffs generated by
other processors have to be passed to the processor and then
applied to the copy of the page. To explain the problem,
Figure 1 shows the execution of a typical VOPP program.

program order

A(2) r(x) w(x)R(2)

P3

P2

P1
A(2) w(x)R(2)

P4

A(2) r(x) w(x)R(2)

A(2) r(x) w(x)R(2)

w: write r: read A: acquire_view R: release_view

: page fault resulting in requesting diffs of x and

updating x at the processor

Create diff D1 on page x

Receive diff D1

Create diff D2 on page x

Receive diffs D1 and D2

Create diff D4

Create diff D3 on page x

Receive diffs D1, D2 and D3

x

x

x

x

Figure 1: Diff accumulation problem

In Figure 1 each processor accesses pagex in turn by
acquiring view 2. Every time the view is released by a pro-
cessor, a new diff is created for the modifications done by
the processor. Every time the view is acquired, consistency
information (such as write notices) is piggy-backed on the

4

view granting message and pagex which is previously mod-
ified by other processors is invalidated. When pagex is ac-
cessed, a page fault occurs which results in requesting the
diffs of pagex. When the diffs are received by a processor,
they are applied to the copy of pagex in the processor. A
processor has to get all diffs of pagex previously created
by other processors in order to make the page up-to-date. In
Figure 1 when the page fault on pagex occursP4 receives
the diffs created byP1, P2 andP3 and applies them one by
one to the page. If the number of processors increases in the
figure, the number of diffs created for pagex will be accu-
mulating proportionally. If there are more pages modified
in the figure, the diff accumulating problem will be more
severe and the number of page faults will increase propor-
tionally.

To make it even worse, if a page is widely modified a diff
of the page is almost the same size as the page. When the
amount of diffs is large, more messages have to be used to
transfer them since the maximum transfer unit of messages
is limited. Therefore, when the diffs are accumulating the
number of messages and the amount of data traffic in the
cluster network increase significantly. Many applications
have demonstrated this problem in our experiments.

3.2 Diff merging algorithm

The idea of the VOUPID protocol is to integrate all the diffs
of each page into a single diff and then update the page with
the single integrated diff. The diffs of a page are merged
based on the diff format.

A diff is compressed using run-length encoding. It con-
sists of independent items each of which represents a range
of continuous bytes in a page. Each item has the format
<length, offset, byte, byte,...>, wherelengthis the number
of bytes in the range,offsettells from where to apply the fol-
lowing bytes in the page. When a diff is applied to a page,
the bytes are simply copied to overwrite the corresponding
bytes in the page.

According to the above diff format, we propose a diff
merging algorithm to merge two diffs into one. Suppose
there are two diffsD1 and D2 for the same page, where
D2 is more recently created. The diff merging algorithm
can merge them into a new diffD3. In the algorithm an
item (range of continuous bytes) is removed sequentially
from each ofD1 andD2. The two items are compared and
merged together if their byte ranges overlap each other. As-
sume the ranges of two items< L1, O1, byte, byte, ... >

and< L2, O2, byte, byte, ... > (from D1 andD2 respec-
tively) overlap each other. To merge the two items together,
a new item< L3, O3, byte, byte, ... > is created, whereO3

is the minimum ofO1 andO2, L3 is L1 + L2 minus the
length of the overlapped part, the bytes are copied accord-
ingly from the two items for the non-overlapped parts, but

the bytes at the overlapped part are copied from the corre-
sponding part in< L2, O2, byte, byte, ... >. For example,
suppose there are two items< 8, 8, 1, 2, 3, 4, 5, 6, 7, 8 >

and < 8, 12, 9, 10, 11, 12, 13, 14, 15, 16 > from D1 and
D2 respectively. After the merging, the new item is<

12, 8, 1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16 >.
The diff merging algorithm is described as below. In the

algorithmD1 andD2 (whereD2 is more recently created)
are the input, andD3 is the output.I1, I2 andI3 are vari-
ables for the items in the diffs, whereI1 is initialized as the
first item inD1 andI2 is initialized as the first item inD2.
The algorithm repeatedly executes the following steps until
all items inD1 andD2 are processed.

1. If the range ofI1 does not overlap with the range ofI2,
then

• if the offset ofI1 is smaller than the offset ofI2,
copy I1 into D3 and assign the next item from
D1 to I1, go to step 1.

• if the offset ofI1 is larger than the offset ofI2,
copy I2 into D3 and assign the next item from
D2 to I2, go to step 1.

2. If the range of I1 does overlap with the range
of I2, the two items are merged intoI3. Sup-
pose I1 =< L1, O1, byte, byte, ... > and I2 =<

L2, O2, byte, byte, ... >.

• If O2 + L2 is greater than or equal toO1 + L1,
assignI3 to I2 and assign the next item fromD1

to I1. Go to step 1.

• If O2 + L2 is smaller thanO1 + L1, assignI3 to
I1 and assign the next item fromD2 to I2. Go to
step 1.

After the above algorithm is finished,D1 and D2 are
merged intoD3. If a page is updated by applyingD3 to it,
the result is the same as applyingD1 andD2 sequentially
to the page.

The advantages of diff merging are obvious. First, diff
merging can reduce the number of diffs as well as the
amount of memory space used for diffs since most diffs of
the same page overlap each other and the merged diff only
keeps the most up-to-date diffs. Second, less CPU time is
consumed by diff applying. The CPU time for diff applying
is proportional to the total size of the applied diffs.

3.3 The VOUPID protocol

Using the diff merging algorithm, the VOUPID protocol
maintains a single integrated diff for each page of a view.
Since the VOPP style requires that writable views must not
be acquired in a nested manner, it is guaranteed that modifi-
cations on different views are not mixed during execution of

5

any VOPP-style programs. Also processors modify a view
one after another in a synchronized way. Therefore, it is
possible to maintain a single integrated diff for each page of
a view and then to update the view with those single diffs in
the implementation of the VC model. Note that a page may
belong to multiple views because of false sharing, in which
case the page will have a single diff for each involved view.
Since views are non-overlapping, the diffs of the same page
for different views are irrelevant.

The VOUPID protocol for the optimal implementation of
the VC model is described as below. According to the con-
dition of View-based Consistency, VOUPID only updates
the pages involved in the view when a view is acquired.
Pages (of a view) that were previously modified are very
likely to be accessed after the view is acquired. Thus, in-
stead of invalidating pages, VOUPID piggy-backs the sin-
gle diffs of those pages on the view granting message and
eagerly updates the pages by applying the diffs. In this way
VOUPID reduces the number of messages and avoids page
faults resulting from invalidation of pages. When a diff of
a page is created at view releasing time, the diff is merged
with the present single diff of the page to form the new sin-
gle integrated diff of the page.

More specifically, the following tasks are done in
VOUPID whenacquire view or acquire Rview is called.

• Send out the message of view request to the view man-
ager and wait for the view granting message.

• When view granting message is received, the piggy-
backed diffs are applied to the corresponding pages to
update the pages in the view.

• In case ofacquire Rview, if a page has a twin due to
being previously modified, when the diff of the page is
applied to the page it has to be applied to the twin as
well, in order to correctly acquire the modifications of
the page later atrelease view for a writable view.

• Make write-protected all pages with no twin so that
any page to be modified can be detected and its twin
can be created.

Whenrelease view or release Rview is called the fol-
lowing tasks are done in VOUPID.

• In case ofrelease view, create a diff for each page
that is modified during the current access of the view.

• In case of release view, for each modified page
merge the newly created diff and the present single diff
into a new single integrated diff, which should be put
into the diff list of the view.

• If there is a view requester waiting for accessing the
view, send to the requester the view granting message

along with the single diffs from the diff list of the view;
otherwise leave this task to the view request handler
which processes view requests at the background.

Figure 2 shows an example explaining how VOUPID
works.

A(2) r(x) w(x)R(2)

A(2) w(x)R(2)

P4

P3

A(2) r(x) w(x)R(2)

program order

P2

A(2) r(x) w(x)R(2)

P1

w: write r: read A: acquire_view R: release_view

Receive the single diff of page x

with the present single diff

with the present single diff

with the present single diff

Create diff D1 of page x and merge

Create diff D2 of page x and merge

Create diff D4 of page x and merge

Receive the single diff of page x

with the present single diff
Create diff D3 of page x and merge

Figure 2: The VOUPID protocol in action

The program in Figure 2 is the same as the one in Fig-
ure 1. In Figure 2 every time view 2 is released, a new diff
is created and merged into the present single diff of page
x. Every time the view is acquired, the single diff of page
x is piggy-backed on the view granting message and then
applied to the page. Since pagex is already updated after
the view is acquired, there is no page fault for requesting
diffs when the page is accessed. In this way, the number of
messages and the amount of diffs are significantly reduced
in VOUPID, especially when the number of processors and
the number of pages involved in a view is large.

In summary, compared with the original diff scheme
VOUPID has reduced the diff requests and the amount of
diffs. The extra overhead is diff integration, but it is nor-
mally faster than page fault handling, especially when the
ranges of the diffs are overlapping.

4 Comparison with the home-based
protocol

The home-based protocol [12] allocates a processor (home)
for each page. The home processor of a page keeps an up-
to-date copy of the page (home page). Every time a page is
modified, its diff is created and sent to the home of the page
in order to update the home page. When a processor needs

6

to update its copy of a page, it requests the home page from
the home of the page.

The home-based protocol can avoid diff accumulating
problem by integrating diffs of a page into the home page.
For those applications with diff accumulation, the home-
based protocol is significantly better than the original diff
scheme. However, compared with VOUPID, it incurs more
messages for requesting home pages. Figure 3 gives an ex-
ample to explain how the home-based protocol works in our
VC model.

P1

P4

A(2) r(x) w(x)R(2)

A(2) r(x) w(x)R(2)

A(2) r(x) w(x)R(2)

P3

program order

P2

A(2) w(x)R(2)

w: write r: read A: acquire_view R: release_view

: page fault resulting in requesting the home page of x

: send the created diff to the home of page x

x

x

x

x

Figure 3: The home-based protocol in action

In Figure 3, every time view 2 is released a diff of pagex

is created and sent to the home of the page (the home is as-
sumed to beP1 in the figure). Every time view 2 is acquired,
the consistency information of the view is piggy-backed on
the view granting message. The consistency information is
generated according to the version information of the view.
In the figure, the consistency information invalidates pagex

in P2, P3 andP4. When pagex is accessed by any of those
processors, a page fault occurs which brings the home page
of x to the processor.

By comparing Figure 3 with Figure 2, we can see
the home-based protocol incurs more messages than the
VOUPID protocol. Each page fault incurs two messages in
the home-based protocol. In addition, each modified page
incurs two messages for updating the home page. On the
other hand, the page faults are reduced in VOUPID by pre-
sending the single diffs and the diff requests are reduced
accordingly. For example, if view 2 involves two pages, the
number of messages will increase by 12 in Figure 3 (in each
of P2, P3 andP4 there will be two extra messages for the
extra page fault and two extra messages for the extra home
updating), while in Figure 2 the number of messages stays

the same. Also the home-based protocol requests a whole
page from the home once a page needs to be updated, while
VOUPID only needs a single diff to update a page. Since a
diff is normally smaller than a page and would not be larger
than a page in the worst case, the amount of data trans-
ferred in VOUPID is smaller. Compared with the home-
based protocol, the extra overhead for VOUPID is again
diff integration. Overall, VOUPID is more efficient than
the home-based protocol, especially when a view involves
more pages.

5 Experimental evaluation

In this section, we present our experimental results of sev-
eral applications running on the following three DSM im-
plementations:V Cd, V Ch andV CV OU .

• V Cd is our implementation of VC based on the diff-
based protocol which uses multiple diffs to represent
modifications of a page.

• V Ch is our implementation of VC based on the home-
based protocol.

• V CV OU is our implementation of VC based on the
VOUPID protocol.

All tests are carried out on a cluster of 32 PCs running
Linux 2.4, which are connected by a N-way 100 Mbps Eth-
ernet switch. Each of the PCs has a 350 MHz processor
and 192 Mbytes of memory. The page size of the virtual
memory is 4 KB.

The applications used in our tests include Integer Sort
(IS), Gauss, Successive Over-Relaxation (SOR), Binary
Tree (BT), and Neural network (NN).IS ranks an unsorted
sequence ofN keys. The rank of a key in a sequence is
the index valuei that the key would have if the sequence
of keys were sorted. All the keys are integers in the range
[0, Bmax], and the method used is bucket sort. The mem-
ory access pattern is very similar to the pattern of our sum
example in Section 2.Gaussimplements the Gauss Elim-
ination algorithm in parallel. Multiple processors process
a matrix following the Gaussian Elimination steps.SOR
uses a simple iterative relaxation algorithm. The input is a
two-dimensional grid. During each iteration, every matrix
element is updated to a function of the values of neighbor-
ing elements.BT generates a fixed-depth binary tree. In the
algorithm, multiple processors get unexpanded nodes from
a task queue. If a processor finds an unexpanded node, it
expands the node and creates new unexpanded nodes which
are put into the task queue. The algorithm terminates when
all nodes in the fixed-depth binary tree are expanded.NN
trains a back-propagation neural network in parallel usinga
training data set. After each epoch, the errors of the weights

7

are gathered from each processor and the weights of the
neural network are adjusted before the next epoch. The
training is repeated until the the neural network converges.

5.1 Integer Sort (IS)

The problem size ofIS in our experiment is (225 × 215, 40).
Table 1 shows the statistics of IS running on 32 processors.

V Cd V Ch V CV OU

Time (Sec.) 158.2 26.6 23.6
Data (GByte) 1.03 0.595 0.344
Num. Msg 627,862 481,305 324,762

Table 1: Statistics of IS on 32 processors

In the table,T ime is the running time of the appli-
cation; Data is the total amount of data transferred; and
Num.Msg is the total number of messages.V Cd demon-
strates serious diff accumulation problem in IS. From the
statistics, we find the amount of data transferred inV Cd

is about twice of that inV Ch and three times of that in
V CV OU . Even though there is no diff accumulation prob-
lem inV Ch, the amount of data transferred inV Ch is larger
than that inV CV OU since a home page in the home-based
protocol is normally larger than a single integrated diff in
the VOUPID protocol. Table 1 shows the number of mes-
sages and the amount of data transferred inV CV OU are
greatly reduced compared withV Cd and are significantly
less thanV Ch, which is consistent with our comparison be-
tween the diff-based protocol, the home-based protocol, and
the VOUPID protocol. Not surprisingly,V CV OU is about
seven times faster thanV Cd and significantly faster than
V Ch.

5.2 Gauss

The matrix size ofGaussis 2048 × 2048 and the number
of iterations is 1024 in our tests. The diff accumulation
problem is not serious inGauss. The shared data between
processors is much smaller than a page, so using diffs to
represent modifications is more efficient than using pages.
Table 2 showsV Ch transfers seven times more data than
V Cd. Though the number of messages inV Cd is more
than that inV Ch, V Cd is still three times faster thanV Ch.
V CV OU is significantly distinguished among the three im-
plementations in terms of time, data traffic, and number of
messages.

V Cd V Ch V CV OU

Time (Sec.) 16.6 48.5 11.7
Data (MByte) 27.4 200.3 24.7

Num. Msg 232,574 219,353 171,238

Table 2: Statistics of Gauss on 32 processors

5.3 Successive Over-Relaxation (SOR)

SORprocesses a matrix with size4000×4000 and the num-
ber of iterations is 50 in our tests. Similar toGauss, SOR
does not have serious diff accumulation problem, and the
shared data inSORbetween processors is smaller than a
page. Therefore the diff-based protocol is more efficient
than the home-based protocol in this application. Table 3
shows data traffic inV Ch is nine times of that inV Cd

and the number of messages inV Ch is significantly larger
than that inV Cd. AgainV CV OU performs the best among
the three implementations in terms of time, data traffic, and
number of messages.

V Cd V Ch V CV OU

Time (Sec.) 7.18 7.93 5.61
Data (MByte) 6.29 56.37 5.72

Num. Msg 69,160 81,043 44,368

Table 3: Statistics of SOR on 32 processors

The above three applications demonstrate that, if there
is a serious diff accumulation problem in an application
the home-based protocol performs better than the diff-based
protocol; otherwise the diff-based protocol performs better.
However, the VOUPID protocol is superior to both the diff-
based protocol and the home-based protocol, no matter if
there is a diff accumulation problem or not.

5.4 Binary Tree (BT)

BT generates a binary tree with a depth 9 in our tests. It
uses a task queue to keep all those unexpanded nodes. The
memory access pattern is very similar to the task queue ex-
ample described in Section 2. Each processor repeatedly
acquires the task queue to get an unexpanded node. The
number of times to access the task queue is not very sta-
ble and is different every time the application is run, but
the range for that number is very stable for any particular
implementation. In Table 4,Num.Acquires, which is the
number of view primitives called in the application, is taken
from a typical execution of the application. From the table,
we find the number of view primitives is significantly larger
whenBT is running onV CV OU than when running onV Cd

or V Ch. The reason is thatV CV OU is more efficient and
the processors have more time to repeatedly check the task
queue which may be empty. From the rowAcquireT ime

8

in the table, we find the average time taken for view primi-
tives inV CV OU is much smaller than that inV Cd or V Ch.
Therefore, even though the data traffic and the number of
messages are larger inV CV OU due to the large number of
view primitives called during execution,V CV OU performs
significantly better thanV Cd andV Ch.

V Cd V Ch V CV OU

Time (Sec.) 45.66 29.56 17.95
Data (MByte) 6.39 11.23 11.76

Num. Msg 8850 11,545 83,743
Num. Acquires 1536 1800 28,214

Acquire Time (usec.) 711,630 340,434 8750

Table 4: Statistics of BT on 32 processors

5.5 Neural Network (NN)

The size of the neural network inNN is 9 × 40 × 1 and
the number of epochs taken for the training is 235.NN is
an application which has a very serious diff accumulation
problem, especially when the number of processors is large.
From Table 5 we find the data traffic inV Cd is more than
ten times of that inV CV OU andV Cd is seven times slower
thanV CV OU . V Ch performs much better thanV Cd, but
takes twice the time asV CV OU .

V Cd V Ch V CV OU

Time (Sec.) 302.89 83.74 42.64
Data (MByte) 1420.6 436.6 122.3

Num. Msg 343,658 334,481 165,042

Table 5: Statistics of NN on 32 processors

Table 6 presents the speedups ofV Cd, V Ch and
V CV OU with a varying number of processors. The table
shows the speedups ofNN are significantly improved by
V CV OU . The speedup starts to drop inV Cd when the num-
ber of processors is 16, and the speedup inV Ch starts to
drop when the number of processors is 24.

2-p 4-p 8-p 16-p 24-p 32-p
V Cd 1.97 3.79 6.18 5.58 3.51 2.22
V Ch 1.97 3.79 6.64 9.01 8.73 7.81

V CV OU 1.99 3.97 7.73 13.43 16.17 16.95
MPI 1.78 3.64 7.17 14.08 20.22 25.38

Table 6: Speedup of NN onV Cd, V Ch, V CV OU and MPI

To compare the performance of VOPP programs with
MPI programs, we run the equivalent MPI version ofNN
on MPICH [4]. The speedups of the MPI version ofNN is

also shown in Table 6. The performance ofV CV OU is com-
parable with that of the MPI version on up to 16 processors.
On more than 16 processors, the speedup ofNN running
with V CV OU still keeps growing, though it is not as good
as the MPI program. We will investigate the reason behind
the performance difference between the VOPP program and
the MPI program running on larger number of processors in
the future.

6 Conclusions

The VOUPID protocol is very efficient for implementation
of the VC model. Compared with the diff-based protocol
and the home-based protocol, the VOUPID protocol is sig-
nificantly better in terms of performance. The amount of
data traffic and the number of messages are greatly reduced
in VOUPID, especially when there is a serious diff accu-
mulation problem in the diff-based protocol. VOUPID is an
optimal protocol for supporting VOPP programs and makes
their performance comparable with MPI programs, though
MPI programs may still perform better when the number
of processors is large. We will investigate the reasons be-
hind the performance difference between VOPP programs
and MPI programs and will develop more efficient imple-
mentation techniques for the VC model. Our ultimate goal
is to make shared memory parallel programs as efficient as
message-passing parallel programs on cluster computers.

Acknowledgments

The authors would like to thank Mark Pethick who kindly
provided his neural network application.

References

[1] Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu,
H., Rajamony, R., Yu, W., Zwaenepoel, W.: Tread-
Marks: Shared memory computing on networks of
workstations. IEEE Computer 29 (1996) 18–28

[2] Carter, J.B., Bennett, J.K., Zwaenepoel, W.: Tech-
niques for reducing consistency-related information in
distributed shared memory systems. ACM Transac-
tions on Computer Systems 13 (1995) 205–243

[3] Gharachorloo, K., Lenoski, D., and Laudon, J.: Mem-
ory consistency and event ordering in scalable shared
memory multiprocessors. In: Proc. of the 17th Annual
International Symposium on Computer Architecture
(1990) 15–26.

[4] Gropp, W., Lusk, E., Skjellum, A.: A high-
performance, portable implementation of the MPI

9

message passing interface standard. Parallel Comput-
ing 22 (1996) 789–828

[5] Huang, Z., Sun, C., Purvis, M., Cranefield, S.: View-
based Consistency and its implementation. In: Proc.
of the First IEEE/ACM Symposium on Cluster Com-
puting and the Grid (2001) 74–81

[6] Huang, Z., Purvis M., and Werstein P.: View-Oriented
Parallel Programming and View-based Consistency. to
appear In: Proc. of the Fifth International Conference
on Parallel and Distributed Computing, Applications
and Technologies (PDCAT04) (2004) Singapore.

[7] Huang, Z., Purvis M., and Werstein P.: View-Oriented
Parallel Programming on Cluster Computers. submit-
ted to the 34th International Conference on Parallel
Processing (ICPP05) (2005) Norway.

[8] Keleher, P.: Lazy Release Consistency for distributed
shared memory. Ph.D. Thesis (Rice Univ) (1995)

[9] Lamport, L.: How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers 28 (1979) 690–691

[10] Sun, C., Huang, Z., Lei, W.-J., Sattar, A.: Towards
transparent selective sequential consistency in dis-
tributed shared memory systems. In: Proc. of the 18th
IEEE International Conference on Distributed Com-
puting Systems, Amsterdam (1998) 572–581

[11] Werstein, P., Pethick, M., Huang, Z.: A Performance
Comparison of DSM, PVM, and MPI. In: Proc. of the
Fourth International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies
(PDCAT03), IEEE Press, (2003) 476–482

[12] Zhou, Y., Iftode, L., Li, K.: Performance evaluation of
two home-based lazy release consistency protocols for
shared virtual memory systems. In Proc. of the Operat-
ing Systems Design and Implementation Symposium
(1996) 75–88

10

