
Metrics and Task Scheduling Policies for Energy Saving in Multicore Computers

J. Mair, K. Leung, Z. Huang
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: {jkmair;kcleung;hzy}@cs.otago.ac.nz

Abstract—In this paper, we have proposed three new metrics,
Speedup per Watt (SPW), Power per Speedup (PPS) and
Energy per Target (EPT), to guide task schedulers to select the
best task schedules for energy saving in multicore computers.
Based on these metrics, we have proposed the novel Sharing
Policies, the Hare and the Tortoise Policies, which have taken
into account parallelism and Dynamic Voltage Frequency
Scaling (DVFS) in their schedules. Our experiments show that,
on a modern multicore computer, the Hare Policy can save
energy up to 72% in a system with low utilization. On a busier
system the Sharing Policy can make a saving up to 20% of
energy over standard scheduling policies.

Keywords-Speedup per Watt (SPW), Power per Speedup
(PPS), Energy per Target (EPT), Exclusive Policy, Sharing
Policy, Hare Policy, Tortoise Policy, Performance per Watt
(PPW), energy saving, power saving, Dynamic Voltage Fre-
quency Scaling (DVFS), Green computing

I. INTRODUCTION

The issue of energy consumption has long been an active
area of research in portable consumer electronics such as
laptops and smart phones, with the goal of extending the
battery life of these devices. This has been achieved by
dynamically adjusting operational states and by placing
the devices in sleep and standby states. However, energy
consumption is becoming a concern in large scale systems
such as servers and clusters for grid and cloud computing
due to their popular deployments. This is becoming more
prevalent because new issues are arising due to their ever
increasing scale, like the increasing demand on the energy
grid, and general operational costs including cooling. The
total cost of operation is growing so much that in some
cases it is likely to start exceeding the initial capital costs
for building such a cloud computing center, preventing some
business from setting up such facilities.

In addition, consumers are concerned about environmental
impact of energy consumption. In USA, 70% of electricity
is generated from burning fossil fuels, and this is a big
contributor of greenhouse gases and global warming [1]. As
a result, many companies try to decrease their environmental
footprint by focusing on energy efficiency of big energy
consumers, including grid and cloud computing data centers.
This is achieved through research in green computing, which
aims at improving power and energy efficiency in computing

facilities. In this paper, to avoid ambiguity, we use power
and energy in strict terms, i.e. energy = power × time.

Previous research in green computing had been focusing
on power efficiency of high performance computing. The
common metric used is Performance per Watt (PPW), which
is often applied to computer hardware and systems, assum-
ing they are always busily running applications. However,
power efficiency is not equivalent to energy efficiency, since
power efficient systems may still consume a substantial
amount of energy when they are idle. Moreover, many real
world systems have very low levels of utilization [2]. For
example, many data centers only have the utilization of
10% to 50% and could be less than 5% for some computer
nodes, as stated in [3]. Computers do not have good energy
efficiency if they consume a lot of power at idle time,
even though they may have good power efficiency during
execution. This is due to energy been power multiplied by
time. Therefore, eventually we should be aiming at energy
saving, rather than power saving.

Furthermore, even on those busy computer nodes, running
applications may have a relatively relaxed targeted perfor-
mance. That is, they are not concerned about achieving
the maximum performance that is possible on the computer
system. For example, some computing centers may have a
number of applications that need to run once a day, but
for each of the applications there is no strict performance
requirement, as long as it can be finished in a day. In these
situations, new measures and policies could be introduced
to save energy, as long as they do not come at the cost of
the required performance target.

In this paper, we set out to explore new metrics and
policies that could be used in multicore nodes of grid and
cloud environments, in order to reduce energy consumption
without impacting on the performance target of the applica-
tions. A unique aspect of this work is combining Dynamic
Voltage Frequency Scaling (DVFS) and program parallelism
to achieve energy saving on modern multicore computers.
Our research uses the multicore computers because they
are rapidly becoming the default in consumer electronics,
as well as often having the architecture required to support
DVFS. Also with such computers, parallelism is likely to
become more commonplace in applications in order to take
advantage of the multiple cores to increase performance.

The contributions of this paper are: first, we have pro-
posed the new metrics, Speedup per Watt (SPW), Power
per Speedup (PPS) and Energy per Target (EPT), which
can guide task scheduling policies in various situations
to achieve much better energy saving in multicore nodes;
second, we have proposed the novel task scheduling poli-
cies, The Sharing, the Hare and the Tortoise Policies, to
explore the opportunities for energy saving in busy and idle
multicore nodes; third, we have applied our new metrics
and policies in modern multicore nodes and clusters, where
various experiments are designed and implemented to com-
pare and evaluate their effect in terms of energy saving. Our
experiments show that the best policies can save energy up
to 72%.

The remainder of this paper is organized as follows. Sec-
tion II introduces the metrics and policies to be investigated.
Results for each policy and a general discussion are in
Section III. Section IV discusses some related work in the
area of power management, with Section V giving the final
conclusions and future work.

II. METRICS AND POLICIES

The original intention of this work is to explore what the
impact of parallelism and DVFS has on the level of power
consumption on multicore nodes and how a task scheduler
can manipulate them to achieve energy saving. For this, we
have proposed three new metrics, Speedup per Watt (SPW),
Power per Speedup (PPS) and Energy per Target (EPT),
to measure the power and energy efficiency for a number
of task scheduling policies in various situations. Also we
have proposed three novel scheduling policies, the Sharing
Policy, the Hare Policy, and the Tortoise Policy, to achieve
energy saving in multicore nodes and clusters. The details
are explained as follows.

A. Speedup per Watt (SPW)

Performance per Watt (PPW) is a common metric used
for calculating energy efficiency [4]. Performance is often
measured with FLOPS for computer systems. However,
since many applications do not even have floating point
calculations, FLOPS is not a suitable metric to measure
performance of many applications. Another performance
metric, the number of instructions per second (MIPS), is
often used to measure performance of sequential applica-
tions, but it is not suitable for measuring the performance
of parallel applications, since the extra instructions for
synchronization and communication between processes do
not contribute to the performance of parallel applications.
On the contrary, excessive use of those instructions often
results in low performance of parallel applications.

In order to measure the energy efficiency of parallel
applications, we use speedup as the metric for their per-
formance. This is very suitable because speedup has been
the most important metric for measuring performance in

parallel computing in the past decades. Therefore, based on
speedup, we propose a new metric, Speedup per Watt (SPW),
to measure power efficiency of parallel applications.

To calculate speedup, we use the execution time of the
application using a single thread running at the fastest
frequency, e.g. 2.5GHz, because the fastest frequency is
usually the default in a multicore node. The equation is:

speedup =
timefastest sequential

timecurrent configuration
(1)

where timecurrent configuration is the execution time of
the application running with a particular number of cores at
a particular CPU frequency. We then divide the speedup by
the power (in Watts) measured over the execution with the
power meter to get SPW.

SPW =
speedup

power
(2)

B. Power per Speedup (PPS)

SPW is a useful metric to measure how parallel applica-
tions can use power efficiently to achieve high performance.
However, many real world application programs, particularly
those in real-time systems are not concerned about achieving
the maximum performance that is possible on a given
computer system. Instead, the applications are only required
to meet their targeted performance. Therefore, we propose
this new metric, Power per Speedup (PPS),

PPS is calculated with the following equation:

PPS =
power

speedup
(3)

Even though PPS is just the reverse of SPW, it changes
the focus from performance to power, and is more intuitive
when energy saving is concerned, since the smallest PPS
value suggests the least energy to be consumed. PPS tells
us how much power is needed for each performance unit
(i.e. speedup). In the situations where performance is not a
concern, we should focus on how much power is needed to
achieve the targeted performance.

In our research, we use PPS to choose the best hard-
ware configuration that consumes minimal energy but still
achieves the required performance of the application. For
example, if we need to run an application on a quad-core
CPU with four different operating frequencies, we can have
16 combinations of configurations with different numbers
of cores and different frequencies. On one hand, DVFS
can reduce the amount of power with lower frequencies but
incurs degraded performance. On the other hand, parallelism
can increase performance at the cost of using additional
CPU cores. With the many possible configurations that can
satisfy the performance target of the application, it is difficult
to decide which configuration is most efficient. However,
with PPS, we can simply choose the configuration with the
minimal PPS value to save the maximum energy.

C. The Exclusive and the Sharing Policies

In the context of parallel computing, the task scheduler
has more options for scheduling a number of parallel ap-
plications on a multicore node. For example, suppose there
are four parallel applications to be executed on a quad-core
CPU. Usually the task scheduler schedules them one by one
according to their priority. However, in many real world
situations, it does not matter in which order they should
be executed, as long as their executions are finished in a
time window (e.g. overnight). These situations allow the
scheduler to schedule the applications in alternative ways.
For instance, the scheduler can use two cores to execute one
application and use the other two cores to execute another
application. After either of them is finished, the scheduler
can load another application onto the two available cores.
Essentially the scheduler can now select between the inter-
application parallelism and the intra-application parallelism,
where the inter-application parallelism is the parallelism
that multiple applications are executed in parallel and the
intra-application parallelism is the parallelism inside the
application.

For the above situations we can use two scheduling
policies, the Exclusive Policy and the Sharing Policy that we
have proposed. The Exclusive Policy allocates all resources
(e.g. cores) to one application at a time as done in tradi-
tional scheduler, while the Sharing Policy allows multiple
applications to share the resources simultaneously.

Since multicore nodes offer many options to the task
scheduler which could select a number of different schedules
based on the idea of the above policies, it is important for
the scheduler to know which policy is the best in terms of
energy saving. In our experiments, we use real applications
to evaluate the Exclusive Policy and the Sharing Policy with
PPS. The experimental results are presented in Section III.

D. Energy per Target (EPT)

As mentioned before, many data centers only have a
utilization of 10% to 50% [2, 3]. Additionally, those appli-
cations may have a relatively relaxed targeted performance.
For example, some data centers only have a few applications
that need to run once a day but take only a few hours to
finish. It does not matter if they take longer to finish, as
long as they can be finished overnight. In those situations,
they could benefit from alternative scheduling policies that
do not only focus on maximizing throughput but also take
the period of idle time into consideration.

There are two opposing ideas that can be used in the
above situations. Applications can either be running faster
to sleep sooner or running slower and longer. For example, in
the famous Tortoise-vs-Hare race [5], the hare runs quickly
and then sleeps, but the tortoise crawls slowly but steadily.
Regardless of the race result, let us consider the energy
consumed during the whole race period. The power of the
tortoise is low, but it takes a longer time to finish, while the

power of the hare is high when it is running but it takes
shorter time to finish, then quickly going to sleep after the
race, during which it consumes very little energy. Now the
question is, which of them consumes less energy over the
whole race period.

The metric, Energy per Target (EPT) is useful to answer
the above question. We define the target as a period of time
in which an application has to finish execution. The EPT is
calculated as:

EPT = powerbusy× timebusy+poweridle× timeidle (4)

where
timebusy + timeidle = timetarget (5)

E. The Hare and Tortoise Policies

With EPT, we can measure the energy efficiency of two
extreme policies for task scheduling, the Tortoise Policy and
the Hare Policy.

In a multicore node, the Hare Policy can be described as:
use the highest CPU frequency and the maximum number of
cores to execute the application as soon as possible, and then
put the node into sleep mode once the execution finishes.

On the contrary, the Tortoise Policy is as follows: use
the lowest CPU frequency and the smallest number of cores
that can finish execution in the expected target time. Since
there are many possible combinations of frequencies and the
numbers of cores, the Tortoise Policy has to choose among
the combinations the best one that consumes least energy.

Even though it seems the Hare Policy is likely to win most
of the time in terms of energy saving, there are chances
for the Tortoise Policy to win if the power of the sleep
mode is close to the power of the slowest running mode.
The condition when the Tortoise Policy wins is described
by the following theorem.

Theorem 1: The Tortoise Hope
Suppose the power consumed by the fastest running mode

is Pf , the power of the slowest running mode is Ps, and the
power of the idle mode is Pi. The operating time of the
fastest running mode is assumed Tf , the operating time of
the slowest running mode is assumed T , which is also the
target time. If Tf > ((Ps − Pi)/(Pf − Ps)) ∗ (T − Tf), the
EPT of the Tortoise Policy is smaller than the EPT of the
Hare Policy (The detailed proof of theorem is omitted).

In our following experiments, we will use a real applica-
tion to run with both the Hare Policy and the Tortoise Policy.
The EPTs of the policies will be calculated to show which
policy is better in terms of energy saving in our multicore
nodes.

III. RESULTS

The experiments are run on a Dell PowerEdge R905 with
four quad-core AMD Opteron 8380 processors (CPUs), with
each core having its own FPU. This is organized in a NUMA

architecture with 16GB of RAM. The programs are compiled
in OpenMP using gcc-4.4.1, using the optimization argument
“-O3”. OpenMP 3.0 [6] is used, running on a standard
installation of Linux 2.6.33.

The power is measured with the use of a power strip and
the Watts Up? PRO .net1 power meter, which is a similar
model to that used in [4]. The accuracy of the power meter
is ±1.5% + 0.3 watts [7].

For adjusting the operating frequency of the CPU, we
use the simple mechanism of p-states which are a set of
predefined voltage scales, which is the way of using DVFS
in the AMD multicore node.

The benchmark programs used are Mandelbrot and Ray-
trace. Implementations of these programs used in this paper
are adapted from [8].

The Mandelbrot algorithm is embarassingly-parallel.
However, the workload of pixels is extremely uneven, and
thus requires a load-balancing mechanism to prevent process
starvation. Size of the screen is set to 1000 * 1000, the
maximum number of iterations is set to 500 and each pixel
is calculated 200,000 times.

Raytrace [9] takes car.env as input and casts 1000 an-
tialiasing rays per pixel.

A. SPW of applications

The SPWs of two applications, Mandelbrot and Raytrace,
are demonstrated in this section. We run them with different
frequency and different number of cores. The power (in
Watts) measured is for the whole system, with all unused
cores placed into their lowest possible power state (i.e. 800
MHz), which is the standard practice in modern operating
systems like Linux.

Figure 1 and 2 have shown the SPWs when the two
applications are running. They are designed to show the
SPWs on the y axis and the number of cores on the x axis.
The SPWs are calculated with the Equation 2. The power is
measured during the execution of the applications and the
measured results are very stable with very little fluctuation.

Both Figure 1 and 2 illustrate the typical behavior of
diminishing returns when the number of cores is increasing.
This is because the speedup gained per core from parallel
execution decreases due to the increasing overhead of paral-
lelism when the number of cores is getting larger. However,
this impact is not so strong when the cores are run at the
lowest frequency (800 MHz). The reason is that the shared
memory system is less of a bottleneck when the cores are
running slowly, so the applications scale better with lower
frequencies.

The results in Figure 2 show when the largest number of
cores is used, the SPW is maximized (at its highest point).

It can also be seen that when the frequency is lower, the
SPW is much worse than when the frequency is higher. For

1Product specifications and user manuals can be found at
https://www.wattsupmeters.com

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p
 p

e
r

W
a
tt

Number of cores

2.5 GHz
1.8 GHz
1.3 GHz

800 MHz

Figure 1. Speedup per Watt for mandelbrot

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 p
er

 W
at

t

Number of cores

2.5 GHz
1.8 GHz
1.3 GHz

800 MHz

Figure 2. Speedup per Watt for raytrace

example, when using 16 cores and reducing the frequency
from 2.5GHz to 1.8 GHz, it causes a 4% reduction in SPW.
Stepping down another frequency results in a further 12%
loss and dropping down to the lowest possible frequency
sacrifices a further 26% of SPW. This gives a total loss of
42% in SPW when changing from 2.5 GHz to 800 MHz.

Each of these figures shows that peak SPW can be
maximized by using all available cores and running at the
highest frequency. This is the best possible value because
it has the greatest speedup and also the lowest total energy
despite having the highest power usage.

In summary, the above SPW results tell us that when we
want to achieve the highest SPW, we should use the highest
frequency with the maximum possible number of cores.
Generally speaking, parallel execution is very important for
using power more efficiently on multicore nodes. However,
this is conditional on the scalability of the application,
though scalability is so far not a problem for our applications
running on up to 16 cores. If the performance gain becomes
diminishing or even negative with more cores, there is no
point using additional cores.

B. PPS of different schedules

In order to evaluate the Exclusive Policy and the Sharing
Policy, we design an experiment where there are eight
instances of the raytrace benchmark to be scheduled to
run on our AMD 16-core machine. These eight instances
can be scheduled using the Exclusive Policy. That is, they
are executed one by one, each running with 16 cores.
Alternatively, they can be scheduled using the Sharing
Policy. In our case, they can be scheduled two by two,
each running with 8 cores; or they can be scheduled four
by four, each running with 4 cores; and so on. We can list
more possible scheduling combinations with different CPU
frequencies as well. However, as a case study, we restrict
our experiment to four cases, which are labelled with M-
C, where M represents the number of instances running
in parallel (i.e. inter-application parallelism) and C is the
number of cores allocated for each instance to explore intra-
application parallelism. The four cases are represented with
1-16, 2-8, 4-4, and 8-2. In the experiment, we use the highest
frequency (2.5GHz) of the cores.

For each of the above cases, we use the power meter to
measure the average power of the machine during execution.
Since every core is busy and runs the same program, we
evenly distribute the measured power to each core. That is,
the power of every core Pc = powermeasured/16.

Once the power of each core is known, we can calculate
the PPS for each instance in the above cases. Generally, for
each case M-C, PPS = C × Pc/SM C , where SM C is
the speedup of the instance running with C cores. Since all
instances execute the same program in our experiment, the
PPS of each instance is the same in the same scheduling
case. Table I shows the PPS of the instances in each
scheduling case. The speedup column gives the speedup of
each instance.

case energy speedup PPS
1-16 85645 12.44 264.19
2-8 72811 7.32 224.49
4-4 69780 3.82 215.08
8-2 68276 1.95 210.67

Table I
PPS FOR RAYTRACE BENCHMARK AT 2.5 GHZ

From Table I, we know the Exclusive Policy (case 1-16)
has the largest PPS. Among the cases using the Sharing
Policy, the case 8-2 has the smallest PPS (210.67), which
means this scheduling case uses minimal energy. Assuming
all the four cases can satisfy the performance requirement of
the instances, the task scheduler should select the scheduling
case 8-2, which can save 20.3% energy compared with the
case 1-16 using the Exclusive Policy.

The reason that the case 8-2 consumes much less energy
is because it has better speedup per core using two cores
than using 16 cores, and thus the total execution time is
much shorter than executing the eight instances one by one

with 16 cores.
This experiment has demonstrated the significant energy

savings that could be achieved with the Sharing Policy in a
computing center where performance is not demanding on
individual applications.

C. EPTs of Hare and Tortoise

We carry out two experiments to evaluate the Hare Policy
and the Tortoise Policy. Each experiment has a different
level of energy saving in the appropriate sleep state. For the
purposes of completeness, all possible core and frequency
combinations are explored. The results for the Tortoise and
Hare Policies will be highlighted as well. Both experiments
use the raytrace application. The target time period is set
1020 seconds, which is the time for the Tortoise to finish.

A series of power measurements are taken of the raytrace
application during execution on our 16-core node. These
values are read from the power meter while connected to
the entire node. A problem we encountered was that the
system BIOS does not allow any form of sleep state to be
entered for any of the components.

So in order to determine exactly how much power of a
multicore node is used when some cores are idle and put into
a sleep state, we need to know the power usage of each core
at different frequencies. However, AMD only provides the
power usage of the quad-core CPU at the highest frequency
(2.5GHz).

To determine the power usage of each core at various
frequencies, we have adopted the following method. We
use a micro-benchmark running on every core simultane-
ously. This micro-benchmark consists of an infinite loop
surrounding an assembly instruction to move values between
registers. As a result, the load of the micro-benchmark is
only placed on the CPUs but not on any other system
component. The CPU’s were run at the four frequencies,
and once the micro-benchmark reached a stable power level,
then the mean values were recorded.

The base power of the system was found by subtracting 75
Watts for each CPU from the above measured mean value for
the frequency of 2.5 GHz, as the 75-Watt is the power usage
of a CPU given in [10]. With this base power, we could find
the power usage of the CPUs at all other frequencies using
the formula (powermeasured−powerbase)/4. The results are
shown in table II. As for the power usage of each core, it
is reasonable to assume that each core consumes a quarter
of the power of the quad-core CPU.

Frequency Watts
2.5 GHz 75
1.8 GHz 55.25
1.3 GHz 42.94
800 MHz 35.57

Table II
CPU POWER USAGE

1) Experiment 1 – Halt state: For this experiment, we
assume an unused core is placed in a halt state (shallow
sleep) when the core is idle. This means the power of the
idle cores should not be counted in the power measurement.
However, since we cannot change BIOS to physically put
the idle cores into the halt state, the measured power has
included the power consumed by the idle cores. Therefore,
we use the following equation to subtract the power of the
idle cores from the measured power of the entire system.
Both powerbusy and poweridle in the Equation 4 for EPT
are calculated in the same way.

power = powermeasured − Cidle ∗ powercore (6)

where Cidle is the number of idle cores.
Based on Equations 4 and 6, the EPTs are calculated for

all possible configurations (16 cores x 4 frequencies) and
are shown in Figure 3.

The results show that the difference between all possible
configurations is 2%. Due to their being very little differ-
ence between the EPT values of the configurations, it can be
concluded that the tortoise (using one core running with the
slowest frequency 800 MHz) and the hare (using 16 cores
running with the highest frequency) would finish the race in
a draw, with neither coming out a clear winner in terms of
energy saving during the race period. This result prompts the
next experiment which looks into the results when a sleep
state is used which provides much greater savings in power
between execution and idle periods.

2) Experiment 2 – Sleep state: To give a larger power
difference, the entire system should be put into sleep state
(deep sleep) during the period when all cores are idle, where
deep sleep means the whole multicore node is put into sleep.
This also makes more sense because there is not much
point in refreshing memory when no operations are to be
performed.

Multicore nodes are able to be put into a sleep state in
such a way that they have very little overhead for going to
sleep or waking up and will use power close to that of a
shutdown node while sleeping, which is 19 watts according
to our measurement on the AMD multicore node.

Therefore, in the original Equation 4, the power for the
idle time is assumed 19 watts when the multicore node is
assumed to be put into a deep sleep during the idle time.

Figure 4 shows the EPT values with the same target time
1020 seconds, within which the application is able to finish
with every possible configuration.

In this figure, the tortoise uses the configuration which has
the longest running period, but still satisfies the finishing
target. The tortoise (the Tortoise Policy), with one core
running at 800 MHz, has the largest EPT (106868) by far
out of all configurations.

The hare (the Hare Policy), on the other hand, finishes in
the shortest possible time using sixteen cores at 2.5 GHz,

with an EPT of 29351.6. This is only 27.46% of the tortoise
EPT and makes for a significant (72.56%) saving compared
with the tortoise.

Looking at the figure, it can also be seen that the
EPT values for high levels of parallelism (e.g. 16 cores)
are not significantly affected by the differences of CPU
frequencies, which indicates increasing CPU frequencies is
not an effective measure to reduce energy consumption for
parallel applications. From the figure, we can also see that
parallelism can be used to provide sizeable EPT differences.
Even when running at 2.5 GHz, an energy saving of 44.99%
can be made by running on sixteen cores instead of running
on a single core.

D. Energy saving strategies in multicore clusters

In this section, we will demonstrate how our new schedul-
ing policies can save energy in multicore clusters when they
are applied in a cluster in combination with a global task
migration manager similar to that used in [11, 12].

In the experiment, we assume a cluster of four AMD
16-core nodes is used to run 10 instances of the raytrace
application. The number of instances queued on each node
can be seen on the first row of data in Table III. From the
table, Nodes 1-3 each have two instances and Node 4 has
four instances in their task queues.

The goal of this scheduling scenario is to finish the
execution of all instances with the least energy (i.e. EPT)
within a target time period, which is set to 210 seconds. This
time period is just over a second longer than the time taken
to run eight instances of the application one by one using 16
cores at 2.5 GHz. This time constraint means that no node
can have more than eight instances in its queue; otherwise,
some instances cannot be finished within the target time.

The experiment looks at four different strategies arising
from the use of four different policy combinations. All
scheduling strategies begin with the same scheduling sce-
nario described above.

N This is a non power-aware (N) scheduling strategy.
Each node just executes their instances one by one
with 16 cores. When its instances are finished,
the node remains idle operating with the lowest
CPU frequency (800 MHz), which is the current
standard practice in operating systems.

HG This is the strategy using a global task migration
manager (G) to migrate the tasks from Node 1 and
2 to Node 4, but executing the 8 tasks (instances)
on Node 4 one by one with 16 cores, which is
usually done by such migration managers. Also
Node 1 and 2 are assumed to be in a deep sleep
state, consuming only 19 Watts in our experiment.
We also assume Node 3 and 4 use the Hare Policy
(H) which put the nodes into a deep sleep after
their instances are finished.

 0

 20000

 40000

 60000

 80000
 100000

 120000

 140000

 160000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EP
T

Number of cores

2.5 GHz
1.8 GHz
1.3 GHz

800 MHz

Figure 3. EPT of Raytrace using halt state

 0

 20000

 40000

 60000

 80000
 100000

 120000

 140000

 160000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EP
T

Number of cores

2.5 GHz
1.8 GHz
1.3 GHz

800 MHz

Figure 4. EPT of Raytrace using sleep state

SH This strategy applies both the Sharing (S) and the
Hare Policies (H) in each node, but without task
migration. The Sharing Policy selects the schedule
with the least PPS value.

SHG This strategy uses the global task migration man-
ager (G) to migrate the tasks as in the strategy HG,
but executes the tasks on Node 3 and 4 with the
Sharing and the Hare Policies (SH). The Sharing
Policy selects the schedule with the least PPS
value.

The results are shown in Table III for the scenario of
a small 4-node multicore cluster. We can see that when
both the Hare and the Sharing Policies are applied to the
individual nodes (case SH), it can save energy up to 57.43%,
compared with the non-power-aware strategy. When the new
policies are combined with task migration (case SHG), the
saving is up to 58.63% compared with the non-power-aware
strategy. This percentage of saving can result in significant
amount of energy saving for a large scale multicore cluster.

IV. RELATED WORK

There are some power efficiency metrics such as
EDn [13] and GCPI [14] proposed recently. Similar to
Performance per Watt, they stress more on performance. In

Node 1 Node 2 Node 3 Node 4 energy(J)
policies I C I C I C I C

- 2 - 2 - 2 - 4 - -
N 2 16 2 16 2 16 4 16 233294.18

HG 8 16 2 16 - - - - 115675.98
SH 2 8 2 8 2 8 4 4 99321.95

SHG 8 2 2 8 - - - - 96509.55

Table III
EXPLORATION OF MULTIPLE SCHEDULING POLICIES, N = NON

POWER-AWARE, G = GLOBAL TASK MIGRATION, S = SHARING POLICY,
H = HARE POLICY

contrast, our metrics like PPS and EPT stress more on power
and energy.

There has not been much work done on energy saving
through task scheduling. One such policy [15] uses DVFS to
reduce power consumption in real-time systems by lowering
the CPUs operating frequency to the smallest possible value
that will not violate any deadlines. However, it does not take
parallelism into consideration. In [16], an idea similar to our
Hare Policy was mentioned but not explored.

In [17], the proposed scheduling policies used profiling
(online and offline) to choose the most suitable cores to
run applications based on the measure of Instructions per
Cycle (IPC). A round-robin policy was used to gather the
performance for each core type, before a scheduling decision

was made.
Other papers such as [18] have explored the benefits

of Asymmetric Multicore Processors (AMP) on parallel
applications. Simple policies are used in the paper, where
parallel applications are scheduled on the slower cores, while
sequentially executing programs are given the fast cores
because they are seen to gain the most benefit from the
higher frequency. Since these policies do not use metrics like
EPT or PPS, the proposed policies seem to be empirical.

Other research which is complementary to our new poli-
cies such as the Sharing Policy is [11], which looked into the
use of virtualization in a cloud infrastructure, allowing for
workloads to be migrated between nodes. This meant that
unused nodes were able to be shutdown, without impacting
task completion.

Similar work to this has also being carried out in [12]
which looks at using virtualization to allow the workloads
to be moved around without interruption, as well as using
DVFS policies, to reduce the operating frequency of the
nodes with low utilization.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed three new metrics (SPW,
PPS and EPT) which are used for evaluating the energy
efficiency of task schedulers in multicore nodes. Three
new scheduling polices (Sharing, Hare and Tortoise) have
been proposed and evaluated with the above metrics in our
experiments. The Sharing Policy can save up to 20% energy
and the Hare Policy saves up to 72% energy according to
our experiments.

Our results show that we should pay more attention to
energy efficiency rather than power efficiency, especially
when the utilization of the multicore nodes is low or the
performance of applications is not the greatest concern.

We have also found that parallelism can play an important
role in energy saving, especially when the applications scale
well with the number of cores.

Our experiments suggest that, to enable the Hare Policy
to save more energy than the Tortoise Policy, multicore
computers should have a more feasible power management
interface that can put into sleep and wake up idle nodes
quickly with little overhead.

In the near future, we will further test both the Hare and
Sharing Policies on individual nodes with benchmark suites
such as those used by GCPI [14] and SPEC Power and
Performance [19]. Following on from this we would like
to incorporate them into a global task manager for use on
multicore clusters.

REFERENCES

[1] B. Nordman and K. Christensen, “Greener PCs for the enter-
prise,” IT Professional, vol. 11, no. 4, pp. 28–37, 2009.

[2] A.-C. Orgerie, L. Lefèvre, and J.-P. Gelas, “Save watts in your
grid: Green strategies for energy-aware framework in large
scale distributed systems,” in ICPADS 2008: Proceedings of

the 2008 14th IEEE International Conference on Parallel and
Distributed Systems, 2008, pp. 171–178.

[3] L. A. Barroso and U. Hoelzle, “The case for energy-
proportional computing,” Computer, vol. 40, no. 12, pp. 33–
37, 2007.

[4] R. Ge, X. Feng, H. Pyla, K. Cameron, and W. Feng.
(2010, Mar.) Power measurement tutorial for the Green500
list. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.109.6243&rep=rep1&type=pdf

[5] G. F. Townsend, Three Hundred Aesop’s Fables: Literally
Translated from the Greek. London: George Routledge and
Sons, 1867.

[6] O. A. R. Board, OpenMP Application Program Interface
Version 3.0, May 2008.

[7] (2010, May) Watts up? operators manual. [Online].
Available: https://www.wattsupmeters.com/secure/downloads/
manual rev 9UO0812.pdf

[8] J. Zhang, Z. Huang, W. Chen, Q. Huang, and W. Zheng,
“Maotai: View-oriented parallel programming on CMT pro-
cessors,” in The 37th International Conference on Parallel
Processing (ICPP08), 2008.

[9] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and method-
ological considerations,” in Proceedings of the 22nd Annual
International Symposium on Computer Architecture, 1995, pp.
24–36.

[10] AMD. (2010, May) Quad-core amd opteron
processor with direct connect architecture.
[Online]. Available: http://www.amd.com/us-
en/assets/content type/DownloadableAssets/Quad-
Core AMD Opteron processor 2P power consumption

comparison.pdf
[11] L. Lefèvre and A.-C. Orgerie, “Designing and evaluating

an energy efficient cloud,” The Journal of Supercomputing,
vol. 51, no. 3, pp. 352–373, 2010.

[12] F. Hermenier, N. Loriant, and J.-M. Menaud, “Power man-
agement in grid computing with Xen,” Frontiers of High Per-
formance Computing and Networking ISPA 2006 Workshops,
vol. 4331, pp. 407–416, 2006.

[13] S. Sharma, C.-H. Hsu, and W. chun Feng, “Making a case
for a Green500 list.” in IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2006)/ Workshop
on High Performance - Power Aware Computing, 2006.

[14] W.-C. Feng and T. Scogland, “The Green500 List: Year
One,” in 5th IEEE Workshop on High-Performance, Power-
Aware Computing (in conjunction with the 23rd International
Parallel and Distributed Processing Symposium), Rome, Italy,
May 2009.

[15] D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling
for low-energy hard real-time applications,” IEEE Design &
Test, vol. 18, no. 2, pp. 20–30, 2001.

[16] A. Grover, “Modern system power management,” Queue,
vol. 1, no. 7, pp. 66–72, 2003.

[17] M. Becchi and P. Crowley, “Dynamic thread assignment on
heterogeneous multiprocessor architectures,” in Proceedings
of the 3rd conference on Computing frontiers, 2006, pp. 29–
40.

[18] A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto, “Maxi-
mizing power efficiency with asymmetric multicore systems,”
Communications of the ACM, vol. 52, no. 12, pp. 48–57,
2009.

[19] SPEC Power and Performance Benchmark Methodology
V1.1.1, Standard Performance Evaluation Corporation.

